Buscar

Exercicios resolvidos de PTC

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 18 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 18 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 18 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Exemplo 1 
�
�
Objetivos do Exemplo
Enunciado
Objetivos do Exemplo
Ilustrar o cálculo da temperatura média e da média logaritmica de troca de calor para trocadores de correntes paralelas. 
Enunciado 
Um trocador de calor de correntes paralelas tem fluido quente entrando a 120 C e saindo a 65 C, enquanto fluido frio entra a 26 C e sai a 49 C. Calcule a diferença média de temperaturas e a diferença média logaritmica de temperaturas.
SOLUÇÃO
A tabela abaixo indica as temperaturas:
	
	Fluido Quente
	Fluido Frio
	Entrada
	120 C
	26 C
	Saída
	65 C
	49 C
Desta forma, temos que Tmax = 120 - 26 = 94 C e Tmin = 65 - 49 = 16 C. De forma que:
LMTD = (94 - 16) / Ln (94 / 16) = 44,0 C
Considerando as temperaturas médias, teremos:
Tquente = (120 + 65) / 2 = 92,5 C
Tfrio = (26 + 49) / 2 = 37,5 C
Assim, a diferença média será de 92,5 - 37,5 = 55 C. O mesmo resultado poderia ser obtido pela operação:
( Tmax + Tmin ) / 2 = ( 94 + 16 ) / 2 = 55 C.
Devemos observar que o uso de diferenças médias de temperaturas apresenta resultados muito ruins se comparados com a LMTD.
Exemplo 2 
�
�
Objetivos do Exemplo
Enunciado
Objetivos do Exemplo
Ilustrar o cálculo da temperatura média e da média logaritmica de troca de calor para trocadores de correntes opostas. 
Enunciado 
Um trocador de calor de correntes paralelas tem fluido quente entrando a 120 C e saindo a 82 C, enquanto fluido frio entra a 15 C e sai a 110 C. Calcule a diferença média de temperaturas e a diferença média logaritmica de temperaturas.
SOLUÇÃO
A tabela abaixo indica as temperaturas:
	
	Fluido Quente
	Fluido Frio
	Entrada
	120 C
	15 C
	Saída
	82 C
	110 C
Desta forma, temos que Tmax = 82 - 15 = 67 C e Tmin = 120 - 110 = 10 C. De forma que:
LMTD = (67 - 10) / Ln (67 / 10) = 30 C
Considerando as temperaturas médias, teremos:
Tquente = (120 + 82) / 2 = 101 C
Tfrio = (15 + 110) / 2 = 62,5
Assim, a diferença média será de 101 - 62,5 = 38,5 C. O mesmo resultado poderia ser obtido pela operação:
( