Buscar

mecnicadosmateriais-150909181241-lva1-app6892

Prévia do material em texto

ELEMENTOS DE MÁQUINAS 
Engenharia Mecânica - Energia 
Engenharia Electromecânica 
 
Prof.ª Rosa Marat-Mendes 
2003 
 
ELEMENTOS DE MÁQUINAS I 
Engenharia Automóvel 
Elementos de Máquinas Índice 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 i 
Índice 
 
CAP 1. Introdução à mecânica dos materiais 
1.1. Esforços axiais 1 
1.2. Torção de veios 2 
1.3. Flexão 4 
1.4. Tensão admissível, tensão de rotura e coeficiente de segurança 6 
1.5. Cálculo do coeficiente de segurança 7 
 
CAP 2. Introdução às propriedades mecânicas dos materiais 
2.1. Deformação elástica e plástica 8 
2.2. Propriedades mecânicas dos materiais 9 
2.3. Comportamento dúctil e frágil 12 
2.3.1. Comportamento dúctil 12 
2.3.2. Comportamento frágil 13 
2.4. Critérios de cedência 14 
2.4.1. Critério da tensão de corte máxima (Tresca) 14 
2.4.2. Critério da energia de distorção (Von Mises) 15 
2.5. Critérios de rotura 16 
2.5.1. Critério da máxima tensão normal (Coulomb) 16 
2.5.2. Critério Mohr-Coulomb 16 
 
CAP 3. Introdução ao projecto 
3.1. Introdução 18 
3.2. Projecto mecânico 19 
3.2.2. Fases do projecto 20 
3.2.3. A abordagem matemática e o projecto real 23 
3.2.4. Factores a considerar no projecto 23 
 
CAP 4. Projecto estático 
4.1. Factor de concentração de tensões geométrico 27 
 
CAP 5. Projecto à fadiga 
5.1. Introdução 33 
5.2. Tensões variáveis 34 
5.3. Resistência à fadiga. Curvas S-N. 35 
5.4. Correcção da tensão limite de fadiga 37 
5.5. Resistência à fadiga com tensão média diferente de zero – vários critérios possíveis 40 
5.5. Combinações de vários modos de carga 42 
 
CAP 6. Ligações aparafusadas e rebitadas 
6.1. Introdução 43 
6.2. Tipos de rosca e definição 43 
6.3. Fusos de transmissão de movimento “Power screws”. Mecanismos e dimensionamento 46 
6.3.1. Dimensionamento para roscas quadradas 46 
6.3.2. Rendimento 48 
6.3.3. Dimensionamento para roscas trapezoidais 48 
6.4. Parafusos à tracção 50 
6.4.1. Parafusos com pré-tensão 50 
6.4.2. Rigidez do parafuso 50 
6.4.3. Rigidez das peças ligadas 51 
6.4.4. Parafusos sem porca 53 
6.4.5. Juntas 54 
6.4.6. Parafusos com pré-tensão 55 
6.4.7. Binário de aperto 55 
6.4.8. Projecto estático do parafuso 56 
6.4.9. Parafusos solicitados à fadiga 58 
6.4.10. Concentração de tensões 60 
6.5. Rebites e parafusos ao corte 61 
6.5.1. Introdução 61 
Elementos de Máquinas Índice 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 ii 
6.5.2. Modos de falha e respectivo projecto de ligação ao corte 62 
6.5.3. Ligações com carregamento centrado 64 
6.5.4. Ligações com carregamento descentrado 64 
6.5.5. Chavetas e pinos 66 
 
CAP 7. Ligações soldadas 
7.1. Introdução 68 
6.2. Tipos de soldadura 69 
6.3. Tipos de solicitações, resistência dos cordões 69 
6.4. Símbologia da soldadura 70 
7.5. Dimensionamento 71 
7.5.1. Soldadura à tracção 71 
7.5.2. Soldadura à torção 73 
7.5.3. Soldadura à flexão 75 
7.6. Cuidados de projecto 77 
7.6.1. Ductilidade dos materiais soldados e dos cordões 77 
7.6.2. Solicitações secundárias ou parasitas 77 
7.6.3. Concepção e execução 77 
 
CAP 8. Molas 
8.1. Introdução 79 
8.2. Tipos de molas 79 
8.3. Material de fabricação 81 
8.4. Aplicação 82 
8.5. Características e tensões nas molas helicoidais 82 
8.6. Tensões nas molas helicoidais 83 
8.7. Deformação das molas helicoidais 84 
8.7.1. Estabilidade 85 
8.8. Molas helicoidais de tracção 86 
8.9. Molas helicoidais de compressão 88 
8.10. Fadiga 89 
8.11. Molas de torção 90 
8.12. Resistência do arame da mola 92 
 
CAP 9. Correias 
9.1. Introdução 93 
9.2. Tipos de Correias 94 
9.3. Principais características das correias planas e trapezoidais 95 
9.4. Correias planas e redondas 96 
9.5. Selecção de correias trapezoidais ou em V 100 
9.6. Correias dentadas 104 
 
CAP 10. Correntes 
10.1. Introdução 105 
10.2. Principais características das correntes de rolos 105 
10.3. Nomenclatura e relações geométricas 106 
10.4. Relação de transmissão 107 
10.5. Selecção da transmissão 108 
10.6. Lubrificação 111 
 
Elementos de Máquinas Introdução à Mecânica dos Materiais 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 1 
CAP 1 - INTRODUÇÃO À MECÂNICA DOS MATERIAIS 
 
1.1. ESFORÇOS AXIAIS 
 
Considerando uma barra submetida à acção de uma força axial, F, a tensão 
normal é dada por: 
 
A
F
=σ (1.1) 
 
Sendo, 
 
σσ → Tensão Normal (letra Sigma) 
F → Força aplicada 
A → Área da secção transversal 
 
 
Fig. 1.1 – Ensaio de Tracção. 
 
Se a força F provoca o aumento do comprimento da barra, a tensão normal diz-se de 
TRACÇÃO e atribui-se-lhe o sinal positivo. 
 
 
 
 
 
 
No caso contrário, isto é, se a força provoca a diminuição do comprimento da barra, a 
tensão normal diz-se de COMPRESSÃO e atribui-se-lhe o sinal negativo. 
 
 
 
 
 
 
 
Unidades no sistema internacional (S.I.) 
 
F → Newton [N] 
A → metro quadrado [m2] 
σ → Pascal ou Newton por metro quadrado [Pa] ou [N/m2] 
 
 
 
 
 
 
 
 
F 
F 
A 
F F 
F F 
Elementos de Máquinas Introdução à Mecânica dos Materiais 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 2 
F 
F 
A b 
c 
 
 
Exemplo 1.1 
 
Uma barra rectangular com secção transversal de 20 mm x 10 mm, está a ser 
traccionada por uma força de 50 KN. 
Qual a tensão que se desenvolve na barra? 
 
A tensão normal na barra é dada por 
A
F
=σ , 
 
sendo a área dada por A = b*c, como se pode observar na figura 
ao lado. 
 
Vem então: 
 
A = 20x10-3x10x10-3 = 0,0002 m2 
 
e a tensão na barra é de: 
A
F
=σ = 
0002,0
1050 3⋅
 = 250x106 Pa = 250 MPa 
 
 
1.2. TORÇÃO DE VEIOS 
 
 
Consideremos um veio sujeito à acção de dois momentos de torção T, aplicados 
nas suas extremidades. Para que o veio esteja em equilíbrio, os dois momentos de torção 
têm sentidos opostos e a mesma intensidade, como se pode observar na figura 1.2. 
 
 
 
 
Fig. 1.2 – Torção de um veio. 
 
 
A tensão de corte máxima é dada por: 
J
cT
max
⋅
=τ (1.2) 
 
T T 
A B 
Elementos de Máquinas Introdução à Mecânica dos Materiais 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 3 
sendo: 
ττmax → Tensão de corte máxima (letra Tau) [Pa ou N/m2] 
T → Momento Torsor [Nm] 
c → raio da secção transversal [m] 
J → Momento polar da secção transversal [m4] 
 
 
Exemplo 1.2 
 
Pretende-se determinar o momento torsor máximo que se pode aplicar a um veio 
de secção circular cheia com um diâmetro de 10 mm, sabendo que a tensão de corte 
máxima é de 200MPa. 
A tensão de corte máxima é dada por: 
J
cT
max
⋅
=τ 
o momento torsor vem dado por: 
c
J
T max
⋅τ
= 
sendo, 
mm5
2
d
c == e 410
44
m1081.9
2
)005.0(
2
r
J −⋅=
⋅π
=
⋅π
= 
o momento torsor máximo é então de: 
mN24.39T
005.0
1081.910200
T
106
⋅≤⇔
⋅⋅⋅
≤
−
Elementos de Máquinas Introdução à Mecânica dos Materiais 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 4 
1.3. FLEXÃO 
 
Consideremos uma viga sujeita à acção de dois momentos iguais e de sentidos 
opostos actuando no plano vertical (figura 1.3) 
 
 
 
 
Fig. 1.3 – Viga sujeita à Flexão. 
 
A Tensão normal máxima de flexão é dada por: 
I
cM f
maxf
⋅
=σ (1.3) 
sendo: 
σfmax → Tensão normal máxima de flexão [Pa] 
Mf → Momento flector [Nm] 
I → 2º Momento de área da secção transversal [m4] 
c → distância máxima à linha neutra (a linha neutra que passa pelocentro 
da secção, e tem a direcção do momento aplicado). [m] 
 
 
 
Exemplo 1.3 
 
Uma viga de secção transversal rectangular com 10 x b mm, está sujeita a um 
momento flector de 20 Nm. 
Qual o valor da largura da barra de modo a que a tensão normal máxima não 
exceda os 200 MPa. 
 
A tensão normal máxima é dada por: 
I
cM f
maxf
⋅
=σ 
sendo, c = 0.005m e 
( )
12
01.0b
12
bh
I
33 ⋅
== 
Mf Mf c 
10 mm 
? 
20 Nm 20 Nm 
Elementos de Máquinas Introdução à Mecânica dos Materiais 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 5 
Substituindo valores, tem-se então: 
mm60bm06.0b
12
)01.0(b
005.020
10200
3
6 =⇔=⇒
⋅
⋅
=⋅ 
Tabela 1.1 – 2º Momentos de área de figuras planas [Beer&Johnston] 
 
 
 
 
Elementos de Máquinas Introdução à Mecânica dos Materiais 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 6 
1.4. TENSÃO ADMISSÍVEL, TENSÃO DE ROTURA E 
COEFICIENTE DE SEGURANÇA. 
 
 
Consideremos um provete ao qual se aplica uma carga axial que vai aumentando 
progressivamente. 
Em certo instante, a máxima força que pode ser aplicada ao corpo é atingida e o 
provete parte, ou começa a perder resistência. Esta força máxima é chamada carga de 
rotura e designa-se por FR. 
A tensão de rotura é dada por: 
A
FR
r =σ (1.4) 
Uma peça ou componente deve ser projectada de tal forma que a tensão de 
rotura seja consideravelmente maior que a tensão normal que essa peça ou elemento irá 
suportar em condições normais de funcionamento. 
A tensão máxima a que o componente pode estar submetido é chamada Tensão 
admissível, σadm. 
À relação entre a tensão de rotura e a tensão admissível chama-se coeficiente de 
segurança, n. 
 
adm
r
admissívelTensão
roturadeTensão
n
σ
σ
== (1.5) 
ou 
n
r
adm
σ
=σ (1.6) 
• A determinação do valor a ser adoptado para o coeficiente de segurança, nas 
muitas aplicações possíveis, é um dos mais importantes problemas de 
engenharia. 
• A escolha de um coeficiente de segurança baixo pode levar à rotura. 
• Por outro lado, um coeficiente de segurança muito elevado, pode dar origem 
a projectos anti-económicos e pouco funcionais. 
 
