capitulo 2
222 pág.

capitulo 2


DisciplinaProbabilidade e Estatística11.329 materiais110.843 seguidores
Pré-visualização24 páginas
_1070128232.unknown
_1070128404.unknown
_1070127731.unknown
_1070115381.unknown
_1070115428.unknown
_1070115488.unknown
_1070115396.unknown
_1070115296.unknown
_1070115366.unknown
_1070115276.unknown
_1070112266.unknown
_1070112690.unknown
_1070113022.unknown
_1070114658.unknown
_1070114735.unknown
_1070114486.unknown
_1070112937.unknown
_1070112447.unknown
_1070112571.unknown
_1070112672.unknown
_1070112532.unknown
_1070112375.unknown
_1070111489.unknown
_1070111537.unknown
_1070111552.unknown
_1070111496.unknown
_1070111439.unknown
_1070111463.unknown
_1070111193.unknown
_1070107858.unknown
_1070110084.unknown
_1070110393.unknown
_1070110880.unknown
_1070110946.unknown
_1070110991.unknown
_1070110893.unknown
_1070110824.unknown
_1070110845.unknown
_1070110741.unknown
_1070110336.unknown
_1070110356.unknown
_1070110383.unknown
_1070110135.unknown
_1070110141.unknown
_1070110193.unknown
_1070110091.unknown
_1070108845.unknown
_1070108930.unknown
_1070110051.unknown
_1070110074.unknown
_1070109464.unknown
_1070108903.unknown
_1070108919.unknown
_1070108861.unknown
_1070108410.unknown
_1070108558.unknown
_1070108834.unknown
_1070108529.unknown
_1070108141.unknown
_1070108205.unknown
_1070108130.unknown
_1070105337.unknown
_1070106947.unknown
_1070107356.unknown
_1070107735.unknown
_1070107804.unknown
_1070107606.unknown
_1070107055.unknown
_1070107329.unknown
_1070106961.unknown
_1070105606.unknown
_1070106605.unknown
_1070106639.unknown
_1070105693.unknown
_1070105411.unknown
_1070105513.unknown
_1070105347.unknown
_1070104409.unknown
_1070104818.unknown
_1070104975.unknown
_1070105167.unknown
_1070105278.unknown
_1070104889.unknown
_1070104648.unknown
_1070104733.unknown
_1070104618.unknown
_1070103916.unknown
_1070104372.unknown
_1070104385.unknown
_1070104146.unknown
_1070103568.unknown
_1070103841.unknown
_1070103556.unknown
_1070097120.unknown
_1070099285.unknown
_1070101619.unknown
_1070102540.unknown
_1070102968.unknown
_1070103395.unknown
_1070103414.unknown
_1070103374.unknown
_1070102580.unknown
_1070102601.unknown
_1070102560.unknown
_1070102109.unknown
_1070102293.unknown
_1070102330.unknown
_1070102380.unknown
_1070102401.unknown
_1070102313.unknown
_1070102127.unknown
_1070102062.unknown
_1070102075.unknown
_1070101634.unknown
_1070101703.unknown
_1070099655.unknown
_1070101352.unknown
_1070101415.unknown
_1070101599.unknown
_1070101589.unknown
_1070101358.unknown
_1070100058.unknown
_1070101299.unknown
_1070101325.unknown
_1070100983.unknown
_1070100004.unknown
_1070099534.unknown
_1070099592.unknown
_1070099626.unknown
_1070099585.unknown
_1070099327.unknown
_1070099512.unknown
_1070099314.unknown
_1070098126.unknown
_1070098950.unknown
_1070099136.unknown
_1070099241.unknown
_1070099256.unknown
_1070099034.unknown
_1070099092.unknown
_1070099131.unknown
_1070099073.unknown
_1070098981.unknown
_1070099012.unknown
_1070098556.unknown
_1070098689.unknown
_1070098213.unknown
_1070098292.unknown
_1070097648.unknown
_1070098091.unknown
_1070097855.unknown
_1070097580.unknown
_1070095260.unknown
_1070096658.unknown
_1070096927.unknown
_1070097091.unknown
_1070097111.unknown
_1070096952.unknown
_1070096683.unknown
_1070095430.unknown
_1070095475.unknown
_1070095923.unknown
_1070093929.unknown
_1070094885.unknown
_1070094040.unknown
_1069198886.unknown
_1069198907.unknown
_1069198834.unknown
_1069192006.unknown
_1069193684.unknown
