Buscar

ASTRONOMIA DE POSIÇÃO - Edilson Sampaio do Nascimento

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 15 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 15 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 15 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

1 
ASTRONOMIA DE POSIÇÃO 
TRABALHO DE CONCLUSÃO DE CURSO II – TCC II 
 
Edilson Sampaio do Nascimento 
Estudante do Curso de Licenciatura em Matemática 
Universidade Católica de Brasília 
Orientador: Prof. Dr. Paulo Eduardo de Brito 
 
 
RESUMO 
 
Neste trabalho foram estudados os diversos tipos de sistemas de coordenadas utilizadas na Astronomia. Foi dado 
ênfase nos sistemas de coordenadas locais e equatoriais e como transpor de um para outro. Também foi feito um 
pequeno histórico sobre os matemáticos e sua influência na Astronomia. 
 
 
 
1. INTRODUÇÃO 
 
O estudo do Universo, das “coisas extraterrenas”, sempre despertou a curiosidade do homem 
no decorrer da história. Nenhum outro ramo do conhecimento tem estado, desde a 
antiguidade, tão ligado ao desenvolvimento do pensamento humano quanto a Astronomia. 
Esses conhecimentos envolvem, alem da Matemática, as habilidades de fazer e interpretar 
observações e uma grande dose de imaginação e criatividade. Desta maneira surgiu o 
interesse em abordar o tema astronomia e sua ligação com a Matemática. 
 
Assim sendo, serão abordados algumas técnicas de resolução de sistema de coordenadas, em 
formas matriciais, e também como se passar de um determinado sistema para outro utilizando 
cálculos rápidos e lógicos. 
 
 
 
2. HISTÓRICO 
 
Desde os tempos mais antigos, já existiam pessoas que se interessavam pela astronomia. 
Pode-se destacar uma grande quantidade de matemáticos que contribuíram com o seu 
desenvolvimento. Abaixo, será citado alguns deles e suas contribuições. 
 
2.1.Na Grécia Antiga: 
 
Por volta de 700 a.C. até 300 d.C. podemos notar que a Astronomia na Grécia é um dos 
braços da Matemática e só mais tarde se voltaria para a Física. 
 
Tales de Mileto (624 - 546 a.C.) – Para ele a Terra era um disco plano em uma vasta 
extensão de água. Tales pôde prever um eclipse com antecedência. Nesta época, o astrônomo 
era um medidor de tempo e um “profeta” da entrada das estações climáticas e das fases da lua. 
 
Pitágoras de Samos – Foi um filósofo grego nascido em Samos entre 592 e 572 a.C. e 
falecido entre 510 a 480 a.C. Fundou a escola de filosofia e ciências ao sul da Itália. As 
teorias desenvolvidas pelos seus últimos discípulos, freqüentemente, são atribuídas a ele. Foi 
 2 
o primeiro a notar que a terra é esférica e não plana, no centro de um universo esférico, com 
rotação diária. Ele estudou o movimento dos planetas. Ensinou ser o número, a essência de 
todas as coisas e comparou os períodos celestiais com os intervalos musicais de Samos (572 - 
497 a.C.) Acreditava na esfericidade da Terra, da Lua e dos outros astros. Achava que os 
Planetas, o Sol, e a Lua transportados por esferas separadas da que carregava as estrelas e foi 
o primeira a chamar o céu de Cosmos. 
 
Aristóteles de Estagira – Filósofo grego de enorme influência durante muitos anos na 
Europa. Nasceu em 383 a.C. em Estagira, Macedônia, e morreu em Cálcis, em 322 a.C. Foi 
tutor de Alexandre, o Grande, e mais tarde professor em Atenas. Explicou que as fases da Lua 
dependem de quanto da parte da Lua iluminada pelo Sol está voltada para a Terra. Explicou 
também, os eclipses: um eclipse do sol ocorre quando a Lua entra na sombra da Terra. 
Afirmava que o Universo é esférico e finito. 
 
Aristarco – Foi um astrônomo grego nascido na cidade de Samos, que viveu entre 310 e 230 
a.C. Foi o primeiro a afirmar que a terra girava em torno do Sol, assim como em torno de seu 
eixo, quinze séculos antes de Copérnico, por causa disso foi acusado de perturbar o descanso 
dos deuses. 
 
