Buscar

tutorial 4_SNA

Prévia do material em texto

OBJETIVO 01 |DESCREVER O SISTEMA NERVOSO AUTÔNOMO
- Introdução e organização geral do Sistema Nervoso Autônomo (Natali)
O sistema nervoso autonômico é a parte do sistema nervoso relacionada com a inervação das estruturas involuntárias, tais como o coração, o músculo liso e as glândulas localizadas ao longo do corpo. Está, portanto, relacionado com o controle da vida vegetativa, controlando funções como a respiração, circulação do sangue, controle de temperatura e digestão, etc. É distribuído por toda parte nos sistemas nervosos central (hipotálamo, sistema límbico, formação reticular, núcleos viscerais dos nervos cranianos) e periférico (nervos cranianos com fibras eferentes e aferentes viscerais e nervos distribuídos ao longo do corpo e vísceras, principalmente aqueles oriundos de plexos viscerais).
O SNA pode ser subdividido em duas partes: o SNA simpático e o SNA parassimpático, e em ambas existem fibras nervosas aferentes e eferentes. Basicamente, as atividades da parte simpática do SNA preparam o corpo para as emergências (luta e fuga); as atividades da parte parassimpática do SNA são voltadas para a conservação e a restauração das energias (repouso e digestão).
O sistema nervoso autônomo é a porção do sistema nervoso central que controla a maioria das funções viscerais do organismo. Esse sistema ajuda a controlar a pressão arterial, a motilidade gastrointestinal, a secreção gastrointestinal, o esvaziamento da bexiga, a sudorese, a temperatura corporal e muitas outras atividades. Algumas delas são quase inteiramente controladas, e outras, apenas parcialmente.
Uma das características mais acentuadas do sistema nervoso autônomo é a rapidez e a intensidade com que ele pode alterar as funções viscerais. Por exemplo, em 3 a 5 segundos ele pode aumentar a frequência cardíaca até valores duas vezes maiores que o normal e, em 10 a 15 segundos, a pressão arterial pode ser duplicada. No outro extremo, a pressão arterial em 10 a 15 segundos pode ser reduzida para causar desmaio. A sudorese pode começar em segundos e a bexiga pode se esvaziar, involuntariamente, também em segundos.
O sistema nervoso autônomo é ativado, principalmente, por centros localizados na medula espinal, no tronco cerebral e no hipotálamo. Além disso, porções do córtex cerebral, em especial do córtex límbico, podem transmitir sinais para os centros inferiores, e isso pode influenciar o controle autônomo.
O sistema nervoso autônomo também opera, em geral, por meio de reflexos viscerais; isto é, sinais sensoriais subconscientes de órgãos viscerais podem chegar aos gânglios autônomos, no tronco cerebral ou no hipotálamo e, então, retornar como respostas reflexas subconscientes, diretamente aos órgãos viscerais, para o controle de suas atividades.
Sistema Nervoso Simpático 
Prepara o corpo para respostas de “lutar ou fugir” por meio da liberação de neurotransmissores como a adrenalina e noradrenalina. É responsável, por exemplo, pelo aumento da pressão arterial, do trabalho e da potência do músculo cardíaco. Desta forma, o fluxo sanguíneo aumenta para os músculos esqueléticos e ocorre inibição das funções digestivas. Anatomicamente, sua fibra pré-ganglionar é curta, enquanto que a pós-ganglionar é longa.- Neurônios simpáticos Pré e Pós-ganglionares:
Os nervos simpáticos são diferentes dos nervos motores esqueléticos da seguinte forma: cada via simpática, da medula ao tecido estimulado, é composta de dois neurônios, o neurônio pré-ganglionar e o outro pós-ganglionar, em contraste com apenas um só neurônio, na via motora esquelética. O corpo celular de cada neurônio pré-ganglionar se localiza no corno intermediolateral da medula espinal; sua fibra passa, pela raiz ventral da medula para o nervo espinal correspondente.
Imediatamente após o nervo espinal deixar o canal espinal, as fibras simpáticas pré-ganglionares deixam o nervo espinal e passam pelo ramo comunicante branco para um dos gânglios da cadeia simpática. As fibras podem seguir um dos três seguintes cursos: (1) pode fazer sinapse com neurônios simpáticos pós-ganglionares, no gânglio em que entra; (2) pode se dirigir, para cima ou para baixo na cadeia e fazer sinapse com outro gânglio da cadeia; ou (3) pode ainda percorrer distâncias variáveis pela cadeia e, então, por meio de um dos nervos simpáticos, dirigir-se para fora da cadeia, fazendo, finalmente, sinapse em gânglio simpático periférico.