_1069193956.unknown
_1069194541.unknown
_1069194593.unknown
_1069194137.unknown
_1069193881.unknown
_1069193917.unknown
_1069193857.unknown
_1069193122.unknown
_1069193212.unknown
_1069193385.unknown
_1069193171.unknown
_1069192230.unknown
_1069193101.unknown
_1069192139.unknown
_1069190420.unknown
_1069191516.unknown
_1069191866.unknown
_1069191904.unknown
_1069191538.unknown
_1069190622.unknown
_1069191463.unknown
_1069189524.unknown
_1069190263.unknown
_1069190276.unknown
_1069190403.unknown
_1069189578.unknown
_1069139627.unknown
_1069189305.unknown
_1069139618.unknown
_1069073062.unknown
_1069107746.unknown
_1069136773.unknown
_1069137877.unknown
_1069139180.unknown
_1069139369.unknown
_1069139446.unknown
_1069139234.unknown
_1069138576.unknown
_1069138720.unknown
_1069138141.unknown
_1069138051.unknown
_1069138119.unknown
_1069137273.unknown
_1069137620.unknown
_1069137784.unknown
_1069137288.unknown
_1069137245.unknown
_1069137261.unknown
_1069136880.unknown
_1069137212.unknown
_1069109023.unknown
_1069109555.unknown
_1069110402.unknown
_1069110442.unknown
_1069109769.unknown
_1069110024.unknown
_1069109085.unknown
_1069109431.unknown
_1069109033.unknown
_1069107997.unknown
_1069108288.unknown
_1069108579.unknown
_1069108180.unknown
_1069107886.unknown
_1069107988.unknown
_1069107801.unknown
_1069102225.unknown
_1069104586.unknown
_1069106288.unknown
_1069107044.unknown
_1069107686.unknown
_1069106348.unknown
_1069105283.unknown
_1069105864.unknown
_1069105181.unknown
_1069103680.unknown
_1069103920.unknown
_1069104455.unknown
_1069103898.unknown
_1069102613.unknown
_1069103301.unknown
_1069102451.unknown
_1069100586.unknown
_1069101144.unknown
_1069101810.unknown
_1069102095.unknown
_1069101802.unknown
_1069100982.unknown
_1069101060.unknown
_1069100705.unknown
_1069097040.unknown
_1069099923.unknown
_1069100235.unknown
_1069099707.unknown
_1069073595.unknown
_1069073642.unknown
_1069073398.unknown
_1069073516.unknown
_1069058698.unknown
_1069068217.unknown
_1069069703.unknown
_1069072405.unknown
_1069072878.unknown
_1069072884.unknown
_1069072587.unknown
_1069070952.unknown
_1069072113.unknown
_1069072254.unknown
_1069072091.unknown
_1069070377.unknown
_1069068829.unknown
_1069068944.unknown
_1069069311.unknown
_1069068927.unknown
_1069068739.unknown
_1069068814.unknown
_1069068706.unknown
_1069062100.unknown
_1069063321.unknown
_1069068029.unknown
_1069063352.unknown
_1069063421.unknown
_1069062281.unknown
_1069063261.unknown
_1069063061.unknown
_1069062127.unknown
_1069059270.xls
Gráf1
		0.00512
		0.02304
		0.03456
		0.02048
p
L(p)
11.1
		Distribuição amostral de p^
		# sucessos		0		1		2		3		4		5
		p^		0.0		0.2		0.4		0.6		0.8		1.0
		P(p^)		0.3277		0.4096		0.2048		0.0512		0.0064		0.0003
		
		E(p^) =		0.2
		Var(p^) =		0.032
11.2
		Var(p^) <= 1/(4n)
		
		n		10		25		100		400
		Limite superior de Var(p^)		0.025		0.01		0.0025		0.000625
11.2
		
Limite superior de Var(p^)
n
Limite superior de Var(p^)
11.5
						Estimadores
						t1		t2
		Resultados da simulação		Média		102		100
				Variância		5		10
				Mediana		100		100
				Moda		98		100
		Propriedades dos estimadores		Viés		2		0
				Variância		5		10
				EQM		9		10
11.6
		a)
						mi
						6		7		8		9		10
		t		yt		(yt-mi)^2		(yt-mi)^2		(yt-mi)^2		(yt-mi)^2		(yt-mi)^2
		1		3		9		16		25		36		49
		2		5		1		4		9		16		25
		3		6		0		1		4		9		16
		4		8		4		1		0		1		4
		5		16		100		81		64		49		36
				S(mi)		114		103		102		111		130
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		S(mi) parece ser mínimo para mi aproximadamente