Erastóstenes de Cirênia (276-194 a.C.) – Foi o primeiro a medir o diâmetro da Terra. Ele 
notou que na cidade egípcia de Siena, no primeiro dia do verão, ao meio-dia, a luz solar 
atingia o fundo de um poço, ou seja, o Sol estava incidindo perpendicularmente a Terra em 
Siena. Já em Alexandria, situada ao norte de Siena, isso não ocorria; medindo o tamanho da 
sombra de um bastão na vertical, Erastóstenes observou que em Alexandria, no mesmo dia e 
hora, o Sol estava aproximadamente sete graus mais ao sul. A distância entre Alexandria e 
Siena era conhecida como 5.000 estádios. Um estádio era uma unidade de distância usada na 
Grécia antiga. A distância de 5.000 estádios equivale à distância de cinqüenta dias de viagem 
de camelo, que viaja a 16km/dia. Como 7 graus corresponde a 1/50 de um circulo (360 graus), 
Alexandria deveria estar a 1/50 da circunferência da Terra ao norte de Siena, e a 
circunferência da Terra deveria ter 50 vezes 5.000 estádios. Infelizmente, não é possível se ter 
certeza do valor usado por Erastóstenes, já que os gregos usavam diferentes tipos de estádios. 
Se ele utilizou um estádio equivalente à 1/6 de quilometro, o valor está a 1% do valor correto 
de 40.000 Km. O diâmetro da Terra é obtido dividindo-se a circunferência por π. 
 
Hiparco – Foi um dos maiores astrônomos gregos, que viveu em Rodes no século II a.C.. 
Elaborou o primeiro catálogo estelar, determinou o comprimento do ano trópico, o tamanho e 
a distância da Lua e tentou fazer o mesmo com o Sol. Descobriu a precessão dos equinócios 
bem como as irregularidades no movimento da Lua. Aperfeiçoou instrumentos astronômicos. 
Os resultados de seu trabalho foram preservados no Almagesto de Ptolomeu. 
 
Cláudio Ptolomeu – Foi um astrônomo, geógrafo e matemático alexandrino que viveu entre 
90 e 160 d.C. Sua principal obra é o Grande sistema astronômico, em grego, que ficou 
conhecido como Almagesto na versão árabe. A contribuição mais importante de Ptolomeu foi 
uma representação gráfica do sistema solar. Nele, a Terra ocupava o centro do mundo e tudo o 
mais girava em seu redor. Esse sistema foi inferido a partir da observação do movimento 
diário aparente dos astros. 
 
 
 3 
2.2. No Renascimento 
 
Durante mais de mil anos, durante o período medieval, a ciência européia teve muito pouco 
desenvolvimento. A astronomia continuou se desenvolvendo entre os árabes, de tal maneira, 
que foram eles que reintroduziram o trabalho de Ptolomeu na Europa. Após 1500, com o 
renascimento cultural na Europa, pode-se observar o nascimento do método científico na 
Física e na Astronomia 
 
Nicolau Copérnico – Foi um astrônomo polonês nascido em Torum (hoje Thorn) às margens 
do Vístula, em 19 de fevereiro de 1473, e falecido em Frauenburg, em 24 de maio de 1543. 
Escreveu Sobre a Revolução dos Orbes Celestes, onde o sistema heliocêntrico é proposto de 
forma simples com o Sol no centro do sistema. Apesar da idéia não ser totalmente original, 
visto que Aristarco e Nicolau de Cusa já a haviam inventado, Copérnico foi o primeiro a dar 
uma forma cientifica ao sistema heliocêntrico. 
 
Tycho Brahe – Foi um astrônomo dinamarquês nascido a 14 de dezembro de 1546, em 
Knudstemp (Schonen) e falecido a 24 de outubro de 1601 em Praga. De origem nobre, muito 
cedo manifestou gosto pela astronomia. A oposição de sua família fez com que se ocupasse 
dos astros em segredo. Sua primeira e mais importante observação foi a descoberta de uma 
estrela nova em novembro de 1572, na constelação de Cassiopéia, exposta no livro Sobre a 
Estrela Nova, de 1576. Nesse mesmo ano, o rei da Dinamarca construiu o Observatório de 
Uraniburgo, na ilha de Hvenn (Suécia), onde Tycho observou durante vinte anos. Foi Tycho 
quem primeiro corrigiu suas observações de refração e redigiu um catálogo de estrelas. Em 
1601, Kepler entrou para a equipe de Brahe, começando nessa época a elaboração das Tabelas 
Rodolfinas (1627). As observações do movimento do planeta Marte (dez oposições) efetuadas 
por Brahe permitiram o estabelecimento das três leis de Kepler, que reformularam toda a 
astronomia. 
 
Johanes Kepler (1571-1630) – Após ler na Universidade os princípios de Copérnico, tornou-
se um entusiástico defensor do heliocentrismo. Depois de ser expulso de uma escola 
secundaria em Graz, na Áustria, do seu posto de professor de Matemática e Astronomia, foi 
trabalhar com Tycho Brahe em Praga. Quando Tycho morreu, Kepler herdou seu posto e 
dados,a cujo estudo se dedicou pelos vinte anos seguintes. Kepler cogitou que o sol é que 
controlaria o movimento de todo o conjunto de planetas, mas não chegou a conseguir explicar 
o porquê desse controle. 
 