O neurônio simpático pós-ganglionar, por sua vez, origina-se nos gânglios da cadeia simpática ou nos gânglios simpáticos periféricos. Em qualquer dos casos, as fibras pós-ganglionares se dirigem para seus destinos em diversos órgãos.
- Fibras nervosas simpáticas nos nervos esqueléticos: Algumas das fibras pós-ganglionares passam de volta da cadeia simpática para os nervos espinais, pelos ramos comunicantes cinzentos, em todos os níveis da medula. Essas fibras simpáticas são todas finas, do tipo C, e estendem-se para todas as partes do corpo por meio dos nervos esqueléticos. Elas controlam os vasos sanguíneos, as glândulas sudoríparas e os músculos piloeretores dos pelos. Aproximadamente, 8% das fibras do nervo esquelético são fibras simpáticas, fato que indica sua grande importância.
- Distribuição segmentar das Fibras Nervosas Simpáticas: As vias simpáticas, que se originam nos diferentes segmentos da medula espinal, não são necessariamente distribuídas para as mesmas partes do corpo como as fibras nervosas espinais somáticas dos mesmos segmentos. Ao contrário, as fibras simpáticas do segmento T1, em geral, (1) se projetam para cima na cadeia simpática, para terminar na cabeça; (2) de T2 para terminar no pescoço; (3) de T3, T4, T5 e T6 para o tórax; (4) de T7, T8, T9, T10 e T11 para o abdome; e (5) de T12, L1 e L2 para as pernas. Essa distribuição é aproximada e pode ocorrer superposição.
A distribuição dos nervos simpáticos para cada órgão é determinada, em parte, pela localização original do órgão no embrião. Por exemplo, o coração recebe muitas fibras nervosas simpáticas da porção cervical da cadeia simpática porque o coração se origina, embriologicamente, na região cervical do embrião, antes de se deslocar para o tórax. De modo semelhante, os órgãos abdominais recebem a maior parte da inervação simpática dos segmentos inferiores da medula espinal torácica porque a maior parte do intestino primitivo se originou nessa área.
- Natureza especial das terminações nervosas simpáticas na Medula Adrenal: Fibras nervosas simpáticas pré-ganglionares se projetam diretamente sem fazer sinapse, ao longo de todo o seu percurso, desde o corno intermediolateral da medula espinal, passando pelas cadeias simpáticas e, em seguida, pelos nervos esplâncnicos para, por fim, fazer sinapse nas duas medulas adrenais. Aí, elas terminam diretamente em células neuronais modificadas que secretam epinefrina e norepinefrina na corrente sanguínea. Essas células secretórias são embriologicamente derivadas do tecido nervoso e são verdadeiros neurônios pós-ganglionares; de fato, elas possuem fibras nervosas rudimentares, de cujas terminações ocorre a secreção dos hormônios medulares adrenais epinefrina e norepinefrina.
Sistema Nervoso Parassimpático (introdução): O sistema nervoso parassimpático tem suas fibras parassimpáticas deixando o SNC pelos III, VII, IX e X nervos cranianos. Outras fibras parassimpáticas adicionais deixam a parte mais inferior da medula espinal pelo segundo e terceiro nervos espinais sacrais. 
Aproximadamente, 75% de todas as fibras nervosas parassimpáticas cursam pelo nervo vago (décimo par de nervos cranianos), passando para todas as regiões torácicas e abdominais. Os nervos vagos suprem de nervos parassimpáticos o coração, os pulmões, o esôfago, o estômago, todo o intestino delgado, a metade proximal do cólon, o fígado, a vesícula biliar, o pâncreas, os rins e as porções superiores dos ureteres.
As fibras parassimpáticas do terceiro nervo craniano vão para o esfíncter pupilar e o músculo ciliar do olho. Fibras do sétimo nervo craniano se projetam para as glândulas lacrimais, nasaise submandibulares, e as fibras do nono nervo craniano vão para a glândula parótida.
As fibras parassimpáticas sacrais cursam pelos nervos pélvicos, que passam pelo plexo espinal sacral de cada lado da medula, no nível de S2 e S3. Essas fibras se distribuem para o cólon descendente, o reto, a bexiga e as porções inferiores dos ureteres. Além disso, esse grupo sacral parassimpático supre sinais nervosos para toda a genitália externa para causar ereção.