No cálculo da tensão admissível pode-se utilizar tanto a tensão de cedência 
como a tensão de rotura. 
Elementos de Máquinas Introdução à Mecânica dos Materiais 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 7 
1.5. CÁLCULO DO COEFICIENTE DE SEGURANÇA 
 
Para o cálculo do coeficiente de segurança tem de se entrar em conta com o tipo 
de material utilizado, ou seja, o coeficiente de segurança do material, e o tipo de 
carregamento que esse material está sujeito, ou seja, o coeficiente de segurança relativo 
ao carregamento. 
 
Coeficiente de segurança do material, n1. 
Materiais dúcteis / Estrutura uniforme, por ex. Aço → 1 ∼ 2 
Materiais frágeis, por ex. Ferro Fundido → 2 ∼ 3 
Madeira → 3 ∼ 4 
Coeficiente de segurança relativo ao carregamento, n2. 
Carga gradualmente aplicada → 1 
Carga subitamente aplicada → 2 
Choques → 3 ∼ 5 
O coeficiente de segurança total será, portanto: 
n = n1 x n2 (1.7)
 
 
Exemplo 1.4 
 
 Considere uma barra de secção circular, sujeita a uma força axial de tracção 
de 22,5 KN. Sabendo que a tensão de rotura do material é de 600 MPa e que se 
pretende utilizar um coeficiente de segurança de 3, determine o valor mínimo do 
diâmetro. 
 
admA
F
σ≤=σ 
MPa200
3
10600
n
6
r
adm =
⋅
=
σ
=σ 
mm9.11dm0119.0d10200
4
d
105,22 6
2
3
=⇔=⇔⋅≤
π
⋅
=σ 
 
Elementos de Máquinas Conceitos Básicos de Mecânica dos Materiais 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 8 
CAP 2 – INTRODUÇÃO ÀS PROPRIEDADES MECÂNICAS DOS 
MATERIAIS. 
 
2.1. DEFORMAÇÃO ELÁSTICA E PLÁSTICA 
 
A experiência demonstra que todos os sólidos se deformam quando submetidos a 
esforços externos. Sabe-se também que, após serem removidos os esforços externos, o 
corpo recupera ou não as suas dimensões iniciais, tal como se pode observar na figura 
2.1, dependendo de não ter sido ou ter sido excedida uma determinada força limite. 
 
 
 
 
 
 
 É aplicada uma força externa no sólido. 
 
 
 
 
 
 
É retirada a força externa. 
 
 
 
 
 
O corpo recupera as suas dimensões 
iniciais. 
 
 
(Domínio elástico ou zona de 
deformação reversível ou recuperável) 
 
Comportamento Elástico 
 
O corpo ficando permanentemente 
deformado, apenas recupera parte da 
deformação a que foi submetido. 
 
(Domínio plástico ou zona de 
deformação permanente) 
 
Comportamento Elasto-Plástico 
 
 
Fig. 2.1 – Comportamento elástico e elasto-plástico. 
 
 
 
 
 
 
 
 
Sólido 
F 
Sólido 
Sólido Sólido 
Elementos de Máquinas Conceitos Básicos de Mecânica dos Materiais 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 9 
2.2. PROPRIEDADES MECÂNICAS DOS MATERIAIS 
 
Algumas das mais importantes propriedades mecânicas dos materiais obtêm-se no 
ensaio de tracção. 
Neste ensaio submete-se um provete do material a uma carga axial continuamente 
crescente até se dar a fractura. 
 
 
 
 
 
 
Fig. 2.2 – Provete para ensaio de tracção. 
 
Regista-se durante o ensaio, a carga aplicada (F) e o aumento do comprimento do 
provete (δ). 
A Tensão nominal (σ), é a tensão longitudinal média no provete, calculada dividindo a 
força aplicada (F), pela área da secção inicial do provete (A0), 
 
0A
F
=σ (2.1) 
 
σ → Tensão nominal [Pa ou N/m2] 
F → Força aplicada no provete [N] 
A0 → Área da secção inicial da secção transversal [m2] 
 
A Extensão nominal ou deformação (ε), é a deformação linear média que se determina 
dividindo o alongamento do comprimento de referência (∆L), pelo próprio comprimento 
inicial de referência. 
 
inicialocompriment
sofridoocomprimentdoiaçãovar
L
L
L
LL
00
0 =
∆
=
−
=ε (2.2) 
 
ε → Extensão ou deformação 
L → comprimento final [m] 
L0 → comprimento inicial [m] 
 
 
 
 
Elementos de Máquinas Conceitos Básicos de Mecânica dos Materiais 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 10
Obtém-se então o DIAGRAMA TENSÃO-EXTENSÃO. 
 
 
 
 
 
 
 
 
 
 
 
 
(a) (b) 
 
Fig. 2.3 – Diagrama Tensão–Extensão. (a) Sem fenómeno de cedência. (ex. Alumínio) 
(b) Com fenómeno de cedência. (ex. Aço macio). 
 
Linha O-P → REGIÃO LINEAR ELÁSTICA 
Ocorre durante a fase inicial do ensaio, em que σ é proporcional a ε. 
Atinge-se a certa altura a tensão limite de proporcionalidade Sp 
1, a partir 
da qual deixa de haver proporcionalidade. A área triângular situada 
abaixo do diagrama, desde zero até Sp é designada por módulo de 
resiliência, e representa a capacidade física do material em absorver 
energia sem deformações permanentes. Nesta região, quando a carga é 
retirada, o provete retorna às suas dimensões iniciais. A inclinação da 
recta O-P é definida pelo módulo de elasticidade E. 
 
Ponto E → TENSÃO LIMITE CONVENCIONAL DE ELASTICIDADE (elastic 
limit) (Se ou σe ou Rr)1 
É a maior tensão que o material pode suportar sem sofrer uma extensão 
permanente quando a carga for retirada. É designada por Se. Esta tensão é 
ligeiramente superior à tensão limite de proporcionalidade. No entanto, 
devido à dificuldade na sua determinação, toma-se muitas vezes por Sp 
para representar Se. Entre o ponto P e o ponto E o diagrama não é uma 
linha recta, no entanto o provete ainda é elástico. 
 
1 Na literatura pode-se designar tensão pelas letras S ou σ com os respectivos subscritos, no entanto também se pode 
designá-la por R segundo a Norma Portuguesa NP 10 002-1 de 1990. 
U 
F 
Y E 
P Se 
Sf 
Sy 
Su 
Sp 
Sp 
Se 
Elementos de Máquinas Conceitos Básicos de Mecânica dos Materiais 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 11
Linha E-F → DOMÍNIO PLÁSTICO 
Continuando a carregar o material para além do ponto E, a curva desvia 
acentuadamente da linearidade. Entra-se então no domínio plástico. 
 
Ponto Y → TENSÃO DE CEDENCIA(Yield Strength) (Sy ou σc ou Re) 
É a habilidade do material resistir a uma deformação plástica e 
caracteriza o início da deformação plástica. Em alguns materiais, tais 
como aços macios (figura 2.3 b), a tensão de cedência é marcada por um 
ponto definido, ponto de cedência. Noutros materiais (figura 2.3 a), onde 
o limite de proporcionalidade é menos acentuado, é comum definir a 
tensão de cedência como a tensão necessária para produzir uma pequena 
quantidade de deformação permanente (0,2%). 
 
Ponto U → TENSÃO DE ROTURA (Ultimate or Tensile Strength) (Su ou σR ou 
Rm) 
É a maior tensão nominal que o material pode suportar antes da rotura. É 
calculada dividindo a carga máxima (Fmax) pela área inicial do provete 
(A0). 
 
Ponto F → TENSÃO FINAL (Fracture Strength) (Sf ou σf) 
Alguns materiais apresentam uma curva decrescente após atingirem a 
tensão máxima, ou seja, a partir do ponto U a carga decresce dando-se 
finalmente a rotura no ponto F. Esta zona de U a F também é designada 
por zona de estricção e caracteriza-se pelo facto de a deformação deixar 
de ser uniforme ao longo do provete e concentrar-se numa determinada 
zona, ou seja, na zona de estrangulamento da secção transversal do 
provete. O provete vai finalmente romper por esta secção mais reduzida. 
Elementos de Máquinas Conceitos Básicos de Mecânica dos Materiais 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 12
2.3. COMPORTAMENTO DÚCTIL E FRÁGIL 
 
2.3.1. COMPORTAMENTO DÚCTIL 
 
 
 
 
Todos os materiais que permitam grandes 
deformações plásticas antes da rotura têm 
um comportamento dúctil. 
(exemplos: Cobre, aço macio e alumínio) 
 
Fig. 2.4 – Diagrama Tensão nominal–Extensão de um material dúctil. 
 
No caso da rotura de materiais com comportamento dúctil, quando o carregamento 
atinge o seu valor máximo (Sut), o diâmetro do corpo de prova começa a diminuir mais 
acentuadamente numa determinada secção, devido à perda de resistência local 
(Fig.2.5a). Após este valor máximo, o carregamento diminui progressivamente, embora 
o corpo de prova continue a deformar-se até se dar a rotura (Fig. 2.5b). 
Esta rotura, provocada pela tensão de corte máxima, dá-se segundo uma superfície em 
forma de cone, que forma um ângulo aproximado de 45º com a superfície perpendicular 
ao carregamento. 
 
 
Fig. 2.5 – Rotura de um material dúctil. 
[Fig. 2.10 Beer&Johnston] 
 
 
 
 
 
 
 
 
 
Sp 
Se 
Elementos de Máquinas Conceitos Básicos de Mecânica dos Materiais 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 13
1.3.2. COMPORTAMENTO FRÁGIL 
 
 
Os materiais que fracturam após uma pequena deformação 
plástica têm um comportamento frágil, ilustrado na figura 2.6. 
(exemplos: aços de alta resistência, ferros fundidos). 
Contudo também existem materiais que fracturam sem 
deformação plástica, apresentando um comportamento do tipo 
frágil, como é o caso do vidro e da pedra. 
 
Fig. 2.6 – Diagrama Tensão nominal–Extensão de um material frágil. 
 
Para os materiais com comportamento frágil, não existe diferença entre a Tensão de 
rotura e a tensão final (Su = Sf), além de que a deformação até à rotura é muito menor do 
que nos materiais dúcteis. A figura 2.7 mostra que a rotura se dá numa superfície 
perpendicular ao carregamento. Pode-se concluir daí que a rotura dos materiais frágeis 
se deve a tensões normais. 
 
 
Fig. 2.7 – Rotura de um material frágil. 
[Fig. 2.12 Beer&Johnston] 
 
 
Su = 
Sp 
Se 
Elementos de Máquinas Conceitos Básicos de Mecânica dos Materiais 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 14
2.4. CRITÉRIOS DE CEDÊNCIA 
 
Dos vários critérios de cedência existentes apresentam-se apenas os critérios de 
Tresca e de Von Mises. 
 