Galileu Galilei – Foi um físico italiano nascido em Pisa, a 18 de fevereiro de 1564 e falecido 
em Arcetri a 8 de janeiro de 1642. Seu pai, o músico Vicenzo Galilei (1533 – 1591), residente 
em Florença, decidiu enviá-lo para a Universidade de Pisa com a idade de 17 anos, para 
estudar medicina. Em Pisa, o jovem estudante apaixonou-se pelas matemáticas retornando a 
Florença, sem diploma, em 1585. Interessado pelos estudos dos escritos de Arquimedes, 
inventou uma balança romana hidrostática, assim como elaborou teoremas relativos aos 
centros de gravidade dos sólidos. Em 1588, ocupou-se de estudos literários sobre Dante, 
Tasso e Ariosto. Seus conhecimentos em matemáticas lhe valeram a indicação, em 1589, para 
professor em Pisa, apesar de sua oposição às idéias aristotélicas. Tal oposição lhe causou 
grandes dificuldades. Em conseqüência, em 1592 foi obrigado a deixar Pisa, por uma cátedra 
em Pádua, onde permaneceu por 18 anos. Depois de uma breve estada em Veneza, em 1609, 
Galileu voltou a Florença em 1610, onde ficaria até 1631, quando se transferiu para Arcetri, 
 4 
onde terminaria seus dias. Foi no período vivido em Pisa que Galileu descobriu o isocronismo 
das oscilações do pêndulo. Publicou várias obras: “A mensagem das estrelas” (1610), “O 
ensaiador” (1623) “Diálogo sobre os maiores sistemas do mundo” (1632). 
 
Isaac Newton – Foi o mais notável cientista inglês, nascido na cidade de Woolsthorp, em 25 
de dezembro de 1642 (essa data está de acordo com o calendário juliano, na época em vigor 
na Inglaterra. No calendário gregoriano, atualmente adotado, era na verdade o dia 4 de janeiro 
de 1643 quando Newton nasceu). Seu pai, um pequeno proprietário que não sabia sequer 
assinar o nome, havia morrido três meses antes. Enviado para uma escola de Grantham, 
mostrou-se de início um aluno medíocre e pouco atencioso. Após ganhar uma briga com um 
outro colega de turma, por acaso um bom aluno, o jovem Newton tomou a decisão de lutar 
pelo primeiro lugar em sua turma. Em 1660, entrou para a Universidade de Cambridge, onde 
encontrou o matemático Isaac Barrow, que lhe deu ótima formação nas ciências matemáticas. 
Sua principal obra foi “Princípios Matemáticos da Filosofia Natural”, na qual expôs a Lei da 
Gravitação e as três leis do movimento. Morreu em 20 de março de 1727 (data do calendário 
juliano). 
 
2.3.Astronomia de hoje 
 
Nos últimos 50 anos, os conhecimentos da astronomia cresceram bastante com as novas 
tecnologias utilizadas, desde gigantescos radiotelescópios até sondas enviadas aos confins do 
sistema solar. 
 
Imaginado nos anos 40, projetado e construído nos anos 70 e 80 e em funcionamento desde 
1990, o Telescópio Espacial "Hubble" está revolucionando a Astronomia, representando nos 
dias de hoje aquilo que a luneta de Galileu representou no século XVII. 
 
O Observatório Astronômico da 
Serra da Piedade vem acompanhando 
o trabalho do "Hubble" e nos primeiro 
sábados de cada mês, dia em que o 
observatório é aberto ao público, vem 
sistematicamente apresentando as mais 
significativas descobertas do "Hubble" 
no mês anterior. 
 
Há inúmeras sondas que já foram 
enviadas ao espaço para entendimento 
mais detalhado do sistema solar e, por 
conseqüência, do universo. Atualmente 
há o projeto Cassini que já está em 
órbita ao redor de Saturno e em janeiro a sonda menor, a Huygens, vai pousar em Titã, a 
maior lua de Saturno, mas desde já, esta sonda Cassini-Huygens, enviam fotos e dados sobre 
Saturno e Titã. Acredita-se que as condições em Titã são muito parecidas com as encontradas 
nos primórdios da Terra, com temperaturas quase sempre abaixo de -179ºC e uma atmosfera 
dominada por compostos de nitrogênio e carbono. Os cientistas da missão acreditam que a lua 
possa ajudar a entender as condições necessárias para a origem da vida na Terra. 
 
 5 
3. SISTEMA DE COORDENADAS 
 
A posição de um astro qualquer na Esfera Celeste pode ser definida, sem ambigüidade através 
de dois ângulos em relação ao sistema de coordenadas adotado, que por sua vez é definido a 
partir de um ponto central. A escolha precisa de um sistema de coordenadas ligado à Esfera 
Celeste vai depender, sobretudo, da análise ou problema que se queira resolver. 
 
Para uma esfera (qualquer uma em princípio), os sistemas de referências utilizados são 
definidos por um plano principal ou fundamental que divide a esfera em duas partes iguais, 
definindo-se assim um grande círculo. Definimos arbitrariamente um ponto de origem neste 
círculo principal, por onde passa o meridiano principal, outro grande círculo perpendicular ao 
grande círculo precedente. 
 