- Neurônios Parassimpáticos Pré-ganglionares e Pós-ganglionares:  O sistema parassimpático, como o simpático, tem tanto neurônios pré-ganglionares quanto pós-ganglionares. Entretanto, exceto no caso de alguns nervos cranianos parassimpáticos, as fibras pré-ganglionares passam de forma ininterrupta por todo o caminho até o órgão que deverá ser controlado. Os neurônios pós-ganglionares estão localizados na parede do órgão. As fibras pré-ganglionares fazem sinapse com esses neurônios, e fibras pós-ganglionares extremamente curtas, de fração de milímetro a diversos centímetros de extensão, deixam os neurônios para inervar os tecidos do órgão. Essa localização dos neurônios pós-ganglionares parassimpáticos, no órgão, é bastante diferente da disposição dos gânglios simpáticos porque os corpos celulares dos neurônios pós-ganglionares simpáticos estão quase sempre localizados nos gânglios da cadeia simpática ou em outros gânglios discretos no abdome, em vez de no órgão a ser excitado.
* todas ou quase todas as terminações nervosas do sistema parassimpático secretam acetilcolina. Quase todas as terminações nervosas simpáticas secretam norepinefrina, mas poucas secretam acetilcolina. Esses neurotransmissores, por sua vez, agem nos diferentes órgãos para causar, respectivamente, os efeitos parassimpáticos ou simpáticos. Portanto, a acetilcolina é chamada transmissor parassimpático e a norepinefrina, transmissor simpático.
- Secreção de Acetilcolina e norepinefrina pelas terminações nervosas pós-Ganglionares: Algumas das terminações nervosas autônomas pós-ganglionares, especialmente as dos nervos parassimpáticos, são similares, mas muito menores do que as da junção neuromuscular esquelética. Entretanto, muitas das fibras nervosas parassimpáticas e quase todas as fibras simpáticas meramente tocam as células efetoras dos órgãos que inervam à medida que passam; ou, em alguns casos, elas terminam em meio ao tecido conjuntivo adjacente às células que devem ser estimuladas. Onde esses filamentos tocam ou passam por cima ou próximo das células a serem estimuladas, eles em geral têm dilatações bulbosas, chamadas varicosidades; são nessas varicosidades que as vesículas transmissoras de acetilcolina ou norepinefrina são sintetizadas e armazenadas. Também nas varicosidades existe grande número de mitocôndrias que fornecem trifosfato de adenosina, que é necessário para fornecer energia à síntese de acetilcolina ou norepinefrina.
Quando potencial de ação se propaga pelo terminal das fibras, a despolarização resultante aumenta a permeabilidade da membrana da fibra aos íons cálcio, permitindo que esses íons se difundam para as terminações nervosas ou varicosidades. Os íons cálcio, por sua vez, fazem com que as vesículas dos terminais ou varicosidades liberem seus conteúdos para o exterior. Dessa forma, os neurotransmissores são liberados.
- Síntese de acetilcolina, Destruição após a secreção e Duração de ação: A acetilcolina é sintetizada nas terminações nervosas e nas varicosidades da fibra nervosa colinérgica, onde fica em alta concentração armazenada em vesículas até sua liberação. A reação química básica dessa síntese é a seguinte:
Uma vez secretada acetilcolina para o tecido pela terminação nervosa colinérgica, ela persistirá no tecido só por alguns segundos enquanto realiza sua função de transmissor do sinal. Então, ela será decomposta em íon acetato e em colina, em reação catalisada pela enzima acetilcolinesterase, ligada com colágeno e glicosaminoglicanos no tecido conjuntivo local. Esse mecanismo é semelhante ao que ocorre quando da transmissão de sinal por acetilcolina e a subsequente destruição de acetilcolina nas junções neuromusculares das fibras nervosas esqueléticas. A colina formada é então transportada de volta para a terminação nervosa, onde é usada repetidamente para a síntese de nova acetilcolina.
- Síntese de Norepinefrina, Remoção e Duração de ação da Norepinefrina: A síntese de norepinefrina começa no axoplasma da terminação nervosa das fibras nervosas adrenérgicas, mas é completada nas vesículas secretórias. Os passos básicos são os seguintes:
1. 
2. 
3. Transporte da dopamina para as vesículas
4. 
Na medula adrenal, essa reação prossegue até etapa adicional para transformar aproximadamente 80% da norepinefrina em epinefrina, como a seguir:
5. 