2.4.1 CRITÉRIO DA TENSÃO DE CORTE MÁXIMA (TRESCA) 
 
Só aplicável à falha por cedência, porque nesta está implicito um mecanismo de 
corte. 
A falha por cedência ocorre sempre que a tensão de corte máxima aplicada, τmax, 
atinja a tensão de corte máxima crítica, Ssy, i.e., aquela presente no provete do ensaio de 
tracção quando este entra em cedência. 
 
symax S≥τ (2.3) 
Sendo, 
2
S
S ysy = (2.4) 
 
Ssy – Tensão de corte de cedência 
Sy – Tensão normal de cedência 
τmax – Tensão de corte máxima 
 
Fig. 2.8 – Gráfico do critério da tensão de corte máxima. 
 [fig. 6.10 Hamrock] 
 
onde, pelo círculo de Mohr, para um estado biaxial de tensões, tira-se que: 
 
2
xy
2
yx
max 2
τ+




 σ−σ
=τ (2.5) 
 
 
 
 
 
 
 
 
Diagonal de corte 
Elementos de Máquinas Conceitos Básicos de Mecânica dos Materiais 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 15
2.4.2. CRITÉRIO DA ENERGIA DE DISTORÇÃO (VON MISES) 
 
Também só aplicável à falha por cedência. 
A falha ocorre sempre que a energia de distorção verificada num ponto qualquer 
da peça, atinja o valor da energia de distorção presente no provete de tracção quando 
este entra em cedência. 
O critério de Von Mises pode ser dado pela seguinte equação para os eixos xyz: 
 
( ) ( ) ( ) ( )[ ] 2/12xz2yz2xy2zx2zy2yx 6
2
1
τ+τ+τ+σ−σ+σ−σ+σ−σ=σ′ (2.6) 
 
ou 
( ) ( ) ( ) ( ) 2
y
2
xz
2
yz
2
xy
2
zx
2
zy
2
yx S
2
6
≥
τ+τ+τ+σ−σ+σ−σ+σ−σ
=σ′ (2.7) 
 
Para um estado plano de tensões, vem: 
 
( ) y2/12xy2yyx2x S3 ≥τ+σ+σσ−σ=σ′ (2.8) 
 
 
 
 
 
 
 
 
 
Fig. 2.9 – Gráfico do critério da energia 
de distorção. [fig. 6.11 Hamrock] 
 
 
 
 
 
 
 
 
 
 
 
 
Diagonal de corte 
Elementos de Máquinas Conceitos Básicos de Mecânica dos Materiais 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 16
2.5. CRITÉRIOS DE ROTURA 
 
 
2.5.1 CRITÉRIO DA MÁXIMA TENSÃO NORMAL (COULOMB) 
De acordo com este critério, dá-se a rotura quando a máxima tensão normal 
atinge o valor da tensão de rotura, obtida através do ensaio de tracção de um corpo de 
prova do mesmo material. Ou seja, a rotura ocorre quando uma das tensões principais 
iguala a tensão de rotura. 
 
 
c3
t1
S
S
−=σ
=σ
 (2.9) 
 
Onde St e Sc são as tensões de tracção e de compressão, normalmente de cedência ou de 
rotura, respectivamente. 
 
 
 
 
 
 
 
 
Fig. 2.10 - Gráfico do critério de Coulomb. [fig. 6.15 
Hamrock] 
 
 
Para um estado plano de tensões, tem-se que σ1 = σmax e σ3 = σmin, e a tensão máxima e 
mínima são dadas pela equação retirada do círculo de Mohr: 
 
 
2
xy
2
yxyx
minmax 22
, τ+




 σ−σ
±
σ+σ
=σσ (2.10) 
 
 
2.5.2 CRITÉRIO MOHR-COULOMB 
 
O critério de rotura de Mohr-Coulomb baseia-se no critério de Mohr. A tensão 
de rotura do material à tracção St, determina-se através de ensaios de tracção, enquanto 
a tensão de rotura à compressão Sc, determina-se a partir de ensaios à compressão. Com 
estas tensões traçam-se os círculos de Mohr representativos dos estados de tensão de 
tracção (círculo menor) e de compressão (círculo maior). As rectas tangentes aos 
círculos de Mohr definem uma envolvente de rotura. (Esta envolvente de rotura 
corresponde à envolvente representada pela linha poligonal fechada da figura 2.11 b). 
Assim, o critério de rotura de Mohr coincide com o critério de cedência de Tresca, 
quando St = Sc 
 
Elementos de Máquinas Conceitos Básicos de Mecânica dos Materiais 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 17
 
 
 (a) (b) 
Fig. 2.11 – (a) Círculos de Mohr. [fig. 6.24 Hamrock]. (b) Gráfico do critério de Coulomb-
Mohr. [fig. 6.25 Hamrock] 
 
As tensões são relacionadas por: 
 
1
SS uc
3
ut
1 =
σ
−
σ
 0,0, 31 ≤σ≥σ (2.11) 
 
Para o estado biaxial de tensões, vem: 
 
0S
0S
3uc3
1ut1
<σ=σ
>σ=σ
 (2.12) 
 
Sendo, σ1, σ2 e σ3 as tensões principais. 
 
 
 
 
 
 
 
 
 
Elementos de Máquinas Introdução ao Projecto 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 18 
CAP 3 - INTRODUÇÃO AO PROJECTO 
3.1. INTRODUÇÃO 
 
DEFINIÇÃO DE PROJECTO 
Formulação de um plano capaz de proporcionar uma soluçãosatisfatória e 
exequível a uma necessidade humana. 
 
NECESSIDADE 
• Precisa: “O veio motor deste redutor está a dar problemas; houve 8 
falhas nos últimos 6 meses. Temos de corrigir esta situação.” 
 
• Imprecisa: “A linha de produção continua a fabricar produtos com 
demasiados defeitos.” 
 
Uma necessidade nunca tem uma resposta única nem uma solução correcta. 
 
Exemplo: “BOM” hoje, pode ser “MAU” amanha. Porquê? 
• Devido ao aperfeiçoamento e ao crescimento dos conhecimentos. 
• Alteração da sociedade. 
 
Tal como se disse, não há uma solução correcta, há uma solução satisfatória. 
• Adequada ao fim em vista. 
• Formulada com o conhecimento actual. 
Elementos de Máquinas Introdução ao Projecto 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 19 
3.2. PROJECTO MECÂNICO 
 
Os projectos podem-se classificar quanto à área do conhecimento relativo à 
necessidade. 
 
 
 
 
 
 
 
 
 
 
A análise de um projecto envolve sempre uma análise económica. 
 
3.2.1. OBJECTIVOS DE UM PROJECTO DE ENGENHARIA 
 
CRIAR 
ou 
RECONDICIONAR 
ou um SISTEMA 
MELHORAR 
ou 
ADAPTAR 
 
“A Engenharia oferece à sociedade opções adequadas e exequíveis que 
constituem uma alternativa desejada ao curso natural dos acontecimentos”. 
 
 
 
 
 
Projecto de 
Engenharia 
Projecto 
Mecânico 
Este é o nosso 
Tema 
Elementos de Máquinas Introdução ao Projecto 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 20 
3.2.2. FASES DO PROJECTO 
O processamento total de um projecto passa por várias fases, desde o 
reconhecimento de uma necessidade até à sua apresentação final. 
 
PRINCIPAIS FASES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As ligações do diagrama de fluxo estabelecem uma sequência. 
 
 
 
NECESSIDADE 
ESPECIFICAÇÕES 
EXEQUIBILIDADE 
ANTEPROJECTO 
PROJECTO DE 
CONJUNTO 
PROJECTO 
DETALHADO 
OPTIMIZAÇÃO 
AVALIAÇÃO 
APRESENTAÇÃO 
DECISÃO 
PRODUÇÃO 
iteração 
Elementos de Máquinas Introdução ao Projecto 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 21 
DESCRIÇÃO DAS PRINCIPAIS FASES 
 
NECESSIDADE – Origem do projecto, melhor ou pior definida. 
 
ESPECIFICAÇÕES – Definição precisa do problema. 
Estabelecimento de todos os requisitos (quantidade, vida e ambiente de serviço 
pretendidos, etc.) e constrangimentos (Custo máximo, dimensões e peso máximo, 
limitações de Tecnologia e de materiais existentes). 
 
 EXEQUIBILIDADE – Análise de possibilidade / Interesse do projecto. 
Aspectos tecnológicos e económicos: Há dependência de materiais escassos? O 
produto final é economicamente rentável? 
 
 ANTE PROJECTO – Síntese do projecto. 
Resulta de conhecimento técnico - Científico, criatividade e experiência. 
Novos constrangimentos → Resistência dos órgãos, aspecto agradável, manutenção 
simples e económica. 
 
 PROJECTO DE CONJUNTO E DETALHADO – Desenhos de conjunto e de 
detalhe pormenorizados. 
Dimensionamento dos componentes ou dos órgãos individuais. 
Selecção de unidades/peças normalizadas (catálogos/normas). 
Optimização. 
Notas de cálculo. 
Desenhos de fabrico. 
 
 AVALIAÇÃO – Verificação final do êxito do projecto. 
Ensaios, protótipos. 
Esta fase é a grande geradora de alterações ao projecto. 
 
APRESENTAÇÃO DO PROJECTO – Ao Responsável Superior 
Ao Cliente 
Ao Investigador 
Este é um passo vital do projecto. 
Não há regras fixas, mas há linhas de orientação. 
Elementos de Máquinas Introdução ao Projecto 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 22 
RELATÓRIO DO PROJECTO – Num relatório tem de se apresentar os 
seguintes pontos: 
 
1. Título 
Identificação 
Índice 
Bibliografia 
 
2. Memória Descritiva e Justificativa 
Fases de “Necessidade”, “Especificações”, “Exequibilidade” e 
“avaliação”. 
 
3. Notas de cálculo 
Fases de “Projecto de conjunto” e “Projecto detalhado”. 
Ø Título 
Ø Enunciado e dados 
Ø Critério de projecto 
Ø Esquemas, Modelos analíticos. 
Ø Expressões 
 
4. Desenhos 
Formas, dimensões, Instruções de montagem e de fabrico. 
Ø Desenho esquemático do conjunto. 
Ø Desenho de conjunto/subconjuntos, lista de peças. 
Ø Desenho de fabrico das peças (instruções de fabrico) 
 
5. Anexos 
 
6. 
 
 
 
 
 
E.S.T. 
 
2001/2002 
 
Projecto final 
 
Nome 
Projecto Final 
Elementos de Máquinas Introdução ao Projecto 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 23 
7. Incluir 
Ø Introduções teóricas 
Ø Cálculos repetitivos – quadro de valores 
Ø Descrições sucintas – Uso de esquemas, gráficos, esboços. 
Ø Fundamentos Longos – Anexos 
Ø Mencionar Fontes Bibliográficas 
Ø Anexar normas/catálogos 
Não incluir 
Ø Tentativas e iterações. 
 
3.2.3. A ABORDAGEM MATEMÁTICA E O PROJECTO REAL 
 
 A grande maioria de decisões a tomar durante o projecto sobre o 
dimensionamento da peça não depende do cálculo, mas sim de constrangimentos (ex. 
Espessura mínima, dimensões de outras peças adjacentes). 
 
 Na fase do desenho (que deve iniciar-se antes do cálculo) onde se tem de 
proceder à comparação de formas/dimensões, fica grande parte do projecto definido. 
Apenas se devem seguir cálculos de verificação, em regra simples, de pormenores 
críticos. 
 3.2.4. FACTORES A CONSIDERAR NO PROJECTO 
 
Um factor a considerar no projecto será, toda e qualquer característica que 
influencie de forma essencial o projecto de um componente ou de todo o sistema. 
 