Para observação de astros, na astronomia, precisamos de um sistema universal, ou seja, um 
sistema o qual todos os astrônomos podem utilizar sem dúvidas, e para isso utilizaremos o 
chamado Coordenadas Astronômicas ou Coordenada Celeste. 
 
Coordenada Astronômica nada mais é do que um arco de círculo, horizontal ou vertical que 
traçamos na esfera celeste onde definimos a posição de um astro qualquer no céu. Isso, 
tomando como referência a Terra como ponto central. 
 
As Coordenadas Esféricas são definidas por três coordenadas que definem um ponto sobre a 
superfície de uma esfera que é o raio da esfera (r) e dois ângulos θ e φ, sendo que, o raio, por 
estarmos considerando sempre que todos os astros estão na superfície da esfera celeste e que o 
centro é a Terra, sempre tem a mesma distância, logo, basta definirmos as coordenadas 
angulares. 
 
Existem vários tipos de sistema de 
coordenadas. Todas elas têm como ponto 
central a Terra e projeções na esfera celeste, 
projeções essas chamadas de Grandes 
Círculos. Exemplos de grandes círculos são o 
equador, um meridiano, a eclíptica1. O que 
define e diferencia um sistema de coordenadas 
também são os grandes círculos que são 
chamados de plano fundamental de referência. 
Por exemplo, o que usa o equador são 
chamados de coordenadas equatoriais. 
 
As coordenadas em uma esfera são 
definidas através de um plano fundamental 
que corta a esfera em duas metades, passando pelo centro (definindo um circulo principal ou 
equador) e um ponto arbitrário no equador como mostra a Figura 1. Através deste ponto traça-
se um outro grande círculo, perpendicular ao “equador”, definindo-se assim o meridiano 
principal. Planos que cortam a esfera, mas não passam pelo centro definem os pequenos 
círculos 
 
1 A eclíptica é definida como a circunferência imaginária correspondente à trajetória aparente do Sol na esfera 
celeste. 
 
Figura 1: Esfera cortada com os devidos planos. 
 6 
As distâncias medidas a partir do plano fundamental são calculadas ao longo de arcos de 
círculos perpendiculares a ele, dependendo do sistema utilizado. Cada uma delas é lida em 
ângulos que variam de +90º e -90º, até onde os pólos se situam, pois os pólos dos sistemas 
podem ser pólos celestes norte e sul, pólos da eclíptica, zênite2 e nadir3 ou então pólos da 
nossa Galáxia, chamado de pólos galácticos. 
 
Os pequenos círculos da esfera celeste paralelos ao círculo principal definem a latitude. Já os 
grandes círculos perpendiculares ao principal definem a longitude. Essas definições são bem 
semelhantes às usadas por nós para localização de algum ponto na superfície terrestre. 
 
A posição de um ponto qualquer na esfera pode ser escrita de uma forma matricial: 
 










⋅
⋅
=
)sen(
)sen()cos(
)cos()cos(
δ
λδ
λδ
I 
 
onde δ e λ são a latitude e a longitude em um dado sistema de coordenadas e ignorando-se a 
coordenada radial r. 
 
 
Figura 2: Retirada das Notas de Aula, Astronomia de Posição de Gastão Bierrenbach Lima Neto 
Coordenadas esféricas polares, λ e δ de um ponto (sistema dextrogiro). r é o raio vetor e R é a sua projeção no 
plano x–y. 
 
Existemsistemas de coordenadas diferentes, sendo que dependendo do problema dado, 
podemos utilizar um ou outro, no qual trará melhor a resolução. São eles: 
 
 
 
2 O zênite é o ponto superior da esfera celeste, segundo a perspectiva de um observador na superfície do astro 
onde se encontra ou a interseção da vertical superior do lugar com a esfera celeste. É o marco referencial de 
localização de posições de objetos celestes. 
3 O nadir é o ponto inferior da esfera celeste, segundo a perspectiva de um observador na superfície da do 
planeta é a projeção do alinhamento vertical que esta sob os pés do observador à esfera celeste superior, 
localizada do outro lado da planeta e é o oposto ao zênite. 
 7 
• Coordenadas Eclípticas; 
• Coordenadas Galácticas; 
• Coordenadas Horizontais; 
• Coordenadas Equatoriais; 
• Coordenadas Horárias. 
 
3.1.Sistema de Coordenadas Eclípticas 
 
O plano principal desse sistema é o plano orbital 
da Terra em torno do Sol. Esse sistema é bem 
útil nos estudos de corpos do Sistema Solar, 
como na observação de planetas, asteróides, já 
que a maioria desses corpos está em órbita 
praticamente coplanares. 
 
As coordenadas utilizadas nesse sistema são a 
longitude da eclíptica, λ, e a latitude eclíptica, β. 
O ponto de origem é o ponto vernal4. A latitude 
β é medida a partir da eclíptica, sendo positiva 
em direção do pólo Norte da eclíptica e negativa 
em direção ao pólo Sul. A longitude λ, assim 
como a ascensão reta5 é medida a partir do 
ponto vernal em direção Leste. 
 