Após a secreção de norepinefrina pela terminação nervosa, ela é removida do local secretório por três formas: (1) recaptação para a terminação nervosa adrenérgica, por um processo de transporte ativo — que é responsável pela remoção de 50% a 80% da norepinefrina secretada; (2) difusão para fora das terminações nervosas para os fluidos corporais adjacentes e, então, para o sangue — responsável pela remoção de quase todo o resto da norepinefrina; e (3) destruição de pequenas quantidades por enzimas teciduais (uma dessas enzimas é a monoamina oxidase, encontrada nas terminações nervosas, e outra é a catecol-O-metil transferase presente difusamente pelos tecidos).
Usualmente, a norepinefrina secretada diretamente para um tecido permanece ativa por apenas alguns segundos, demonstrando que sua recaptação e difusão para fora do tecido são rápidas. No entanto, a norepinefrina e a epinefrina, secretadas no sangue pela medula adrenal permanecem ativas até que elas se difundam para algum tecido, onde poderão ser destruídas pela catecol-O-metil transferase; essa ação ocorre principalmente no fígado. Portanto, quando secretadas no sangue, tanto a norepinefrina quanto a epinefrina permanecem ativas por 10 a 30 segundos, mas suas atividades declinam até se extinguirem por 1 a mais minutos.
- Receptores nos órgãos efetores: Antes que a acetilcolina, norepinefrina ou epinefrina secretadas por terminação nervosa autônoma possam estimular um órgão efetor, elas devem primeiro se ligar a receptores específicos nas células efetoras. O receptor fica na parte exterior da membrana celular, ligado como grupamento prostético a uma molécula proteica que atravessa toda a membrana celular. A ligação da substância transmissora ao receptor, causa alteração conformacional na estrutura da molécula proteica. Por sua vez, a molécula proteica alterada excita ou inibe a célula, geralmente por (1) causar alteração da permeabilidade da membrana celular para um ou mais íons; ou (2) ativar ou inativar a enzima, ligada do outro lado do receptor proteico, onde ele proemina para o interior da célula.
- Receptores Muscarínicos e Nicotínicos: (dois tipos principais de receptores de acetilcolina); A acetilcolina ativa principalmente dois tipos de receptores. Eles são chamados receptores muscarínicos e nicotínicos. As razões para esses nomes é que a muscarina, veneno de cogumelos, ativa apenas os receptores muscarínicos, enquanto a nicotina ativa apenas os receptores nicotínicos. A acetilcolina ativa ambos.
Os receptores muscarínicos, que utilizam proteínas G como mecanismos de sinalização, são encontrados em todas as células efetoras estimuladas pelos neurônios colinérgicos pós-ganglionares tanto do sistema nervoso parassimpático quanto do simpático.
Os receptores nicotínicos são canais iônicos ativados por ligandos que se encontram nos gânglios autônomos nas sinapses entre os neurônios pré-ganglionares e pós-ganglionares tanto do sistema simpático quanto do parassimpático. (Os receptores nicotínicos estão também presentes em muitas terminações nervosas não autônomas — por exemplo, nas junções neuromusculares, nos músculos esqueléticos [discutido no Capítulo 7].)
O entendimento dos dois tipos de receptores é especialmente importante porque fármacosespecíficos são, com frequência, usados como medicamentos para estimular ou bloquear um ou outro dos dois tipos de receptores.
- Receptores Adrenérgicos (Receptores Alfa e Beta): Existem também duas classes de receptores adrenérgicos; chamados receptores alfa e receptores beta. Existem dois tipos principais de receptores alfa, alfa1 e alfa2, que se ligam a diferentes proteínas G. Os receptores beta, são divididos em beta1, beta2 e beta3 porque determinadas substâncias químicas afetam apenas certos receptores beta. Os receptores beta utilizam também proteínas G para a sinalização.
A norepinefrina e a epinefrina, secretadas no sangue pela medula adrenal, têm efeitos ligeiramente diferentes na excitação dos receptores alfa e beta. A norepinefrina excita principalmente os receptores alfa, mas excita os receptores beta em menor grau. A epinefrina excita ambos os tipos de receptores de forma aproximadamente igual. Portanto, os efeitos relativos da norepinefrina e da epinefrina nos diferentes órgãos efetores são determinados pelos tipos de receptores existentes nesses órgãos. Se forem todos receptores do tipo beta, a epinefrina terá ação mais eficaz.