3.2.4.1. Resistência 
 
É uma propriedade do material, da forma, das dimensões da peça, do modo de 
carregamento e do meio ambiente (entre outros). 
Portanto, adicionalmente à incerteza relativa à determinação da carga real, há 
que considerar a incerteza quanto à capacidade de carga. 
 
 
 
Elementos de Máquinas Introdução ao Projecto 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 24 
 INCERTEZAS RELATIVAS À RESISTÊNCIA 
 
Ø Variações nas propriedades do material. 
(Heterogeneidade de lote para lote, no mesmo lote e na própria peça). 
 
Ø Efeito de escala. 
(A resistência de uma peça grande é menor do que a de uma peça mais 
pequena, ex: provete). 
 
Ø Tipo de carregamento. 
(A resistência é diferente se o carregamento cresce gradualmente ou 
bruscamente; se o estado de tensão é uniaxial ou multiaxial). 
 
Ø Processo de fabrico 
(A resistência depende do acabamento superficial, de alterações do estado 
mecânico e do estado metalúrgico – tratamento térmico, provocado pelo 
processo de fabrico). 
 
Ø Meio Ambiente 
(Redução da tensão de cedência com o aumento da temperatura, Redução 
da tenacidade com a redução da temperatura, redução das propriedades 
com a oxidação/corrosão). 
 
No caso geral, o projectista previne-se aplicando um COEFICIENTE DE 
SEGURANÇA, c.s. 
 
 
alReaargC
Capacidade
n = ou 
n
Capacidade
)admissível(alReaargC = 
 
 Problema de verificação Problema de Dimensionamento 
 
 “O coeficiente de segurança é um factor de correcção da propriedade para lhe 
definir um valor admissível”. 
 
Elementos de Máquinas Introdução ao Projecto 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 25 
 
Exemplo 3.1 
 
 
Sabe-se: Sy = 600 MPa σ ≤ σall 
 n = 3 MPa200
3
10600
n
S 6y
all =
⋅==σ 
Pretende-se: σ máxima a aplicar σmax = 200MPa 
 
 A especificação de um coeficiente de segurança não é tarefa simples. É 
fundamentalmente um factor empírico. 
 
Ø Em projectos de Grande responsabilidade, só com experimentação e cuidadosa 
análise estatística se pode definir um coeficiente de segurança. 
Ø Em certos projectos específicos, o coeficiente de segurança é indicado nas normas 
e códigos de projecto respectivos. 
Ø Em projectos simples e de pouca responsabilidade, o coeficiente de segurança 
pode ser atribuído com base em indicações de certos livros da especialidade. 
 
3.2.4.2. FIABILIDADE 
 
Probabilidade de desempenharsem falha a função destinada, em condições 
estabelecidas (modo de operação, ambiente de serviço, vida pretendida, etc.) 
A fiabilidade é, portanto, uma medida de confiança que se pode ter num órgão 
e que está sempre compreendida entre os seguintes valores: 
0 ≤ F ≤ 1 
 
3.2.4.3. CUSTO 
 
Essencial na análise de exequibilidade, importante em todas as fases do 
projecto, para isso tem de se ter em conta: 
Ø A adopção de materiais baratos, concepções simples, processos de fabrico 
rentáveis. 
Ø Utilização de consumíveis normalizados (parafusos, etc.). 
Elementos de Máquinas Introdução ao Projecto 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 26 
Ø Especificação de tolerâncias de fabrico razoáveis (A precisão é 
directamente proporcional ao custo). 
Ø Aplicação de gráficos de “Ponto de equilibrio”. (Indicam a solução mais 
rentável para o fim em vista). 
 
 
 
 
 
 
 
 
3.2.4.4. Prevenção 
 
O fabricante de um produto é responsável por danos materiais e humanos 
devido a falha intrínseca ou à sua operação se não foram tomadas as medidas 
preventivas: 
 
Ø Evitar arestas vivas / obstáculos à operação 
Ø Colocar redes / protecções 
Ø Prover dispositivos de protecção / segurança 
Ø Etc. 
 
3.2.4.5. FABRICO 
 
Ø Fabrico e montagem / instalação a custo competitivo. 
Ø Materiais e cálculo dependem dos processos de fabrico. 
Ø O projectista tem de estar bem informado sobre os processos de fabrico. 
C
usto 
Volume de produção 
Furação 
Automática 
Furação 
manual 
N.º de 
decisão 
Elementos de Máquinas Projecto estático 
 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 27 
CAP 4 - PROJECTO ESTÁTICO 
4.1. FACTOR DE CONCENTRAÇÃO DE TENSÕES 
GEOMÉTRICO 
 
As expressões básicas da “Mecânica dos materiais” que dão a distribuição de 
tensões numa peça assumem que as secções rectas se mantêm constantes, não 
existindo irregularidades na peça ao se passar de uma secção para outra. Na verdade, 
na prática, as peças têm sempre algumas irregularidades. 
 Todos os acidentes geométricos das peças alteram a distribuição de tensões de 
tal forma que as expressões básicas já não se descrevem correctamente. Estes 
acidentes geométricos provocam uma concentração de tensões. 
 
Fig. 4.1 – Tensões locais em 3 casos de entalhes. 
 
 A concentração de tensões é função da geometria do entalhe presente na peça 
e quantifica-se através do factor de concentração de tensões estático, definido por: 
0
max
tk σ
σ
= (4.1) e 
0
max
stk τ
τ
= (estado de corte) (4.2) 
 
 
 
 
 
 
 
 
 
 
Fig. 4.2 – Tensões locais na 
zona do furo (zona de maiores 
concentrações de tensões). 
Elementos de Máquinas Projecto estático 
 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 28 
O FCT (Factor de concentrações) pode ser determinado: 
 
 Analiticamente – Através do método de elementos finitos. 
 Experimentalmente – Através de técnicas de análise experimental de tensões: 
Extensometria, fotoelasticidade e vernizes frágeis. 
 
Para grande número de aplicações práticas, o projectista já tem soluções para Kt 
publicadas na literatura. 
4.2. VISUALIZAÇÃO DA CONCENTRAÇÃO DE TENSÕES 
 
É importante que o projectista desenvolva uma sensibilidade de visualização 
intuitiva da concentração de tensões. 
Para tal é utilizada a analogia do fluxo de força, em que: 
 
 Cada linha representa uma parcela igual da força total. 
 Quando as linhas são desviadas por um entalhe, é como se este as 
“empurrasse” umas contra as outras. O resultado é um aumento da 
densidade de linhas na vizinhança do acidente geométrico, i.e., aumento da 
tensão local. 
 A severidade da concentração de tensões é proporcional à “quantidade de 
brusquidão” na deformação do fluxo. 
 A concentração de tensões é tanto maior quanto menor for o raio de fundo 
do entalhe e/ou quanto menor for a distribuição da brusquidão do entalhe. 
 
 kt varia com o tipo de carga aplicada e a geometria da peça. 
 
 kt é independente do tipo de material 
da peça. 
 
 
 
 
Fig. 4.3 – Analogia do fluxo em dois entalhes 
diferentes. kt (a) > kt (b). 
 
 
Elementos de Máquinas Projecto estático 
 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 29 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[Shigley] 
Elementos de Máquinas Projecto estático 
 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 30 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Elementos de Máquinas Projecto estático 
 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 31 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Elementos de Máquinas Projecto estático 
 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 32 
 
 
 
 
 
 
 
 
 
 
Elementos de Máquinas Projecto à fadiga 
 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 33 
CAP 5 - PROJECTO À FADIGA 
 
5.1. INTRODUÇÃO 
 
 O comportamento de uma peça sujeita a uma solicitação variável é 
substancialmente diferente de quando sujeita a uma carga estática. 
 De facto, quando se trata de um carregamento variável, verifica-se 
experimentalmente que a resistência da peça decai para valores consideravelmente 
inferiores à tensão de rotura e de cedência (Sut e Sy). 
 Este fenómeno é designado por FADIGA DO MATERIAL e a eventual falha 
consequente é vulgarmente chamada de FRACTURA POR FADIGA. 
 O caso mais típico de uma fractura por fadiga é o da falha de um veio 
solicitado por uma força transversal constante, mas por via do seu movimento de 
rotação, fica sujeito a fadiga. 
 
 
 
 
 
 
Fig. 5.1. – Processo da rotura por fadiga. 
 
PROCESSO DA ROTURA POR FADIGA 
 
A – INICIAÇÃO – A fractura por fadiga começa com a germinação de uma pequena 
fenda microscópica, em regra ocorrida numa zona de concentração de tensões 
(transição de secções, escatel, furos, outros entalhes). 
B – PROPAGAÇÃO POR FADIGA – A partir do defeito inicial, a fenda de fadiga 
progride gradualmente, ciclo após ciclo de carregamento. 
C – ROTURA FINAL – Esta zona apresenta-se normalmente rugosa. 
ω
Elementos de Máquinas Projecto à fadiga 
 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 34 
5.2. TENSÕES VARIÁVEIS 
Considera-se por simplicidade, a função sinusoidal: 
 
 
 
 
 
 
 
Fig. 5.2. – Representação da função sinusoidal. 
 
σmax – Tensão máxima 
σmin – Tensão mínima 
σmax - σmin – Gama de tensões 
R = 
max
min
σ
σ
- Razão de tensões (5.1) 
 
2
minmax
a
σ−σ
=σ - Tensão Alternada (5.2) 
2
minmax
m
σ+σ
=σ - Tensão Média (5.3) 
 
ALGUMAS RELAÇÕES ENTRE TENSÃO-TEMPO. 
 
Fig. 5.3. – Tensão Ondulada. 
[Fig. 7.12. Shigley] 
 
σmax, σmin , ambas (+) ou (-). 
 
Fig. 5.4. – Tensão alternada. 
[Fig. 7.12. Shigley] 
 
 
σmax, σmin , de sinais contrários. 
Elementos de Máquinas Projecto à fadiga 
 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 35 
)10N;'S(
)10N;S9,0(
6
e
3
ut
=
=
( )
⎪
⎪
⎩
⎪
⎪
⎨
⎧
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−=
=
e
ut
e
2
ut
S
S9,0log
3
1b
S
S9,0a
b
f aNS =
b1
a
a
N ⎟
⎠
⎞
⎜
⎝
⎛ σ=
Fig. 5.5. – Tensão repetida (ou 
pulsante) [Fig. 7.12. Shigley] 
 
σmax ou σmin , nula. 
 
5.3. RESISTÊNCIA À FADIGA – CURVAS S-N. 
 
A resistência à fadiga é função do número de ciclos N. A um maior número de 
ciclos corresponde uma menor resistência à fadiga. 
Esta curva representa a resistência à fadiga do material para cada número de ciclos. 
 