Como mostra a Figura 3, o astro M tem 
coordenadas longitude eclíptica (λ) e latitude 
(β). A inclinação da eclíptica em relação ao equador celeste é ε que vale aproximadamente 
23º26’21”. 
 
 
3.2.Sistema de Coordenadas Galácticas 
 
O plano principal é definido pelo plano do disco da Via Láctea6, ou seja, o Equador Galáctico. 
A origem é dada pela direção do centro galáctico, localizado na constelação de Sagitário. Esse 
sistema é útil nos estudos extragalácticos ou em problemas envolvendo nossa galáxia. 
 
Na Figura 4, o astro M tem coordenadas longitude galáctica (l) e latitude (b). O ponto N é a 
intersecção do plano galáctico com o equador celeste (o nodo), C.G. é a direção do centro da 
 
4 O Ponto Vernal é a posição do Sol ao cruzar o equador celeste em 21 de março, ou seja, no equinócio de 
primavera (para o hemisfério norte). Também é chamado de Primeiro Ponto de Áries (quando foi definido, 
estava nesta constelação; hoje, devido à precessão, encontra-se em Peixes). O Ponto Vernal é a origem da 
contagem da ascensão reta. 
5 Ascensão Reta é o ângulo medido sobre o equador, com origem no meridiano que passa pelo ponto Áries e fim 
no meridiano do astro. A ascensão reta varia entre 0h e 24h (ou entre 0o e 360o), aumentando para leste. 
6 A Via Láctea é a galáxia onde está localizado o Sistema Solar da Terra. É uma estrutura constituída por cerca 
de duzentos bilhões de estrelas (algumas estimativas colocam esse número no dobro, em torno de quatrocentos 
bilhões) e tem uma massa de cerca de um trilhão e 750 bilhões de massas solares. Sua idade está calculada entre 
treze e vinte bilhões de anos, embora alguns autores afirmem estar na faixa de quatorze bilhões de anos. 
Figura 3: Sistema de coordenadas eclípticas. 
 
 8 
Galáxia (que fica na constelação de Sagitário) e i é a inclinação do plano galáctico em relação 
ao equador celeste. 
 
 
 
Figura 4: Sistema de coordenadas galácticas. 
 
 
3.3.Sistema de Coordenadas Horizontais 
 
O plano principal é definido como plano que contém o horizonte do observador. Os dois 
ângulos que definem a posição de um astro qualquer dado são a altura, h, e o azimute7, A. 
 
 
Figura 5: Sistema de coordenadas horizontal. 
 
 
7 O Azimute é a direção medida em graus que se encontra um astro ao redor de um observador. O azimute é 
medido no plano horizontal e tem como referencia 0 o Norte verdadeiro. Para uma estrela ou algum ponto 
terrestre. 
 9 
Nesse caso, o horizonte do observador deve ser definido corretamente, pois o horizonte 
visível ou aparente é sujeito a irregularidades topográficas, assim, não definindo 
necessariamente desta forma um grande círculo e, desta forma, não servindo como base para 
definir um bom estudo e, conseqüentemente, um sistema de coordenadas. 
 
Assim sendo, definimos o horizonte astronômico como sendo o grande círculo centrado no 
observador, perpendicular à sua vertical, desconsiderando os acidentes topográficos, sendo 
que a intersecção desta vertical com a esfera celeste dá origem ao zênite e ao nadir. A altura 
de um astro qualquer dado é medida a partir do horizonte astronômico, sendo positivo quando 
o astro estiver acima e negativo quando estiver a baixo. Desse modo, o zênite tem uma altura 
de +90º e o nadir de -90º. O azimute é, por definição, medido a partir do meridiano Norte (0º) 
do observador e os ângulos são contados no sentido � Leste (90º) � Sul (180º) � Oeste 
(270º). 
 
Como mostra a Figura 5, o astro M tem coordenadas h (altura) e A (azimute). Os “pólos” 
deste sistema são o zênite e o nadir. O azimute é medido a partir do Sul em direção ao Oeste, 
ao longo do horizonte (o círculo principal neste sistema). A altura é positiva em direção ao 
zênite e negativa em direção ao nadir. Também são mostrados na figura os eixos cartesianos 
x, y e z. 
 
 
Em forma matricial, temos: 
 










⋅−
⋅
=
)(
)()cos(
)cos()cos(
hsen
Asenh
Ah
I 
 
Nesse sistema as coordenadas mudam com o tempo decorrido, sobretudo com o movimento 
diário da Terra. Com isso, o azimute de um astro sempre aumenta no decorrer do dia. 
 