A Tabela 61-1 mostra a distribuição dos receptores alfa e beta em alguns órgãos e sistemas controlados pelos nervos simpáticos. Note que certas funções alfa são excitatórias, enquanto outras são inibitórias. Da mesma forma, certas funções beta são excitatórias e outras são inibitórias. Portanto, os receptores alfa e beta não estão necessariamente associados à excitação ou à inibição, mas simplesmente à afinidade do hormônio pelos receptores do dado órgão efetor.
Uma substância sintética quimicamente semelhante à epinefrina e à norepinefrina, a isopropil norepinefrina, tem ação extremamente forte nos receptores beta e, em essência, nenhuma ação nos receptores alfa.
- Ações excitatórias e inibitórias da estimulação simpática e parassimpática: 
	Tabela 61-2 Efeitos Autônomos em Vários Órgãos do Corpo
	Órgão
	Efeito da Estimulação Simpática
	Efeito da Estimulação Parassimpática
	Olho
Pupila
Músculo ciliar
	Dilatada
Relaxamento leve (visão longínqua)
	Contraída
Contração (visão próxima)
	Glândulas
Nasais
Lacrimais
Parótidas
Submandibulares
Gástricas
Pancreáticas
	Vasoconstrição e secreção leve
	Estimulação de secreção copiosa (contendo muitas enzimas nas glândulas secretoras de enzimas)
	Glândulas sudoríparas
	Transpiração abundante (colinérgica)
	Transpiração nas palmas das mãos
	Glândulas apócrinas
	Secreção espessa, odorífica
	Nenhum
	Vasos sanguíneos
	Na maioria das vezes, vasoconstrição
	Na maioria das vezes, pouco ou nenhum efeito
	Coração
Músculo
Coronárias
	Frequência aumentada
Força de contração aumentada
Dilatadas (b2); contraídas (a)
	Frequência diminuída
Força de contração diminuída (principalmente, dos átrios)
Dilatadas
	Pulmões
Brônquios
Vasos sanguíneos
	Dilatação
Vasoconstrição leve
	Constrição?
Dilatados
	Intestino
Lúmen
Esfíncter
	Peristaltismo e tônus diminuídos
Tônus aumentado (maioria das vezes)
	Peristaltismo e tônus aumentados
Relaxado (maioria das vezes)
	Fígado
	Liberação de glicose
	Pequena síntese de glicogênio
	Vesícula e ductos biliares
	Relaxados
	Contraídos
	Rim
	Débito de urina diminuído e secreção de renina aumentado
	Nenhum
	Bexiga
Músculo detrusor
Músculo trígono
	Relaxado (ligeiramente)
Contraído
	Contraído
Relaxado
	Pênis
	Ejaculação
	Ereção
	Arteríolas sistêmicas
Vísceras abdominais
Músculo
Pele
	Contraídas
Contraído (a-adrenérgicos)
Dilatado (b2-adrenérgicos)
Dilatado (colinérgicos)
Contraída
	Nenhum
Nenhum
Nenhum
	Sangue
Coagulação
Glicose
Lipídios
	Aumentada
Aumentada
Aumentados
	Nenhum
Nenhum
Nenhum
	Metabolismo basal
	Aumentado por até 100%
	Nenhum
	Secreção medular adrenal
	Aumentada
	Nenhum
	Atividade mental
	Aumentada
	Nenhum
	Músculos piloeretores
	Contraídos
	Nenhum
	Músculos esqueléticos
	Glicogenólise aumentada
Força aumentada
	Nenhum
	Células gordurosas
	Lipólise
	Nenhum
- Função das Medulas Adrenais no Sistema Nervoso Simpático: A estimulação dos nervos simpáticos, que vão até as medulas adrenais, causa a liberação de grande quantidade de epinefrina e norepinefrina no sangue circulante, e esses dois hormônios são, por sua vez, levados para todos os tecidos do corpo. Em média, cerca de 80% da secreção são de epinefrina e 20% de norepinefrina, embora as proporções relativas possam variar bastante em diferentes condições fisiológicas.
A epinefrina e a norepinefrina circulantes têm quase os mesmos efeitos nos diferentes órgãos como os efeitos ocasionados pela estimulação simpática direta, exceto que os efeitos duram 5 a 10 vezes mais tempo, porque esses dois hormônios são removidos lentamente do sangue durante período de 2 a 4 minutos.
A norepinefrina circulante causa constrição da maioria dos vasos sanguíneos do corpo; acarreta também atividade aumentada do coração, inibição do trato gastrointestinal, dilatação das pupilas etc.
