_1070128232.unknown _1070128404.unknown _1070127731.unknown _1070115381.unknown _1070115428.unknown _1070115488.unknown _1070115396.unknown _1070115296.unknown _1070115366.unknown _1070115276.unknown _1070112266.unknown _1070112690.unknown _1070113022.unknown _1070114658.unknown _1070114735.unknown _1070114486.unknown _1070112937.unknown _1070112447.unknown _1070112571.unknown _1070112672.unknown _1070112532.unknown _1070112375.unknown _1070111489.unknown _1070111537.unknown _1070111552.unknown _1070111496.unknown _1070111439.unknown _1070111463.unknown _1070111193.unknown _1070107858.unknown _1070110084.unknown _1070110393.unknown _1070110880.unknown _1070110946.unknown _1070110991.unknown _1070110893.unknown _1070110824.unknown _1070110845.unknown _1070110741.unknown _1070110336.unknown _1070110356.unknown _1070110383.unknown _1070110135.unknown _1070110141.unknown _1070110193.unknown _1070110091.unknown _1070108845.unknown _1070108930.unknown _1070110051.unknown _1070110074.unknown _1070109464.unknown _1070108903.unknown _1070108919.unknown _1070108861.unknown _1070108410.unknown _1070108558.unknown _1070108834.unknown _1070108529.unknown _1070108141.unknown _1070108205.unknown _1070108130.unknown _1070105337.unknown _1070106947.unknown _1070107356.unknown _1070107735.unknown _1070107804.unknown _1070107606.unknown _1070107055.unknown _1070107329.unknown _1070106961.unknown _1070105606.unknown _1070106605.unknown _1070106639.unknown _1070105693.unknown _1070105411.unknown _1070105513.unknown _1070105347.unknown _1070104409.unknown _1070104818.unknown _1070104975.unknown _1070105167.unknown _1070105278.unknown _1070104889.unknown _1070104648.unknown _1070104733.unknown _1070104618.unknown _1070103916.unknown _1070104372.unknown _1070104385.unknown _1070104146.unknown _1070103568.unknown _1070103841.unknown _1070103556.unknown _1070097120.unknown _1070099285.unknown _1070101619.unknown _1070102540.unknown _1070102968.unknown _1070103395.unknown _1070103414.unknown _1070103374.unknown _1070102580.unknown _1070102601.unknown _1070102560.unknown _1070102109.unknown _1070102293.unknown _1070102330.unknown _1070102380.unknown _1070102401.unknown _1070102313.unknown _1070102127.unknown _1070102062.unknown _1070102075.unknown _1070101634.unknown _1070101703.unknown _1070099655.unknown _1070101352.unknown _1070101415.unknown _1070101599.unknown _1070101589.unknown _1070101358.unknown _1070100058.unknown _1070101299.unknown _1070101325.unknown _1070100983.unknown _1070100004.unknown _1070099534.unknown _1070099592.unknown _1070099626.unknown _1070099585.unknown _1070099327.unknown _1070099512.unknown _1070099314.unknown _1070098126.unknown _1070098950.unknown _1070099136.unknown _1070099241.unknown _1070099256.unknown _1070099034.unknown _1070099092.unknown _1070099131.unknown _1070099073.unknown _1070098981.unknown _1070099012.unknown _1070098556.unknown _1070098689.unknown _1070098213.unknown _1070098292.unknown _1070097648.unknown _1070098091.unknown _1070097855.unknown _1070097580.unknown _1070095260.unknown _1070096658.unknown _1070096927.unknown _1070097091.unknown _1070097111.unknown _1070096952.unknown _1070096683.unknown _1070095430.unknown _1070095475.unknown _1070095923.unknown _1070093929.unknown _1070094885.unknown _1070094040.unknown _1069198886.unknown _1069198907.unknown _1069198834.unknown _1069192006.unknown _1069193684.unknown _1069193956.unknown _1069194541.unknown _1069194593.unknown _1069194137.unknown _1069193881.unknown _1069193917.unknown _1069193857.unknown _1069193122.unknown _1069193212.unknown _1069193385.unknown _1069193171.unknown _1069192230.unknown _1069193101.unknown _1069192139.unknown _1069190420.unknown _1069191516.unknown _1069191866.unknown _1069191904.unknown _1069191538.unknown _1069190622.unknown _1069191463.unknown _1069189524.unknown _1069190263.unknown _1069190276.unknown _1069190403.unknown _1069189578.unknown _1069139627.unknown _1069189305.unknown _1069139618.unknown _1069073062.unknown _1069107746.unknown _1069136773.unknown _1069137877.unknown _1069139180.unknown _1069139369.unknown _1069139446.unknown _1069139234.unknown _1069138576.unknown _1069138720.unknown _1069138141.unknown _1069138051.unknown _1069138119.unknown _1069137273.unknown _1069137620.unknown _1069137784.unknown _1069137288.unknown _1069137245.unknown _1069137261.unknown _1069136880.unknown _1069137212.unknown _1069109023.unknown _1069109555.unknown _1069110402.unknown _1069110442.unknown _1069109769.unknown _1069110024.unknown _1069109085.unknown _1069109431.unknown _1069109033.unknown _1069107997.unknown _1069108288.unknown _1069108579.unknown _1069108180.unknown _1069107886.unknown _1069107988.unknown _1069107801.unknown _1069102225.unknown _1069104586.unknown _1069106288.unknown _1069107044.unknown _1069107686.unknown _1069106348.unknown _1069105283.unknown _1069105864.unknown _1069105181.unknown _1069103680.unknown _1069103920.unknown _1069104455.unknown _1069103898.unknown _1069102613.unknown _1069103301.unknown _1069102451.unknown _1069100586.unknown _1069101144.unknown _1069101810.unknown _1069102095.unknown _1069101802.unknown _1069100982.unknown _1069101060.unknown _1069100705.unknown _1069097040.unknown _1069099923.unknown _1069100235.unknown _1069099707.unknown _1069073595.unknown _1069073642.unknown _1069073398.unknown _1069073516.unknown _1069058698.unknown _1069068217.unknown _1069069703.unknown _1069072405.unknown _1069072878.unknown _1069072884.unknown _1069072587.unknown _1069070952.unknown _1069072113.unknown _1069072254.unknown _1069072091.unknown _1069070377.unknown _1069068829.unknown _1069068944.unknown _1069069311.unknown _1069068927.unknown _1069068739.unknown _1069068814.unknown _1069068706.unknown _1069062100.unknown _1069063321.unknown _1069068029.unknown _1069063352.unknown _1069063421.unknown _1069062281.unknown _1069063261.unknown _1069063061.unknown _1069062127.unknown _1069059270.xls Gráf1 0.00512 0.02304 0.03456 0.02048 p L(p) 11.1 Distribuição amostral de p^ # sucessos 0 1 2 3 4 5 p^ 0.0 0.2 0.4 0.6 0.8 1.0 P(p^) 0.3277 0.4096 0.2048 0.0512 0.0064 0.0003 E(p^) = 0.2 Var(p^) = 0.032 11.2 Var(p^) <= 1/(4n) n 10 25 100 400 Limite superior de Var(p^) 0.025 0.01 0.0025 0.000625 11.2 Limite superior de Var(p^) n Limite superior de Var(p^) 11.5 Estimadores t1 t2 Resultados da simulação Média 102 100 Variância 5 10 Mediana 100 100 Moda 98 100 Propriedades dos estimadores Viés 2 0 Variância 5 10 EQM 9 10 11.6 a) mi 6 7 8 9 10 t yt (yt-mi)^2 (yt-mi)^2 (yt-mi)^2 (yt-mi)^2 (yt-mi)^2 1 3 9 16 25 36 49 2 5 1 4 9 16 25 3 6 0 1 4 9 16 4 8 4 1 0 1 4 5 16 100 81 64 49 36 S(mi) 114 103 102 111 130 S(mi) parece ser mínimo para mi aproximadamente