3.4.Sistema de Coordenadas Equatoriais 
 
O plano principal desse sistema é a projeção da linha do equador terrestre na esfera celeste, 
chamando-se assim de equador celeste. Também as projeções dos pólos terrestres na esfera 
celeste definem os pólos Norte e Sul. A origem desse sistema é a intersecção do equador 
celeste com a eclíptica. Este ponto é definido como equinócio vernal. A declinação8, que 
adotaremos como δ, de um ponto M é a distância angular medida sobre o meridiano ao qual 
passa por este ponto a partir do equador celeste. Na direção do pólo norte celeste, δ > 0, caso 
contrário a declinação é negativa. A ascensão reta, que chamaremos de α, é o ângulo entre o 
ponto vernal e o meridiano do ponto M, que é medido na direção Leste. Neste caso, a 
 
8 A declinação (δ) de um astro é o arco do meridiano do astro compreendido entre o plano do equador celeste e 
o astro. Mede-se de 0º a 90º para Norte ou para Sul, sendo por vezes representado com um valor entre + 90º e − 
90º (positivo representando o Norte e negativo o Sul). É um dos valores angulares utilizadas para definir a 
posição de um astro num sistema de coordenadas equatoriais, o outro sendo o ângulo horário ou a ascensão reta. 
 
 10 
ascensão reta cresce de maneira oposta ao azimute das coordenadas horizontais e aumenta no 
sentido do movimento anual do Sol. 
 
Em forma matricial, temos: 
 










⋅
⋅
=
)(
)()cos(
)cos()cos(
δ
αδ
αδ
sen
senI 
 
Na Figura 6, o astro M tem 
coordenadas ascensão reta (α) e 
declinação (δ). Atualmente, a 
inclinação do equador celeste em 
relação à eclíptica é ε que vale 
aproximadamente 23º26’21”. 
 
Neste caso, a ascensão reta e a 
declinação de uma estrela não 
mudam devido ao movimento 
diurno da Terra, não significando 
que neste sistema de coordenadas 
não exista uma pequena variação com o tempo, mas que é bem mais lenta do que no sistema 
de coordenadas horizontais. 
 
3.5.Sistema de Coordenadas Horárias 
 
Esse sistema de coordenadas é bem semelhante ao sistema de coordenadas equatoriais. Nele, 
o círculo principal também é a 
projeção do equador terrestre na esfera 
celeste e as declinações são medidas 
também da mesma maneira. A únicadiferença é que nesse sistema a origem 
é centrada no meridiano local do 
observador, como no sistema 
horizontal, e este ângulo é chamado de 
ângulo horário, definido como H. 
Nesse sistema é como se fosse uma 
mistura do sistema de coordenadas 
horizontais com o sistema de 
coordenadas equatoriais. 
 
Enquanto a ascensão reta não varia 
devido ao movimento diurno, o ângulo 
horário varia. No caso, a relação entre 
as duas coordenadas está ligada ao 
movimento diurno da origem do 
Figura 6: Sistema de coordenadas equatorial. 
 
Figura 7: Sistema de coordenadas horário. 
 11 
sistema de coordenadas equatoriais, o ponto vernal. A soma dos dois ângulos, a ascensão reta 
com o ângulo horário é: 
 
Ts = H + α 
 
onde Ts é o tempo sideral local ou, em outra interpretação, Ts também pode ser o ângulo 
horário do ponto vernal. 
 
Em forma matricial, temos: 
 










⋅−
⋅
=
)(
)()cos(
)cos()cos(
δ
δ
δ
sen
Hsen
H
I 
 
Na Figura 7, o astro M tem coordenadas do ângulo horário (H) e declinação (δ). 
 
4. RELAÇÃO ENTRE OS SISTEMAS DE COORDENADAS 
 
Os vários sistemas de coordenadas podem ser descritos em forma vetorial em coordenadas 
cartesianas. Isso facilita muito, pois as transformações entre dois sistemas quaisquer podem 
ser decompostos em rotações, onde podemos representar em forma de matrizes. 
 
Contudo, no caso de rotação em torno dos eixos cartesianos, podemos considerar uma rotação 
em duas dimensões, como mostra a figura, onde a rotação se dá em torno do eixo z: 
 
Figura 7: Rotação no plano de um ângulo θ. 
 
As coordenadas do ponto P (Figura 7) se escrevem como: 



⋅−⋅=−=
⋅+⋅=−=



=
=
)()cos()cos()()('
)()()cos()cos()cos('
)(
)cos(
θϕθϕθϕ
θϕθϕθϕ
ϕ
ϕ
sensenseny
sensenx
e
seny
x
 
onde ϕ é o ângulo do raio vetor de P. Eliminando-se ϕ obtêm-se as relações entre os dois 
sistemas de coordenadas. 
 
As rotações básicas ao redor dos eixos x, y e z, cada uma com valor angular αx, αy e αz são 
dadas pelas matrizes dos cossenos diretores: 
 
 12 










−
=
xx
xxx
sen
senR
αα
αα
cos0
cos0
001
 









 −
=
yy
yy
y
sen
sen
R
αα
αα
cos0
010
0cos
 










−=
100
0cos
0cos
zz
zz
z sen
sen
R αα
αα
 
 
Dado um par de coordenadas em um sistema qualquer, devemos encontrar a ou as rotações 
necessárias para transformá-las em um outro sistema de coordenadas, e nessas formas, fica 
bem fácil achar essas rotações. De um modo genérico, temos: 
 
),(),( blIRRRI zyx ⋅⋅⋅=δα , 
onde devemos utilizar as matrizes de rotação relevantes. 
 