 
 
 
 
 
 
 
 
 
Fig. 5.6. – Curva S-N para metais ferrosos. [Fig. 7.6. Shigley] 
 
Para o cálculo da vida de um veio utilizam-se as seguintes equações: 
 
NlogbalogSlog f += com (5.4) 
 
 
 (5.5) 
 
(5.6) 
 
Onde os pontos, entre os quais a vida é finita são: 
 
Elementos de Máquinas Projecto à fadiga 
 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS– 2003 36 
 
 
 
 
 
 
 
Fig. 5.7. – Curva S-N para aços. [Fig. 7.4. Hamrock] 
 
 
 
 
 
 
 
 
 
 
Fig. 5.8. – Curva S-N para Polímeros [Fig. 7.4. Hamrock] 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.9. – Curva S-N para Ligas de Alumínio [Fig. 7.4. Hamrock] 
 
 
 
Elementos de Máquinas Projecto à fadiga 
 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 37 
1133,0
b 62,7
dk
−
⎟
⎠
⎞
⎜
⎝
⎛= mm51dmm8,2 ≤≤
 kb ≈ 0,6 até 0,75 para diâmetros maiores 
5.4. CORRECÇÃO DA TENSÃO LIMITE DE FADIGA 
 
 A curva S-N atrás mostrada refere-se a “ensaios”, i.e., condições específicas 
(pequeno provete, polido, ambiente de laboratório, etc.). 
É de esperar que a resistência de uma peça real seja diferente/menor da do 
provete, há que proceder à correcção da curva S-N “teórica”, através da aplicação de 
Factores de correcção ao limite de fadiga através da equação: 
eedcbae 'SkkkkkS = (5.7) 
em que: 
Se – Tensão limite de fadiga da peça real 
S’e – Tensão limite de fadiga de ensaio 
ka – Factor de acabamento superficial 
kb – Factor de escala 
kc – Factor de carga 
kd – Factor de temperatura 
ke – Factor para outros efeitos 
 
 
ka Factor de Acabamento Superficial 
 
Função do acabamento superficial da peça e do nível de resistência da mesma. 
b
uta Sak = (5.8) 
Tabela 5.1. – Factor de acabamento superficial. [Tab. 7.4. Shigley] 
 
 
 
 
 
 
kb Factor de Escala 
Para torção e flexão rotativa em varão: 
 
 
Para esforços axiais em varão, kb = 1 
 
Para outros casos consultar bibliografia. 
 
-0.265 4.51 Maquinada/laminada a frio (Machined 
or cold-drawn) 
-0.995 272 Forjada (As forged) 
-0.718 57.7 Laminado a quente (Hot-rolled) 
-0.085 1.58 Rectificada (Ground) 
Expoente b Factor a [Mpa] Tipo de Superfície 
Elementos de Máquinas Projecto à fadiga 
 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 38 
kc Factor de Carga 
 
 
kd Factor de Temperatura 
 
 
RT
T
d S
Sk = (5.9) 
 
 
 
 
 
 
 
 
 
 
 
Tabela 5.2. – Factor de temperatura. 
[Tab. 7.5. Shigley] 
 
 
 
ke Factor para outros Efeitos 
 
O factor de concentração de tensões (FCT) a usar em fadiga não é só função 
da geometria do entalhe, mas é também função do próprio material. 
Para aproveitamento da enorme quantidade de informação sobre Kt’s 
existentes na literatura é vantajoso arranjar-se uma relação entre Kt e Kf, através da 
consideração da sensibilidade ao entalhe de cada material e que permita, 
precisamente, calcular Kf para uma determinada geometria e para um determinado 
material, sem recurso constante à experimentação. 
Tal relação faz-se através do factor de sensibilidade ao entalhe, q, num 
determinado material, definido por: 
1K
1Kq
t
f
−
−
= ⇒ 1)1K(qK tf +−= (5.10) 
⎪
⎪
⎩
⎪
⎪
⎨
⎧
=
577,0
1
1
923,0
kc
MPa1520S ut ≤
Carga Axial MPa1520S ut >
Flexão 
Torção e Corte 
ST – Resistência à temperatura de operação 
SRT – Resistência à temperatura ambiente. 
 
0.546 600
0.670 550
0.766 500
0.840 450
0.900 400
0.943 350
0.975 300
1.000 250
1.020 200
1.025 150
1.02 100
1.010 50
1.000 20
ST/SRT Temperatura ºC 
Carga Axial 
Elementos de Máquinas Projecto à fadiga 
 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 39 
Em que: 
f
e k
1k = (5.11) 
Que variará entre os seguintes valores limites: 
q = 0 → Ausência de sensibilidade → Kf = 1 
q = 1 → Plena sensibilidade → Kf = Kt 
 
A sensibilidade ao entalhe é não só função do material, mas também da 
dimensão característica do entalhe. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.10 – Sensibilidade ao entalhe, q, para tracção e flexão. [Fig. 5.16. Shigley] 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.11 – Sensibilidade ao entalhe, q, para torção. [Fig. 5.17. Shigley] 
Elementos de Máquinas Projecto à fadiga 
 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 40 
Notar que quanto menor o raio, menor é o valor de q, o que não deve ser 
entendido como vantajoso optar-se por pequenos raios, pois os valores do coeficiente 
de concentrações estático Kt viriam drasticamente maiores. 
Em caso de dúvida quanto à sensibilidade ao entalhe de um determinado 
material, deve o projectista optar por q = 1 (i.e., 100% de influência do entalhe). 
 
S’e Tensão limite de fadiga 
 
 
 
 
Fig. 5.12. - Tensão limite de fadiga. [Fig. 7.7. Shigley] 
 
5.5. RESISTÊNCIA À FADIGA COM TENSÃO MÉDIA 
DIFERENTE DE ZERO - VÁRIOS CRITÉRIOS POSSÍVEIS 
 
As curvas S-N básicas do material são, em geral, estabelecidas para uma 
tensão média nula. Se a tensão média é diferente de zero, as curvas de resistência à 
fadiga sofrem alterações significativas. Á medida que a tensão média aumenta, 
verifica-se uma redução tanto na tensão limite de fadiga como na resistência à fadiga 
para vida finita. 
Existem várias teorias para procurar traduzir matematicamente os resultados 
experimentais em que se analisa o efeito da tensão média na tensão limite de fadiga. 
As teorias mais conhecidas são os critérios de GOODMAN, SODEBERG, 
GERBER e de CEDÊNCIA que se encontram esquematizados na figura abaixo. 
⎩
⎨
⎧
>
≤
=
MPa1400SMPa700
MPa1400SS504,0
'S
ut
utut
e
Elementos de Máquinas Projecto à fadiga 
 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 41 
 
 
 
 
 
 
 
 
 
 
Fig. 5.13. – Influência da tensão média na tensão limite à fadiga. [Fig. 7.9 Hamrock] 
 
Critério de Soderberg (5.12) 
 
 
Critério de Goodman (5.13) 
 
 
Critério de Gerber (5.14) 
 
 
Critério de Cedência (5.15) 
 
Nos materiais dúcteis os resultados experimentais, em geral, aproximam-se da 
curva de Gerber, mas dada a dispersão dos resultados que ocorre em fadiga e a 
facilidade de aplicação de soluções lineares, o critério mais usado é o de Soderberg 
dependendo das aplicações. O que dá mais margem de segurança é o de Soderberg. 
Estas equações têm particular interesse no cálculo do coeficiente de segurança. 
 
 
 
 
 
 
n
1
SS yt
m
e
a =
σ
+
σ
n
1
SS ut
m
e
a =
σ
+
σ
1
S
n
S
n
2
ut
m
e
a =⎟⎟
⎠
⎞
⎜⎜
⎝
⎛ σ
+
σ
n
1
Se
ma =
σ+σ
Elementos de Máquinas Projecto à fadiga 
 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 42 
5.6. COMBINAÇÕES DE VÁRIOS MODOS DE CARGA 
 
Em estados biaxiais a tensão limite de fadiga obtida em ensaios pode ser 
acompanhada com uma amplitude de tensões equivalente obtida pelo critério de Von 
Mises. 
No caso de existirem componentes estáticas segundo um dos eixos, o critério 
de Von Mises não pode ser aplicado directamente. Tem de se fazer a análise separada 
das tensões estáticas e das amplitudes de tensão. 
Determina-se a tensão equivalente estática e a tensão equivalente dinâmica 
pelo critério de Von Mises. 
 
Tensões alternadas – inclui-se o coeficiente de concentrações dinâmico kf. 
(5.16) 
 
Tensões médias – tensões estáticas 
 (5.17) 
 
Tensão equivalente alternada 
2
xya
2
xaa 3' τ+σ=σ (5.18) 
 
Tensão equivalente média 
2
xym
2
xmm 3' τ+σ=σ (5.19) 
 
Aplicando ao critério de Goodman, vem: 
n
1
SS ut
m
e
a =
σ′
+
σ′ (5.20) 
 
 
 
 
afxa k σ⋅=σ
mxm σ=σ
Elementos de Máquinas Ligações aparafusadas e rebitadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 43 
CAP 6 – LIGAÇÕES APARAFUSADAS E REBITADAS 
 
 6.1. INTRODUÇÃO 
 
 As principais vantagens dos parafusos são: 
• Baixo custo 
• Facilidade de montagem e desmontagem. 
 As principais aplicações dos parafusos são: 
• Parafusos de fixação em uniões desmontáveis; 
• Parafusos obturadores para tapar orifícios; 
• Parafusos de transmissão de forças; 
• Parafusos de movimento para transformar movimentos rectilíneos em 
rotativos e vice versa. 
As principais desvantagens nos parafusos de fixação são: 
• Possibilidade de ocorrer desaperto durante o funcionamento do 
equipamento. (para evitar este inconveniente devem usar-se 
dispositivos contra o desaperto,tais como anilhas retentoras ou porcas 
com roscas especiais) [parafusos de fixação]. 
• Baixo rendimento de transmissão e o elevado desgaste dos flancos das 
roscas. [parafusos de movimento] 
 
6.2. TIPOS DE ROSCA E DEFINIÇÃO 
 
A figura 6.1. mostra a parte roscada de um parafuso e a sua simbologia. O 
significado da terminologia é a seguinte: 
- p – passo “pitch”, é a distância axial entre dois pontos correspondentes de 
filetes adjacentes. 
- d – diâmetro nominal do parafuso. 
- De – diâmetro exterior “major diameter”, é o diâmetro exterior do 
parafuso. 
- Dr – diâmetro interior “minor diameter”, é o diâmetro da raiz do parafuso. 
- Dm – diâmetro médio “mean diameter”, é a média dos diâmetros exterior e 
raiz. 
Elementos de Máquinas Ligações aparafusadas e rebitadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 44 
- 2αα – ângulo de flanco “thread angle”, é o ângulo formado pelos flancos da 
rosca. 
- λλ – ângulo de hélice “lead angle”, é o ângulo da recta planificado 
correspondente à hélice formada pelos pontos da rosca sobre um cilindro 
de diâmetro Dm (figura 6.4.). Tem-se que 
mD
L
tg
π
=λ . 
- L – avanço, é a distância axial que a porca avança quando roda uma volta 
(figura 6.4.). 
 
 
 
 
 
 
 
 
Fig. 6.1. – Simbologia usada nas roscas. [fig. 8.1 Shigley] 
 
 Em construção mecânica utilizam-se roscas de dimensões normalizadas com 
perfil triangular, semicircular, trapezoidal, dente de serra e quadrada. 
Nos parafusos de fixação usam-se roscas triangulares com crista plana ou lisa. 
 A rosca métrica é especificada pelo símbolo M seguido do diâmetro nominal x 
passo (ex: M16 x 2). A figura 6.2. mostra esquematicamente o perfil das roscas 
métricas. 
 
