Buscar

FÍSICA TEÓRICA EXPERIMENTAL I 4

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 10 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 10 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 10 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

FÍSICA TEÓRICA EXPERIMENTAL I
	
		Lupa
	 
	Calc.
	
	
	 
	 
	 
	EEX0067_202008478987_ESM
	
	
	
		Aluno: VENILSO LUIZ SILVA
	Matr.: 202008478987
	Disc.: FÍSICA TEÓRICA E 
	2021.1 - F (G) / EX
		Prezado (a) Aluno(a),
Você fará agora seu TESTE DE CONHECIMENTO! Lembre-se que este exercício é opcional, mas não valerá ponto para sua avaliação. O mesmo será composto de questões de múltipla escolha.
Após responde cada questão, você terá acesso ao gabarito comentado e/ou à explicação da mesma. Aproveite para se familiarizar com este modelo de questões que será usado na sua AV e AVS.
	CINEMÁTICA DE GALILEU
	 
		
	
		1.
		Observe a figura. Ela mostra uma partícula se deslocando entre dois pontos em 10s. Assinale a opção que representa as equações horárias Sx(t) e Sy(t) da partícula, considerando que a sua velocidade de deslocamento é constante.
	
	
	
	S_x(t)=-1 + 4.t e S_y(t)=4.t
	
	
	S_x(t)=0,4.t e S_y(t)=-1 + 0,4.t
	
	
	S_x(t)=-1 + 0,4.t e S_y(t)=0,4.t
	
	
	S_x(t)=-1 + 0,4.t e S_y(t)=0,8.t
	
	
	S_x(t)=-1 + 40.t e S_y(t)=40.t
	
Explicação:
Temos agora uma partícula se movimentando em um plano xy, onde em x a partícula se move do ponto S_(0_x )=-1 ao ponto S_x=3m e em y a partícula se move do ponto S_(0_y )=0 ao ponto S_y=4. Então, para solucionar o problema, teremos que analisar primeiro o eixo x e, em seguida, o eixo y. Vamos lá:
Em X:
S_x (t)=S_(0_x ) + v_x.t
3=-1 + v_x.10
v_x=0,4 m/s
A função horária da partícula em relação ao eixo X é:
S_x (t)=-1 + 0,4.t
Em Y:
S_y (t)=S_(0_y ) + v_y. t
4=0 + v_y.10
v_y=0,4 m/s
Então, a função horária da partícula em relação ao eixo X é:
S_y (t)= 0,4.t
A figura abaixo ilustra a locomoção da partícula do seu ponto S0 ao seu ponto S. A seta preta representa a distância percorrida de um ponto a outro, enquanto as setas azuis representam o vetor velocidade, em que existe a velocidade em direção ao ponto, porém esta é decomposta em vetores paralelos aos eixos x e y, o que nos permitiu escrever as duas funções horárias.
 
Representação da movimentação bidimensional da partícula. Fonte: o autor.
	
	
	CINEMÁTICA DE GALILEU
	 
		
	
		2.
		A hélice de um ventilador tem 15cm de diâmetro. Quando esse ventilador é ligado, ele atinge a sua velocidade máxima de 50km/h em 1,2s. Qual a aceleração angular experimentada por um ponto que se localiza exatamente na borda de uma das pás da hélice do ventilador?
 
	
	
	
	25.10^3 rad/s²
	
	
	(5/162).10^3 rad/s²
	
	
	2.10^3 rad/s²
	
	
	 (25/162).10^3 rad/s²
	
	
	(27/13).10^3 rad/s²
	
Explicação:
	
	
	LEIS DE NEWTON
	 
		
	
		3.
		Um bloco desliza sem atrito em uma plataforma horizontal, a uma velocidade de 25 m/s, quando de repente passa por uma parte da plataforma que promove atrito entre a plataforma e o bloco, de 10 m de comprimento, e quando sua velocidade atinge 20 m/s, o bloco volta a deslizar sem atrito, e continua seu caminho à velocidade constante. Se o bloco possui massa de 1kg, qual o módulo da força de atrito atuante no bloco.
 
	
	
	
	-10,12 N
	
	
	- 13 N
	
	
	-9,75 N
	
	
	-6 N
	
	
	-11,25 N
	
Explicação:
	
	
	LEIS DE NEWTON
	 
		
	
		4.
		Uma bala de canhão é atirada a um ângulo de 45° com velocidade inicial de 100 m/s. No ponto de máxima altura, o módulo de sua velocidade é de?
 
	
	
	
	0 m/s
	
	
	15√2 m/s
	
	
	50√2  m/s
	
	
	25√2 m/s
	
	
	- 50√2 m/s
	
Explicação:
	
	
	CONSERVAÇÃO DE ENERGIA MECÂNICA E IMPULSO
	 
		
	
		5.
		Um chuveiro está posicionado a uma altura de 3 metros do chão. A pessoa que se banha neste chuveiro possui 1,83m de altura. Sabendo que a aceleração da gravidade local possui valor de 9,8m/s², assinale a opção que representa aproximadamente a velocidade com que uma gota d¿água de 0,5g atinge a cabeça do banhista. Considere que o sistema é 100% conservativo.
 