A epinefrina produz quase os mesmos efeitos que os causados pela norepinefrina, sendo diferentes nos seguintes aspectos: primeiro, a epinefrina, por provocar sua maior ação na estimulação dos receptores beta, tem efeito maior na estimulação cardíaca do que a norepinefrina. Segundo, a epinefrina causa somente a fraca constrição dos vasos sanguíneos dos músculos em comparação com a vasoconstrição muito mais forte causada pela norepinefrina. Como os vasos do músculo representam segmento importante dos vasos do organismo, essa diferença tem importância especial, pois a norepinefrina aumenta muito a resistência periférica total e eleva a pressão arterial, enquanto a epinefrina aumenta muito menos a pressão arterial, mas aumenta mais o débito cardíaco.
Terceira diferença entre as ações da epinefrina e da norepinefrina está relacionada a seus efeitos sobre o metabolismo nos tecidos. A epinefrina tem efeito metabólico 5 a 10 vezes mais forte que a norepinefrina. De fato, a epinefrina secretada pelas medulas adrenais pode aumentar o metabolismo do organismo, muitas vezes, por até 100% acima do normal, aumentando, dessa forma, a atividade e a excitabilidade do organismo. Ela também eleva a intensidade de outras atividades metabólicas, como a glicogenólise no fígado e no músculo e a liberação de glicose para o sangue.
Resumindo, a estimulação das medulas adrenais causa a liberação dos hormônios epinefrina e norepinefrina, que juntos têm quase os mesmos efeitos que a estimulação simpática direta tem sobre todo o organismo, exceto que os efeitos são muito mais prolongados, durando 2 a 4 minutos depois do término da estimulação.
- Reflexos Autônomos e Reflexos Autônomos Cardiovasculares: Vários reflexos do sistema cardiovascular ajudam a controlar a pressão do sangue arterial e a frequência cardíaca. Um deles é o reflexo barorreceptor, descrito no Capítulo 18, junto com outros reflexos cardiovasculares. Resumidamente, receptores de estiramento, chamados barorreceptores, se localizam nas paredes de várias artérias principais, incluindo especialmente as artérias carótidas internas e o arco da aorta. Quando são estirados pela alta da pressão, sinais são transmitidos ao tronco cerebral, onde inibem os impulsos simpáticos para o coração e para os vasos sanguíneos e excitam os parassimpáticos; isso permite que a pressão arterial caia de volta ao normal.
- Reflexos Autônomos Gastrointestinais: A parte mais superior do trato gastrointestinal e o reto são controlados, principalmente, por reflexos autônomos. Por exemplo, o cheiro de comida saborosa ou a presença de comida na boca iniciam sinais da boca e do nariz para os núcleos vagais, glossofaríngeos e salivatórios do tronco cerebral. Esses núcleos por sua vez transmitem sinais pelos nervos parassimpáticos para as glândulas secretoras da boca e do estômago, causando a secreção de fluidos digestivos às vezes antes mesmo que a comida entre na boca.
Quando o material fecal preenche o reto, na outra ponta do trato digestivo, impulsos sensoriais, iniciados pelo estiramento do reto, são transmitidos à porção sacral da medula espinal,e o sinal de reflexo é transmitido de volta pelos parassimpáticos sacrais até as partes distais do cólon; esses sinais provocando fortes contrações peristálticas que ocasionam a defecação.
Outros Reflexos Autônomos. O esvaziamento da bexiga é controlado da mesma forma que o esvaziamento do reto; o estiramento da bexiga transmite impulsos à medula espinal sacra e esta, por sua vez, causa a contração reflexa da bexiga e o relaxamento dos esfíncteres urinários promovendo dessa forma a micção.
Importantes também são os reflexos sexuais, iniciados tanto por estímulos psíquicos, vindo do encéfalo, como por estímulos dos órgãos sexuais. Impulsos dessas duas fontes convergem na medula espinal sacral e no homem, resultam primeiro na ereção em grande parte função parassimpática e depois, na ejaculação, função parcialmente simpática.
Outras funções de controle autônomo incluem contribuições dos reflexos à regulação da secreção pancreática, esvaziamento da vesícula biliar, excreção de urina pelos rins, sudorese, concentração de glicose no sangue e muitas outras funções viscerais
- Resposta de "Alarme" ou "Estresse" do Sistema Nervoso Simpático: Quando grandes porções do sistema nervoso simpático descarregam ao mesmo tempo — isto é, por descarga em massa — isto aumenta de muitas formas a capacidade do organismo exercer atividade muscular vigorosa, como se resume na lista seguinte:
1. Pressão arterial elevada.
2. Fluxo sanguíneo para os músculos ativos aumentado e, ao mesmo tempo, fluxo sanguíneo dimi­nuído para os órgãos não necessários para a rápida atividade motora, tais como o trato gastrointestinal e os rins.