4.1.Transformação de Sistema de Coordenadas Equatoriais para Horizontais 
 
Essa passagem é um pouco delicada, já que o Sistema de Coordenadas Horizontais possuem 
um movimento diário. É mais conveniente utilizar o Sistema de Coordenadas Horárias do que 
as coordenadas equatoriais diretamente. Observando-se as figuras 5 e 7, tem-se que a 
passagem de um sistema para o outro pode ser obtida por uma rotação em torno do eixo 
cartesiano y. Esta rotação é igual ao complemento da latitude, ou seja, 90º - φ. Assim, temos: 
 
),())º90((),( hAIRHI y ⋅−−= ϕδ , 
 
o que resulta no seguinte sistema de equações: 
 
)()()cos()cos()cos()(
)cos()()cos()(
)cos()()()cos()cos()cos()cos(
ϕϕδ
δ
ϕϕδ
senhsenhAsen
hAsenHsen
hsensenhAH
⋅+⋅⋅−=
⋅=⋅
⋅+⋅⋅=⋅
, 
 
A transformação inversa, ou seja, do Sistema de Coordenadas Horizontais para o Sistema de 
Coordenadas Equatoriais se faz pela rotação no sentido contrário: 
 
),()º90(),( δϕ HIRhAI y ⋅−= 
 
 
 
 
 
 13 
4.2.Exemplo de Aplicação 
 
Será calculado a altura e o azimute da estrela Aldebaran, alfa9 da constelação de Touro, dado 
a sua ascensão reta e declinação. Para tal, é necessário a latitude e longitude local, o dia e 
horário do ano. 
 
Coordenadas equatorias de Aldebaran, retiradas do livro Uranografia (MOURÃO, 1989) 
 α = 4 horas, 35 minutos e 55,2 segundos = 4,599 horas (ascensão reta) 
δ = 16º30’33”. = 16,509o (declinação) 
 
Estes valores são razoavelmente constantes durante uns 50 anos. As mudanças são devido ao 
movimento de precessão da Terra (um movimento cíclico do eixo de rotação da Terra em 
torno de um eixo perpendicular ao plano da órbita da Terra e leva aproximadamente 26.000 
anos) 
 
Latitude e longitude da UCB. 
 Longitude: -48º 02´ = - 48,03 o (negativo quer dizer a leste de Greenwich) 
 Latitude: -15o 52´ = -15,867 o (negativo quer dizer ao sul do equador) 
 
O tempo sideral, TS, é a posição do ponto vernal. O ponto vernal será igual a 0
o ao meio dia 
local do dia 21 de março (Instante em que a trajetória do Sol cruza o plano equatorial). Então 
para calcular no dia 01 de dezembro (256 dias após dia 21 de março) às 21h do horário de 
verão (ou seja 1 horas a menos que o horário normal) temos que TS é dado por 
 
 
 
min3355.055.2424
360
)45(º03.48
1211224
25.365
255
20h às UCBna Variação
referência de Meridiano
 menos local Longitude
 normal local hora
Greenwich em dia meio ao
Vernal Ponto do Posição 
===⋅−−−+−+−⋅




= hhhhhhhT
o
o
s
444444 3444444 21
44 844 76
48476
444 3444 21
 
 
 
Usando a fórmula: 
 
Ts = H + α 
temos que: 
 
o
s hhhhTH 25.299min571995.19599.455.24 ===−=−= α 
Este é o ângulo horário de Aldebaran visto da UCB no dia 1o de dezembro de 2007 às 
21horas. 
 
 Agora para passar para o sistema de coordenas locais, usamos a relação 
),()º90(),( δϕ HIRhAI y ⋅−= 
 
 
9 Estrela Alfa é a estrela que tem o brilho mais intenso na constelação. 
 14 
o
o
oooo
oooo
AA
hh
h
Ah
Ah
H
H
h
Ah
Ah
3.6408,2
402,0
8365,0
)tan(
8.21372,0)sen(
372,0
8365,0
402,0
2842,0
8365,0
4685,0
275,00961.0
010
961.00275,0
)sen(
)sen()cos(
)cos()cos(
)sen(
)sen()cos(
)cos()cos(
)967.1590cos(0)967.1590sen(
010
)967.1590sen(0)967.1590cos(
)sen(
)sen()cos(
)cos()cos(
=⇒=





−
−=
=⇒=









−
=










⋅










−
−−
=










−










−⋅










++
+−+
=










−
δ
δ
δ
 
 
Desta maneira, nas coordenadas locais ou horizontais, a posição de Aldebaran às 21h do dia 
1o de dezembro na UCB será 64,3o de azimute e 21,8o de altura. 
 