	
	
	
	 5,15m/s
	
	
	 6,35m/s
 
	
	
	7,89m/s
	
	
	2,93m/s
	
	
	 4,90m/s
	
Explicação:
Para realizar os cálculos, tomaremos como ponto de referência o topo da cabeça do banhista, assim, a altura da queda da gota do chuveiro até o topo da cabeça vale:
H = 3,00 - 1,83 = 1,17 m
Então, no chuveiro, a energia mecânica é igual à energia potencial, logo:
E0 = m.g.H = 0,0005.9,8.1,17 = 0,006J
No momento que a gota atinge o topo da cabeça, temos que a energia é convertida completamente em energia cinética, assim:
E = (m.v^2) / 2 = (0,0005.v²) / 2
Pelo princípio da conservação de energia, temos:
(0,0005.v^2) / 2 = 0,006
v=4,90 m/s
	
	
	CONSERVAÇÃO DE ENERGIA MECÂNICA E IMPULSO
	 
		
	
		6.
		Um bloco de 40kg está descendo um plano inclinado de 30°. O coeficiente de atrito cinético entre o bloco e o plano é de 0,6, e a gravidade local é de 10m/s². Assinale a opção que representa a perda percentual de energia mecânica, de quando o bloco atinge a parte mais baixa do plano inclinado, sabendo que o plano pode ser tratado como um triângulo pitagórico 3,4 e 5, em metros.
 
	
	
	
	20%
	
	
	10%
	
	
	40%
	
	
	 50%
	
	
	30%
	
Explicação:
	
	
	PRINCÍPIO DA CONSERVAÇÃO DO MOMENTO LINEAR
	 
		
	
		7.
		Uma bola de 4 kg está girando sobre um gramado com velocidade de 1 m/s. À sua frente tem uma bola de 6kg que se locomove com velocidade de 0,5 m/s. A primeira bola de 4 kg colide com a bola de 6kg, e após a colisão, a bola de 4 kg se locomove com velocidade de 0,4 m/s e a de 5 kg, com velocidade de 0,6 m/s. O coeficiente de restituição dessa colisão é:
 
	
	
	
	0,5
	
	
	0,4
	
	
	0,1
	
	
	0,2
	
	
	0,3
	
Explicação:
O coeficiente de restituição é definido como sendo a razão entre a velocidade relativa de afastamento e a velocidade relativa de aproximação: 
vaproximação = 1 m/s - 0,5 m/s = 0,5 m/s
vafastamento = 0,6 m/s - 0,4 m/s = 0,2 m/s
Dessa forma o coeficiente de restituição é: 
e = (0,2 m/s) / (0,5 m/s) = 0,4 
	
	
	PRINCÍPIO DA CONSERVAÇÃO DO MOMENTO LINEAR
	 
		
	
		8.
		Observe o gráfico a baixo e assinale a alternativa do impulso gerado pela força:
	
	
	
	1,3x10^5 N.s
	
	
	1,3x10^4 N.s
	
	
	1,3x10^2 N.s
	
	
	1,3x10^3 N.s
	
	
	1,3x10^1 N.s
	
Explicação:
Para determinar o impulso basta determinar a área embaixo da curva. Como a figura forma um triângulo:
I = (b.h) / 2 = (200.1300) / 2 =130000N.s = 1,3 x10^5 N.s.
	
	
	EQUILÍBRIO DE UM PONTO MATERIAL
	 
		
	
		9.
		Todo corpo rígido possui o seu centro de massa. O centro de massa é o ponto hipotético onde se pode considerar que toda a massa do corpo se concentra. Sobre o centro de massa, assinale a resposta correta:
 
	
	
	
	Uma força aplicada diretamente no centro de massa de um corpo, pode fazê-lo se deslocar em um movimento circular.
 
	
	
	Uma força aplicada diretamente no centro de massa de um corpo, pode fazê-lo se deslocar em um movimento retilíneo.
	
	
	Um corpo rígido só possui centro de massa quando sua massa é distribuída uniformemente.
	
	
	Um corpo rígido que possui o centro de massa localizado no seu exterior não realiza rotação.
	
	
	Um corpo rígido que possui o centro de massa localizado no seu interior não realiza rotação.
	
Explicação:
Ao se aplicar uma força exatamente no ponto de centro de massa, o corpo tende a desenvolver um movimento retilíneo, uniforme ou uniformemente variado. Isso porque ao se aplicar a força diretamente no centro de massa, exclui-se a possibilidade do corpo apresentar algum tipo de movimento rotacional.
 
	
	
	EQUILÍBRIO DE UM PONTO MATERIAL
	 
		
	
		10.
		Para afirmar que um corpo está em equilíbrio, tanto sua força resultante como o torque resultante devem ser nulos. Diante desta premissa, assinale a alternativa que apresenta a opção correta:
    
	
	
	
	O momento angular resultante de um sistema depende da definição do ponto de apoio.
	
	
	O momento resultante de um sistema é nulo, quanto o somatório das forças atuantes neste corpo também é nulo.
	
	
	O momento resultante de um corpo só é nulo quando este está apoiado por seucentro de massa.
	
	
	O momento resultante de um corpo é nulo quando este está se movendo em um movimento retilíneo uniforme.
 
	
	
	O momento resultante de um corpo só é diferente de zero quando o centro de massa entra em movimento retilíneo
	
Explicação:

Outros materiais