3. O metabolismo celular aumentado no corpo todo.
4. Concentração de glicose no sangue aumentada.
5. Glicólise aumentada no fígado e no músculo.
6. Força muscular aumentada.
7. Atividade mental aumentada.
8. Velocidade/intensidade da coagulação sanguínea elevada.
A soma desses efeitos permite à pessoa exercer atividade física com muito mais energia do que seria possível de outra forma. Como o estresse mental ou físico pode excitar o sistema simpático, muitas vezes se diz que a finalidade do sistema simpático é a de fornecer a ativação extra do corpo nos estados de estresse, que é chamado resposta ao estresse simpática.
O sistema simpático é ativado de forma especialmente forte em muitos estados emocionais. Por exemplo, no estado de raiva suscitado, em grande parte, pela estimulação do hipotálamo sinais são transmitidos pela formação reticular do tronco cerebral para a medula espinal, causando descarga simpática maciça; a maioria dos efeitos simpáticos mencionados se segue imediatamente. Isso é chamado reação de alarme simpática. Também é chamado reação de luta ou fuga porque o animal, nesse estado, decide quase instantaneamente se é para parar e lutar ou para fugir. Em ambos os casos, a reação de alarme simpática torna as atividades subsequentes do animal mais vigorosas.
- Controle Bulbar, Pontino e Mesencefálico do Sistema Nervoso Autônomo: 
- Controle dos centros autônomos do Tronco Cerebral por áreas superiores: Sinais do hipotálamo e até mesmo do telencéfalo podem afetar as atividades de quase todos os centros de controle autônomos no tronco cerebral. Por exemplo, a estimulação em áreas corretas, sobretudo do hipotálamo posterior, pode ativar os centros de controle cardiovasculares bulbares o suficiente para aumentar a pressão arterial a mais que o dobro do normal. De forma semelhante, outros centros hipotalâmicos controlam a temperatura do corpo, aumentam ou diminuem a salivação e a atividade gastrointestinal e causam o esvaziamento da bexiga. Até certo grau então os centros autônomos no tronco cerebral funcionam como estações de retransmissão para controlar as atividades iniciadas em níveis superiores do encéfalo, especialmente no hipotálamo.
Foi também mostrado que muitas das nossas respostas comportamentais são mediadas (1) pelo hipotálamo; (2) por áreas reticulares do tronco cerebral; e (3) pelo sistema nervoso autônomo. De fato, algumas áreas superiores do encéfalo podem alterar certas funções do sistema nervoso autônomo, como um todo ou de porções dele, forte o suficiente para ocasionar doença grave induzida de forma autônoma, como úlcera péptica do estômago ou duodeno, constipação, palpitação cardíaca ou até ataque cardíaco.
OBJETIVO 02 | RELACIONAR O SISTEMA LÍMBICO COM O SISTEMA NERVOSO AUTÔNOMO
- Sistema Límbico – Introdução: A palavra “límbico” significa “borda”. Originalmente, o termo “límbico” era usado para descrever as estruturas da borda, ao redor das regiões basais do prosencéfalo; porém,, conforme aprendemos mais sobre as funções do sistema límbico, o termo sistema límbico foi expandido para significar todo o circuito neuronal que controla o comportamento emocional e as forças motivacionais.
Uma parte importante do sistema límbico é o hipotálamo e suas estruturas relacionadas. Além de seu papel no controle comportamental essas áreas controlam muitas condições internas do corpo, como a temperatura corporal, osmolalidade dos líquidos corporais, e os desejos de comer e beber e o controle do peso corporal. Essas funções do meio interno são coletivamente chamadas funções vegetativas do cérebro, e seu controle está intimamente relacionado ao comportamento.