Fig. 6.2. – Representação 
esquemática do perfil das roscas 
triangulares. [fig. 8.2 Shigley] 
 
 
 
Elementos de Máquinas Ligações aparafusadas e rebitadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 45 
As roscas quadradas, trapezoidais e dente de serra usam-se nos parafusos de 
movimento encontrando-se a sua geometria também normalizada. A figura 6.3. 
mostra esquematicamente a configuração das roscas trapezoidais e quadradas. 
Fig. 6.3. – (a) Rosca quadrada; (b) Rosca trapezoidal. [fig. 8.3 Shigley] 
Tabela 6.1. – Diâmetro e passos normalizados das roscas métricas. (dimensões em 
mm).[Tabela 8.1. Shigley] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At – área útil, à tracção, de uma rosca (para igual resistência à de um varão não 
roscado) 
Ar – é a área correspondente ao diâmetro da raiz. 
Elementos de Máquinas Ligações aparafusadas e rebitadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 46 
6.3. FUSOS DE TRANSMISSÃO DE MOVIMENTO “POWER 
SCREWS”. MECANISMOS E DIMENSIONAMENTO. 
 
6.3.1. – DIMENSIONAMENTO PARA ROSCAS QUADRADAS. 
 
Os parafusos de movimento são usados frequentemente em aplicações como 
fusos de tornos, prensas e macacos. Estes vão transformar o movimento circular em 
rectilíneo ou vice versa. As principais aplicações são fusos de tornos, prensas, 
macacos, etc. 
 A figura 6.4. mostra um parafuso de movimento de rosca quadrado, com 
diâmetro médio Dm, passo p e ângulo de hélice λ, carregado por uma força axial F. 
 
 
 
 
 
 
 
Figura 6.4. – Parafuso de movimento. 
 [fig. 8.5 Shigley] 
 
Para calcular o binário necessário para elevar ou baixar a carga, considere-se o 
desenrolamento de um filete de rosca. Este desenrolamento forma a hipotenusa de um 
triângulo cuja altura é o avanço L e a base é o perímetro πDm correspondente ao 
diâmetro médio da rosca (figura 6.5.). Em que N é a força normal, µ o coeficiente de 
atrito e P a força tangencial provocada pelo aperto e desaperto do parafuso. 
 
 
 
 
 
Fig. 6.5. – (a) Diagrama de forças no levantamento da carga ou aperto. (b) na descida 
da carga ou desaperto. [fig. 8.6 Shigley] 
Elementos de Máquinas Ligações aparafusadas e rebitadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 47 
Fazendo o equilíbrio de forças, vem que: 
- para o diagrama de forças no aperto 



=λ−λµ+=
=λµ−λ−=
∑
∑
0cosNNsenFF
0cosNNsenPF
v
H (6.1) 
- para o diagrama de forças no desaperto. 



=λ−λµ−=
=λµ+λ−−=
∑
∑
0cosNNsenFF
0cosNNsenPF
v
H (6.2) 
Como não estamos interessados na reacção N, eliminamo-la, obtendo-se então a força 
tangencial para o aperto e para o desaperto, respectivamente: 
λµ−λ
λµ+λ
=
sencos
)cossen(F
P (6.3) 
λµ+λ
λ−λµ
=
sencos
)sencos(F
P (6.4) 
Dividindo as equações por cosλ, considerando 
mD
L
tg
π
=λ e sabendo que o momento 
torsor a aplicar é o produto da força P pela metade do raio Dm/2, obtém-se o 
Momento torsor para levantar (aperto) e para baixar (desaperto) a carga, 
respectivamente. 






µ−⋅π
⋅πµ+⋅
=
LD
DL
2
DF
T
m
mm (6.5) 






µ+⋅π
−⋅πµ⋅
=
LD
LD
2
DF
T
m
mm (6.6) 
 
Se T = 0 ou T < 0 ⇒ Não é necessário aplicar qualquer carga para que o 
parafuso baixe sob a acção do peso próprio (o fuso 
desaperta-se sozinho). 
Se T > 0 ⇒ Não há desaperto (ex: parafusos de fixação) quando este 
caso acontece, designa-se por Auto-Retenção “Self-
Locking”. A condição para Auto-retenção é que πµDm ≥ L. 
 
Se se dividir ambos os membros por πDm, obtém-se µ ≥ tgλ. 
Isto mostra que quando o parafuso está em auto-retenção deverá ter-se o ângulo de 
atrito maior ou igual que o ângulo da hélice. 
Elementos de Máquinas Ligações aparafusadas e rebitadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 48 
 6.3.2. - RENDIMENTO 
 
Por vezes, nos parafusos de movimento é importante conhecer o rendimento: 
Se se tiver µ = 0 em 





µ−⋅π
⋅πµ+⋅
=
LD
DL
2
DF
T
m
mm , vem: 
π
=
2
FL
T0 (6.7) 
Sendo T0 o momento torsor para levantar a carga sem atrito. 
O rendimento vem então dado por: 
T2
FL
T
T
e 0
π
== (6.8) 
 
6.3.3. – DIMENSIONAMENTO PARA ROSCAS TRAPEZOIDAIS. 
 
As equações anteriores foram desenvolvidas para roscas quadradas. Se as 
roscas forem inclinadas (triangulares ou trapezoidais) a carga é inclinada em relação 
ao eixo do parafuso. Nestes casos o efeito do ângulo de flanco α é aumentar o atrito. 
Assim os termos do atrito têm de ser divididos por cosα. 
 
 
Fig. 6.6. – (a) efeito do ângulo de 
flanco α. (b) diâmetro médio de 
contacto no apoio (collar). 
[fig. 8.7. Shigley] 
 
Obtém-se então o momento torsor para o aperto para rosca trapezoidal: 






αµ−⋅π
α⋅πµ+⋅
=
secLD
secDL
2
DF
T
m
mm (6.9) 
Para além do atrito nas roscas ocorre ainda o atrito na cabeça do parafuso (parafusos 
de fixação) ou no anel de suporte da carga (parafusos de movimento) que vai originar 
um momento torsor que é preciso vencer para apertar ou desapertar os parafusos. 
2
dF
T ccc
µ
= (6.10) 
Elementos de Máquinas Ligações aparafusadas e rebitadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 49 
sendo: 
µc – coeficiente de atrito entre o anel de suporte ou a cabeça do parafuso e a peça. 
dc – diâmetro médio de contacto no apoio (figura 6.6. (b)). 
Daqui obtêm-se o momento torsor total para levantar (apertar) e baixar (desapertar) a 
carga para roscas trapezoidais, respectivamente. 
 
2
dF
secLD
secDL
2
DF
T cc
m
mm µ+





αµ−⋅π
α⋅πµ+⋅
= (6.11) 
2
dF
secLD
secLD
2
DF
T cc
m
mm µ+





αµ+⋅π
α−⋅πµ⋅
= (6.12) 
 
 
Elementos de Máquinas Ligações aparafusadas e rebitadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 50 
Fi 
Fi 
6.4. PARAFUSOS À TRACÇÃO. 
 
6.4.1. PARAFUSOS COM PRÉ-TENSÃO 
 
Os parafusos são em regra instalados com uma pré-tensão tal que, por atrito, 
nunca deixem as peças ligadas escorregarem uma sobre a outra, pelo que, nestas 
condições, os parafusos trabalham à tracção (e não ao corte). 
No caso geral, o parafuso deverá não só suportar aforça normal aplicada, P, 
como ainda deverá comprimir as peças ligadas com uma força inicial de aperto Fi. 
 
 
 
 
 
 
Fig. 6.7. – União por parafuso com 
pré-tensão. [fig. 8.12. Shigley] 
 
A pré-tensão tem por objectivo: 
 
• Evitar deslocamento relativo das peças ligadas (e consequente corte dos 
parafusos), através de criação de uma força de atrito suficiente. 
• Evitar que a união se separe por aplicação da força normal exterior, P. 
 
6.4.2. RIGIDEZ DO PARAFUSO 
 
Os parafusos podem ser todos roscados ou só uma das zonas ser roscada. No 
cálculo da rigidez do parafuso tem de se ter em conta esse aspecto. 
Quando o parafuso tem uma zona roscada e uma zona não roscada, podemos 
considerar o parafuso como duas molas em série; 
 
i21b K
1
...
K
1
K
1
K
1
+++= ou 
td
td
b KK
KK
K
+
⋅
= (6.13) 
Elementos de Máquinas Ligações aparafusadas e rebitadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 51 
A constante elástica do parafuso ou constante de rigidez para a zona lisa é dada por: 
d
d
d L
EA
K
⋅
= (6.14) 
Para a zona roscada vem dada por: 
t
t
T L
EA
K
⋅
= (6.15) 
sendo: 
Ad – Área de maior diâmetro do parafuso (zona lisa). 
At – Área resistente do parafuso.[tabela 6.1] 
E – Módulo de elasticidade do parafuso 
Ld – Comprimento da zona lisa do parafuso 
Lt – Comprimento da zona roscada do parafuso 
KT – constante de rigidez da zona roscada “threaded”. 
Kd – constante de rigidez da zona não roscada. 
Kb – constante de rigidez do parafuso para a zona de ligação 
 
Donde vem que para qualquer parafuso a rigidez deste é dada por: 
dttd
td
b LALA
EAA
K
+
⋅
= (6.16) 
 
6.4.3. RIGIDEZ DAS PEÇAS LIGADAS 
 
À semelhança do procedimento para os parafusos, é necessário determinar a 
constante de rigidez das peças ligadas na zona de ligação. 
Numa união de peças com várias constantes de rigidez diferentes actuam 
como molas em série: 
i21m K
1
...
K
1
K
1
K
1
+++= (6.17) 
Sendo Km a constante de rigidez das peças ligadas. 
Se uma das peças tiver uma constante muito menor que as outras, vem que: 
K1<< Ki ⇒ 
1m K
1
K
1
= (6.18) 
Ld 
Elementos de Máquinas Ligações aparafusadas e rebitadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 52 
A rigidez das peças a unir é muito árdua de calcular, pois não se consegue 
determinar com exactidão a área da secção resistente (área comprimida das peças). 
Como solução aproximada podemos considerar que as peças a unir se 
comportam como uma peça composta por dois troncos de cone, com ângulo de 
45º[Hamrock] ou de 30º[Shigley], juntos pela base maior, ocos, em que a base menor é o 
diâmetro da cabeça do parafuso D e o diâmetro interno é o diâmetro d do parafuso. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.8. – Zona comprimida das flanges considerada como um cone oco com ângulo 
de cone 45º. [fig. 8.11 Shigley] 
 
A constante de rigidez das peças comprimidas é então dada por: 
( )( )( )
( )( )( )




−++α⋅
+−+α⋅
α⋅π
=
dDdDtant2
dDdDtant2
ln
tanEd
Km (6.20) 
 
( )( )( )
( )( )( )




−++
+−+
π
=
dDdDt2
dDdDt2
ln
Ed
Km para α = 45º (6.21) 
 
( )( )( )
( )( )( )




−++
+−+
π
=
dDdDt15.1
dDdDt15.1
ln
Ed577.0
Km para α = 30º (6.22) 
 
Elementos de Máquinas Ligações aparafusadas e rebitadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 53 
t
t
No caso mais corrente (figura 6.9) em que temos dois cones iguais com 
2
L
t = , 
o diâmetro de cabeça do parafuso é D = 1,5 d e se as peças a unir forem do mesmo 
material, obtém-se então a rigidez das peças comprimidas: 
( )
( )




+
+
π
=
d5,2L
d5,0L
5ln2
Ed
Km para α = 45º (6.23) 
( )
( )




+
+
π
=
d5,2L577.0
d5,0L577.0
5ln2
Ed577.0
Km para α = 30º (6.24) 
 
 
 
 
Fig. 6.9. – Ligação aparafusada com flanges do 
mesmo material e mesma espessura. 
[fig. 15.13 Hamrock] 
 
6.4.4. PARAFUSOS SEM PORCA 
 
No caso de se terem parafusos em que estes enroscam directamente na chapa 
sem aparafusar na porca, as equações para os diâmetros vêm dadas por: 



≥+
<+
=
dt2dh
dt2th
L
2
22 (6.25) 
α⋅+= tgldD w1 (6.26) 
d5,1dD w2 ⋅== (6.27) 
 
 
 
 
Fig. 6.10 – Parafuso sem porca. 
[fig. 8.18 Shigley] 
 
Elementos de Máquinas Ligações aparafusadas e rebitadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 54 
6.4.5. JUNTAS (GASKET) 
 
Normalmente em ligações aparafusadas em cilindros sob pressão, aparecem 
muitas vezes com juntas. Estas juntas, têm como função a vedação desses mesmos 
cilindros. 
 