5. CONSIDERAÇÕES FINAIS 
 
Foi visto, através das pesquisas feitas, que muito antes da Astronomia fazer parte da Física, já 
haviam matemáticos que faziam observações astronômicas, utilizando-se assim de cálculos 
complicados, mas mesmo assim suas observações eram com muita precisão e com taxas de 
erro mínimas, já que naquela época não existiam instrumentos tecnológicos tão avançados 
como hoje. 
 
Foi visto também que o Sistema de Coordenadas é um estudo simples de aplicação 
matemática de grande importância para a Astronomia. Com o uso da nossa tecnologia e 
alguns softwares matemáticos disponíveis, como o caso do software Maple, fica simples a 
geração de um programa que, ao ter os valores da longitude e latitude local, o azimute e a 
ascensão reta da estrela a qual quer fazer a observação em um determinado dia, coloca-se no 
programa e ele fará os devidos cálculos para a transformação em Coordenadas Locais ou 
Horizontais fazendo-se os mesmos cálculos e procedimentos a qual foi feito. 
 
A aplicação dessa transformação facilita bastante a observação, visto que nas Cartas Celestes, 
o sistema de coordenadas utilizado é o Equatorial, onde um observador teria que fazer muitos 
ajustes no telescópio no decorrer da observação. Essa transformação, para o Sistema de 
Coordenadas Horizontais, visto que nesse sistema, ao ajusta o telescópio, basta saber a 
latitude do observador. 
 
Com o estudo dos sistemas e a aplicação prática, conclui-se que é válido a análise feita e que é 
de grande proveito para a Astronomia. 
 
 
 
 
 
 
 
 
 15 
REFERÊNCIAS BIBLIOGRÁFICAS 
 
ARANA, José Milton, Astronomia de Posição. Disponível em 
 <http://www2.fct.unesp.br/dcartog/arana/Astron.pdf > Acessoem 20/04/2007 às 10:30. 
 
BRENNAN, Richard P.; BORGES, Maria Luiza Xavier de Almeida; MOTTA FILHO, Hélio da; BARROS, 
Henrique Lins de. Gigantes da Física. Ed Revista Rio de Janeiro: J.Zahar, 1998 
 
DE BRITO, Betania Maria; DE ALMEIDA, Douglas Gomes. A Matemática na Astronomia. Monografia dos 
alunos de 2004 do UniCEUB e FAET – DF. 
 
GIOVANNI, José Ruy. Matematica segundo grau. 1ª ed. São Paulo: FTD 1998 
 
LIMA NETO, Gastão Bierrenbach, Astronomia de Posição Disponível em 
http://www.astro.iag.usp.br/~gastao/astroposicao.html. Acesso em 20/04/2007 às 09:30. 
 
MOREIRA, João Luiz Kohl. Pergunte a um Astrônomo. Disponível em 
 <www.on.br/pergunte_astro/indice_resposta.php?id_tema=3> Acesso em 15/10/2007 às 15:50. 
 
MOURÃO, Ronaldo Rogério de Freitas, Uranografia: descrição do céu, Rio de Janeiro: Francisco Alves Ed. , 
1989 
 
OLIVEIRA FILHO, Kepler de Sousa, SARAIVA, Maria de Fátima Oliveira. Astronomia Antiga. Disponível 
em <http://astro.if.ufrgs.br/antiga/antiga.htm> Acesso em 15/10/2007 às 15:25. 
 
PEDRON, Ademar João. Metodologia Científica: auxiliar do estudo, da leitura e da pesquisa. 5ª ed. Brasília: 
Scala Gráfica e Editora, 2004 
 
WIKIPÉDIA. Ascensão Reta. Disponível em <pt.wikipedia.org/wiki/Ascensão_reta> Acesso em 15/10/2007 às 
15:32. 
 
_____. Azimute. Disponível em <pt.wikipedia.org/wiki/Azimute> Acesso em 15/10/2007 às 15:34. 
 
_____. Declinação. Disponível em <pt.wikipedia.org/wiki/Declinação> Acesso em 15/10/2007 às 15:35. 
 
_____. Eclíptica. Disponível em < pt.wikipedia.org/wiki/Eclíptica > Acesso em 15/10/2007 às 15:30. 
 
_____. Nadir. Disponível em <pt.wikipedia.org/wiki/Nadir> Acesso em 15/10/2007 às 15:30. 
 
_____. Ponto Vernal. Disponível em <pt.wikipedia.org/wiki/Ponto_vernal> Acesso em 15/10/2007 às 15:31. 
 
_____. Via Láctea. Disponível em <pt.wikipedia.org/wiki/Via_Láctea> Acesso em 15/10/2007 às 15:33. 
 
_____. Zênite. Disponível em <pt.wikipedia.org/wiki/Zênite> Acesso em 15/10/2007 às 15:30.

Outros materiais