- Anatomia funcional do sistema límbico – Posição chave do hipotálamo: 
- Hipotálamo (Controle do Sistema Límbico): O hipotálamo, apesar do seu pequeno tamanho de somente alguns centímetros cúbicos (e peso de apenas 4 gramas), contém vias bidirecionais de comunicação com todos os níveis do sistema límbico. Por sua vez, ele e suas estruturas intimamente conectadas emitem sinais em três direções: (1) para trás e para baixo, até o tronco cerebral, principalmente para as áreas reticulares do mesencéfalo, ponte e bulbo e dessas áreas para os nervos periféricos do sistema nervoso autônomo; (2) ascendente, em direção a muitas áreas superiores do diencéfalo e prosencéfalo, especialmente para a parte anterior do tálamo e porções límbicas do córtex cerebral; e (3) para o infundíbulo hipotalâmico, a fim de controlar, total ou parcialmente, a maioria das funções secretórias tanto da hipófise anterior quanto da posterior.
Em consequência, o hipotálamo, que representa menos do que 1% da massa encefálica, é uma das estruturas de controle mais importantes do sistema límbico. Ele controla a maioria das funções vegetativas e endócrinas do corpo, bem como muitos aspectos do comportamento emocional.
- Controle das funções vegetativas e endócrinas pelo hipotálamo:
- Regulação cardiovascular: A estimulação de diferentes áreas do hipotálamo pode causar muitos efeitos neurogênicos conhecidos do sistema cardiovascular, o que inclui alterações na pressão arterial e na frequência cardíaca. Em geral, a estimulação das regiões posterior e lateral do hipotálamo aumenta a pressão arterial e frequência cardíaca, enquanto a estimulação da área pré-óptica, em geral, tem efeitos opostos, causando diminuição tanto na frequência cardíaca como da pressão arterial. Esses efeitos são transmitidos principalmente pelos centros específicos de controle cardiovascular, nas regiões reticulares da ponte e do bulbo.
- Funções comportamentais do hipotálamo e estruturas límbicas associadas: essa estrutura constituiria o segmento central do SL, relacionando-se às diversas áreas límbicas e encefálicas. Tanto a estimulação quanto a inibição hipotalâmicas têm, freqüentemente, efeitos profundos sobre o comportamento e as emoções de animais, incluindo o Homo sapiens sapiens. 
A estimulação do hipotálamo lateral induz a sede, fome e aumenta o nível geral de atividade do animal, algumas vezes levando-o à fúria e/ou à luta. Já a estimulação do núcleo ventromedial provoca situação contrária, ou seja, sensação de saciedade, redução da ingestão alimentar e tranqüilidade21. A estimulação dos núcleos periventriculares costuma acarretar medo e reações de punição. O impulso sexual pode ser estimulado principalmente nas porções mais anteriores e posteriores do hipotálamo. Aslesões hipotalâmicas geralmente causam efeitos opostos aos causados pelos estímulos.
- Efeitos causados por lesões hipotalâmicas (Yan): As lesões no hipotálamo em geral causam os efeitos opostos aos causados pela estimulação. Por exemplo:
1. Lesões bilaterais na região lateral do hipotálamo vão diminuir a sede e fome até quase a zero, em geral, levando à inanição letal. Essas lesões causam também extrema passividade do animal com perda da maioria dos seus impulsos motivacionais.
2. Lesões bilaterais das áreas ventromediais do hipotálamo produzem efeitos que são, em sua maioria, opostos aos causados pelas lesões na região lateral do hipotálamo: beber e comer excessivamente, bem como hiperatividade e muitas vezes surtos frequentes de raiva extrema a menor provocação.
A estimulação ou lesões em outras áreas do sistema límbico, especialmente na amígdala, na área septal e nas áreas do mesencéfalo, em geral, produz efeitos semelhantes aos produzidos pelo hipotálamo.
- Funções de recompensa e punição do sistema límbico: A estimulação elétrica de certas áreas límbicas agrada ou satisfaz o animal, enquanto a estimulação elétrica de outras regiões causa terror, dor, medo, defesa, reações de escape e todos os outros elementos da punição. Os graus de estimulação desses dois sistemas opostos de resposta influenciam muito o comportamento do animal.
OBJETIVO 03 | CITAR OS TIPOS DE DISAUTONOMIA
- O que é disautonomia e sua relação com o SNA (Kayki)
- Tipos de disautonomia:
O diagnóstico precoce de Disautonomia, antes das manifestações clínicas ou na presença de sintomas leves, pode trazer implicações terapêuticas e prognósticas importantes. 
Em pacientes portadores de diabetes mellitus, o tratamento é mais efetivo com o uso de inibidores do cotransportador de sódio/ glicose. 
A detecção precoce em patologias degenerativas melhora a qualidade de vida e promove redução de quedas, fraturas e internações. 
Os testes específicos para avalição de disautonomia possibilitam o diagnóstico antes da sintomatologia incapacitante.

Continue navegando