 
 
 
Fig. 6.11. – Exemplo de uma junta. [fig. 15.17 Hamrock] 
 
 
A pressão de vedação na junta é dada por: 
[ ])C1(nPF
A
N
p i
g
−−= (6.28) 
Para que haja a condição de a pressão ser uniforme na vedação, tem de se 
verificar a seguinte relação: 
6
dN
D
3 b ≤
π
≤ (6.29) 
 
em que: 
N – n.º de parafusos 
Db – diâmetro da circunferência dos parafusos 
d – diâmetro nominal dos parafusos 
Ag – área de encosto da junta 
n – coeficiente de segurança 
Fi – força inicial de aperto dos parafusos 
 
 
 
 
 
 
 
Elementos de Máquinas Ligações aparafusadas e rebitadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 55 
6.4.6. PARAFUSOS COM PRÉ-TENSÃO 
 
Ao aplicar uma força exterior P ao parafuso com pré-tensão, esta distribui-se 
pelo parafuso e pelas peças ligadas: 
 
• O parafuso alonga de ( P + Fi ) 
• As peças comprimem de ( P – Fi ) 
 
A força resultante no parafuso é de: 
ii
mb
b
b FCPFKK
PK
F +=+
+
⋅
= (6.30) 
A força resultante nas peças ligadas é de: 
ii
mb
m
m FP)C1(FKK
PK
F −−=−
+
⋅
= (6.31) 
Em que a constante da junta é dada por: 
mb
b
KK
K
C
+
= (6.32) 
 
6.4.7. BINÁRIO DE APERTO 
 
Como já vimos anteriormente; 
2
dF
sectg1
sectg
2
DF
T ccimi
µ
+





αλµ−
αµ+λ⋅
= (6.33) 
Para uma anilha de um parafuso de cabeça hexagonal, temos que dc = 1.25d 
substituindo na equação (6.33), tem-se o binário de aperto: 
dF625,0
sectg1
sectg
d2
D
T ic
m 





µ+





αλµ−
αµ+λ
= ó T = K Fi d (6.34) 
 
 
 
 
Tabela 6.2. – Factor do binário (K). 
[Tabela 8.10. Shigley] 
Elementos de Máquinas Ligações aparafusadas e rebitadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 56 
6.4.8. PROJECTO ESTÁTICO DO PARAFUSO 
 
Sabendo que a força no parafuso é ib FCPF += , a tensão no parafuso vem dada por: 
p
t
i
tt
b
b SA
F
NA
PnC
A
F
≤+
⋅
==σ (6.35) 
e o coeficiente de segurança é dado por: 
( )
CP
NFAS
n itp
−⋅
= (6.36) 
sendo: 
N – número de parafusos 
Sp – tensão de prova 
At - Área resistente do parafuso.[tabela 6.1] 
n – coeficiente de segurança 
P – carga aplicada ao parafuso 
 
Se o parafuso a dimensionar destinar-se 
a ser amovível convém que o projecto, em vez 
de “à cedência”, seja efectuado “à tensão de 
prova” (máxima tensão que se pode aplicar ao 
parafuso sem que este adquira deformação 
permanente). 
 
Fig. 6.9. – Diagrama típico Tensão-
Deformação. [Fig. 8.15. Shigley] 
 
Caso se queira dar a maior pré-tensão possível consideram-se os seguintes limites: 
 
pi F75,0F = Para ligações amovíveis (6.37) 
pi F9,0F = Para ligações inamovíveis (6.38) 
 
Sendo Fp a Força de Prova dada por Fp = At Sp. 
Os valores de Sp encontram-se tabelados na tabela 6.3., para materiais que não se 
encontrem tabelados usa-se Sp = 0.85 Sy 
Elementos de Máquinas Ligações aparafusadas e rebitadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 57 
Tabela 6.3. – Propriedades mecânicas dos aços para parafusos. [Tabela 8.6. Shigley] 
 
 
O projecto específico de um parafuso de boa qualidade segue, portanto, o 
seguinte método: 
 
1. Definir o tipo de ligação quanto a mobilidade ou não do parafuso. 
2. Especificar uma classe de resistência parao parafuso (i.e. obter os valores 
de Sp e Sy). 
3. Dimensionar o parafuso ao esforço total (Fb). 
4. Alternativamente, determinar o número de parafusos (N), de uma dada 
dimensão (At). 
5. Num caso e noutro pode ainda interessar calcular o valor máximo a dar a 
Fi, tal que não cause o sobredimensionamento desnecessário de At ou de 
N. 
 
 
 
 
 
Sp Sy Sut 
Elementos de Máquinas Ligações aparafusadas e rebitadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 58 
6.4.9. PARAFUSOS SOLICITADOS À FADIGA 
 
Em muitas situações a solicitação da ligação aparafusada é variável no tempo, 
o que vai provocar fadiga nos parafusos. O exemplo mais utilizado é o de uma tampa 
de um reservatório. 
 
 
 
 
Fig. 6.10. – Tampa de um reservatório sob 
pressão variável. 
 
Para o cálculo à fadiga de parafusos solicitados à tracção tem de se utilizar o 
coeficiente de redução da resistência à fadiga Kf, mostrado na tabela abaixo. 
Para determinar o acabamento superficial, caso não exista nada estabelecido 
em contrário pode considerar-se acabamento maquinado. 
 
Tabela 6.4. – Factores de redução da resistência à fadiga Kf para peças roscadas. 
 
Classe SAE Classe métrica Roscas laminadas Roscas maquinadas Filete 
0 a 2 3,6 a 5,8 2,2 2,8 2,1 
3 a 8 6,6 a 10,9 3,0 3,8 2,3 
 
A maioria das cargas de fadiga em parafusos é do tipo pulsante em que a carga 
varia entre zero a um valor máximo P. 
Se a ligação mantiver pré-tensão a carga no parafuso vai variar entre Fi e Fb. 
 
 
 
 
 
 
Fig. 6.11. – Variação da carga de fadiga em parafusos. 
F 
t 
bmax FF = - Força máxima 
 imin FF = - Força mínima 
Elementos de Máquinas Ligações aparafusadas e rebitadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 59 
Esta carga produz uma tensão ondulada, que varia entre uma tensão mínima e 
uma tensão máxima. 
 
 
 
 
 
 
Fig. 6.12. – Variação da tensão provocada pela carga de fadiga em parafusos. 
 
A Tensão alternada para parafuso com pré-tensão é dada por: 
 
t
ii
t
i
tmb
b
t
ibminmax
a A2
FCPF
A2
F
A2
P
KK
K
A2
FF
2
−+
=−⋅
+
=
−
=
σ−σ
=σ ó
t
a A2
CP
=σ (6.39) 
A Tensão média para parafuso com pré-tensão é dada por: 
 
t
i
a
t
ibminmax
m A
F
A2
FF
2
+σ=
+
=
σ+σ
=σ ó
t
i
t
m A
F
A2
CP
+=σ (6.40) 
 
A tensão σa deve ser comparada com a amplitude da tensão Sa dada pelo 
critério de Goodman. 
 
Fig. 6.13. – Diagrama de Goodman e 
representação da linha de 
Kimmelmann usada na análise de 
rotura de parafusos à fadiga. B é o 
ponto de segurança. C é o Ponto de 
rotura. 
[Fig. 8.17. Shigley] 
 
 
O coeficiente de segurança é dado por 
AC/AB, ou seja: 
 
n = Sa / σa (6.41) 
 
σ 
t 
t
b
max A
F
=σ - Tensão máxima 
t
b
min A
F
=σ - Tensão mínima 
Elementos de Máquinas Ligações aparafusadas e rebitadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 60 
Dado que a distância AD é igual a Sa, tem-se: 
 
Sa = Sm – Fi /At (6.42) 
 
A equação de goodman é: 
 
Sm = Sut ( 1 - Sa / Se ) (6.43) 
 
Substituindo uma equação noutra, obtém-se: 
 
eut
tiut
a SS1
AFS
S
+
−
= (6.44) 
 
 
6.4.10. CONCENTRAÇÃO DE TENSÕES 
 
As duas zonas de um parafuso onde há que considerar obviamente o fenómeno 
da concentração de tensões são a Arreigada (transição cabeça/espiga) e a transição 
Liso/Rosca. 
Considerando, no entanto o conjunto Parafuso/Porca há que ter em conta o 
efeito da concentração de carga no primeiro fio da rosca sob a porca. O 
comportamento deste efeito é o de uma verdadeira concentração de tensões, aliás, a 
mais grave de todas as mencionadas anteriormente. 
Pode-se considerar, em geral, uma distribuição de tensão típica, ao longo de 
um parafuso. 
 
 
 
 
 
Fig. 6.14. – Concentração de tensões no 
parafuso. 
A experiência reflecte esta situação. A distribuição de falhas ocorridas em 
parafusos é de: 
Arreigada → 15 % 
Liso/rosca → 20 % 
Rosca/Face da Porca → 65 % 
Elementos de Máquinas Ligações aparafusadas e rebitadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 61 
 6.5. REBITES E PARAFUSOS AO CORTE 
 
6.5.1. INTRODUÇÃO 
 
Os parafusos podem, em certas aplicações, trabalhar ao corte, p.ex. em 
mecanismos articulados, designando-se mais propriamente por pinos ou cavilhões. 
Em ligações aparafusadas estruturais evita-se a aplicação de parafusos ao corte 
devido à necessidade de ajustamento perfeito entre parafusos e furos, bem como o 
alinhamento perfeito dos furos, para que a carga possa ser igualmente distribuída por 
todos os parafusos da ligação. 
Nas ligações rebitadas, em que os rebites trabalham, obviamente, ao corte, já 
não há necessidade de ajustamentos perfeitos, uma vez que os rebites preenchem 
completamente os furos, por deformação plástica durante a cravação. 
As ligações rebitadas usam-se em casos em que seja contra-indicada a ligação 
soldada (ex. na construção de estruturas metálicas). 
 
As principais vantagens das ligações rebitadas são: 
 
Ø Mais barato 
Ø Maior facilidade de reparação 
Ø Aplicação a materiais de má soldabilidade (estruturas de alumínio) 
 
Quer se trate de rebites, quer de parafusos ao corte, a análise e tratamento de 
projecto são o mesmo. 
 
 
 
 
 
 
 
 
 
Elementos de Máquinas Ligações aparafusadas e rebitadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 62 
6.5.2. MODOS DE FALHA E RESPECTIVO PROJECTO DE LIGAÇÃO 
AO CORTE. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.12. – Modos de falha das uniões aparafusadas ou rebitadas ao corte. 
 
Deste modo, tem de se verificar cada um dos modos de falha para o cálculo de rebites 
ao corte. 
 
 
 
 
 
Corte do rebite Flexão das peças 
Ligadas e do rebite 
 
Rotura das peças 
Ligadas 
Esmagamento das peças 
Ligadas ou do rebite 
 
Corte da bainha Rasgão da bainha 
 
Elementos de Máquinas Ligações aparafusadas e rebitadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 63 
Flexão das Peças Ligadas allI
Mc
σ≤=σ (6.45) 
 
Corte do Rebite allA
F
τ≤=τ (6.46) 
com a área dada por: 
4
d
nSA
2
e
π
⋅⋅= (6.47) 
onde: S – n.º de secções ao corte 
 ne – n.º de rebites 
 A – área da secção transversal de todos os rebites. É comum 
usar-se para o cálculo de A o diâmetro nominal do rebite ou parafuso 
em vez do diâmetro do furo. 
 
Rotura das Peças Ligadas all
1A
F
σ≤=σ (6.48) 
A1 – área útil da peça ligada (sem furos) 
 
Esmagamento do Rebite all
2A
F
σ≤=σ (6.49) 
ou da Peça Ligada 
 A2 – área sujeita a esmagamento tdnA e2 ⋅⋅= (6.50) 
 
 
Corte da Bainha 
 Evitam-se se a bainha for ≥ 1.5d 
Rasgão da Bainha 
 
 
 
 
 
 
 
 
Elementos de Máquinas Ligações aparafusadas e rebitadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 64 
6.5.3. LIGAÇÕES COM CARREGAMENTO CENTRADO. 
 
 A resultante das forças aplicadas passa pelo centróide da ligação, i.e., o 
momento aplicado à ligação é nulo. 
 A força em cada elemento é dada por: 
n
F
'F = (6.51) 
 onde: 
 n – nº de elementos (rebites) ao corte 
F – força resultante aplicada 
F’ – força em cada elemento (rebite) ao corte 
 
 
 
 
Fig. 6.16. – Ligação rebitada com carregamento centrado. 
 
6.5.4. LIGAÇÕES COM CARREGAMENTO DESCENTRADO. 
 
 Neste caso, a resultante das forças aplicadas não passa pelo centróide da 
ligação, i.e., o momento aplicado à ligação não é nulo. 
 
 
 
 
 
 
Fig. 6.17. – Ligação rebitada com carregamento descentrado. 
 
As coordenadas do centróide são dadas pelas seguintes equações: 
∑
∑ ⋅=
e
e
n
1 i
n
1 ii
A
xA
x 
∑
∑ ⋅=
e
e
n
1 i
n
1 ii
A
yA
y (6.52) 
Em que Ai são as áreas dos vários elementos i. 
X 
F 
L 
F F 
Elementos de Máquinas Ligações aparafusadas e rebitadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 65 
A força F vai provocarum esforço de corte (F’) e uma força devido ao 
momento (F’’), tal como se pode ver na figura 6.18. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.18. – Forças aplicadas nos elementos quando estão sujeitos a um 
carregamento descentrado. 
 
As solicitações (F’ e F’’) em cada elemento são dadas por: 
e
i n
F
F =′ (6.53) 
∑
⋅
=′′
2
i
it
i r
rM
F (6.54) 
 
O elemento que determinará o projecto da ligação é o que for carregado com 
maior força resultante de F’ e F’’. 
2
ii
2
iii FFFFF ′′+′+′′+′= (5.55) 
 
 
R2 R1 
R3 
R4 
C.G. 
F’’1 
F’’4 
F’’3 
F’’2 
F’3 
F’2 
F’4 
F’1 
F1 
F4 
F2 
F3 x 
y 
Elementos de Máquinas Ligações aparafusadas e rebitadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 66 
6.5.5. CHAVETAS E PINOS. 
 
Chavetas são elementos usados em veios para fixar componentes rotativos, com 
transmissão de potência. 
Pinos são elementos usados para a fixação de peças e que permitem movimentos 
relativos. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.20. – Chavetas (a) de cunha; (b) de disco. [Fig. 8.28 Shigley] 
 
 
 
 
 
Fig. 6.19. - Pinos 
[Fig. 8.27 Shigley] 
Elementos de Máquinas Ligações aparafusadas e rebitadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 67 
Os modos de falha das chavetas e pinos são o corte e o esmagamento: 
 
Corte allLw
F
A
F
τ≤==τ 
 
Esmagamento all'Lh
F
σ≤=σ 
 
As dimensões das chavetas são normalizadas (Veiga da Cunha) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.21. – Forças aplicadas nas chavetas e sua nomenclatura. [Fig. 11.10 Hamrock] 
F 
F 
Elementos de Máquinas Ligações Soldadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 68 
CAP 7 – LIGAÇÕES SOLDADAS 
 
7.1. INTRODUÇÃO 
 
Com o desenvolvimento da Tecnologia da soldadura e o crescente domínio 
dos diversos parâmetros que intervêm na qualidade dos cordões e suas propriedades 
mecânicas, a construção soldada, por razões de economia, foi substituída 
progressivamente por construções rebitadas e aparafusadas. 
A utilização crescente de ligações soldadas em aplicações de elevada 
responsabilidade quer solicitada por cargas estáticas quer por cargas dinâmicas obriga 
a que o projectista tenha de proceder a um adequado dimensionamento dos cordões de 
soldadura, pois estes são muitas vezes os pontos de ruína preferenciais da estrutura. 
 
As principais vantagens da soldadura em relação aos parafusos são: 
• Ser mais barato 
• Não existir o perigo de se “desapertarem” 
 
As principais desvantagens são: 
• A soldadura produz tensões residuais 
• É difícil a separação das chapas soldadas. 
 
As ligações soldadas aplicam-se essencialmente em três grandes campos: 
• Fabrico de Estruturas (Construção Metalo-Mecânica), como alternativa 
à Rebitagem. 
• Fabrico de Peças (Construção Mecânica), como alternativa à fundição, 
ao Forjamento, etc. 
• Reparação/Recuperação de peças com desgaste, fissuradas ou 
fracturadas. 
 
 
 
 
 
Elementos de Máquinas Ligações Soldadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 69 
7.2. TIPOS DE SOLDADURA 
 
 
Fig. 7.1. – Soldadura de topo. [Fig. 9.7. 
Shigley] 
 
 
Fig. 7.2. – Soldadura de ângulo. 
[Fig. 9.3.(b) Shigley] 
 
7.3. TIPOS DE SOLICITAÇÕES. RESISTÊNCIA DOS 
CORDÕES. 
 
Fig. 7.3. – Solicitações Frontais aplicadas na soldadura. 
Fig. 7.4. – Solicitações Oblíquas na soldadura. 
Fig. 7.5. – Solicitações Laterais na soldadura. 
 
1. Os cordões frontais são mais resistentes que os laterais. 
2. A menor resistência de um cordão corresponde a uma solicitação oblíqua de 
45º. 
3. A maior resistência de um cordão corresponde a uma solicitação frontal do 
tipo “Soldadura de topo”. 
Elementos de Máquinas Ligações Soldadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 70 
7.4. SÍMBOLOGIA DA SOLDADURA 
 
Para se representarem ligações soldadas utiliza-se normalmente a seguinte 
simbologia: 
Fig. 7.6. – a) O número indica o tamanho do cordão; A seta deve apontar 
apenas para uma soldadura, caso sejam as duas iguais. b) O símbolo indica que são 
várias soldaduras de angulo numa extensão de 200 mm e estão a 60 mm de distância 
umas das outras. [Fig. 9.3. Shigley] 
Fig. 7.7. – O círculo na soldadura indica que a soldadura está toda à volta. [Fig. 
9.4. Shigley] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.8. – a) Junção em T para placas finas. b) Soldaduras em U e J para 
placas finas. c) Soldadura de canto (não deve ser usada para grandes carregamentos). 
d) Soldadura de ponta para placas muito finas e carregamento muito leve. [Fig. 9.6. 
Shigley] 
Elementos de Máquinas Ligações Soldadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 71 
 
 
 
 
 
 
 
 
 
 
 
Fig.7.9. – a) soldadura rectangular e soldada dos dois lados. b) Soldadura em 
vê (V) com 60º de inclinação e com uma abertura na garganta de 2 mm. c) Duplo V. 
d) Soldadura de angulo (Bevel). [Fig. 9.5. Shigley] 
 
7.5. DIMENSIONAMENTO 
 
 7.5.1. SOLDADURA À TRACÇÃO 
 
 
 
 
 
Fig. 7.10. – Junção à tracção típica. 
[Fig. 9.7. Shigley] 
 
A figura 7.10. mostra uma soldadura tipo V “groove” simples carregada pela força F. 
Tanto para a tracção como para a compressão, a tensão normal é dada por: 
 
hL
F
=σ (7.1) 
 
onde h – tamanho da garganta “throat” 
 L – comprimento da soldadura. 
Elementos de Máquinas Ligações Soldadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 72 
É de notar que o valor de h não inclui o reforço, este é desprezado pelo lado da 
segurança. 
A tensão de corte na área da garganta da soldadura é dada por: 
hL707,0
F
=τ (7.2) 
 
Para prevenir a ruína deve-se verificar a equação seguinte: 
 
)sold(allhL707,0
F
τ≤=τ (7.3) 
 
Tabela 7.1. – Carregamento transverso e paralelo na soldadura. [Tabela 9.1. Shigley] 
 
 
 
 
 
 
 
 
Elementos de Máquinas Ligações Soldadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 73 
7.5.2. SOLDADURA À TORÇÃO. 
 
Quando numa soldadura é aplicada uma torção, a tensão de corte é o resultado 
vectorial da tensão de corte directo (primário) e da tensão de corte de torção 
(secundário). 
 
 
 
 
 
Fig. 7.11. – Soldadura solicitada à 
torção. [Fig. 9.12. Shigley] 
 
A tensão de corte primária é dada por: 
antaarggdatotalÁrea
cortedeForça
A
V
' ==τ (7.4) 
A tensão de corte secundária é dada por: 
uJh707,0
rM
J
rM
'' ==τ (7.5) 
 
Onde; r – distância do centróide do grupo das soldaduras ao ponto mais longe na 
soldadura [m]. 
A – área total da garganta da soldadura [tabela 7.2] 
M – momento torsor 
J – momento polar de inércia [m4] 
Ju – momento polar de inércia unitário [m3] [tabela 7.2] 
 
A secção crítica quando se aplica uma torção é a secção da garganta, tal como para a 
tracção. 
Para evitar a fractura devido ao carregamento de torção, deve-se usar a seguinte 
equação: 
 
( ) ( ) )sold(all22' τ≤τ ′′+τ=τ (7.6) 
Elementos de Máquinas Ligações Soldadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 74 
A tabela seguinte dá os valores para o momento polar de inércia para seis grupos de 
soldadura. Usando esta tabela simplifica o cálculo da carga à torção 
 
Tabela 7.2. – Propriedades da soldadura solicitada à torção. [Tabela 9.2 Shigley] 
 
 
 
 
 
Elementos de Máquinas Ligações Soldadas 
Rosa Marat-Mendes – Escola Superior de Tecnologia – IPS – 2003 75 
7.5.3. SOLDADURA À FLEXÃO. 
 
Na figura é mostrada uma barra soldada a um suporte com soldadura em cima 
e em baixo solicitada a um esforço de flexão. 
Fig. 7.12. – Barra solicitada à flexão. [Fig. 9.17. Shigley] 
 
O diagrama de corpo livre mostraria uma reacção de corte V e uma reacção M devida 
ao momento flector. 
A reacção de corte provoca uma tensão de corte primária: 
A

Continue navegando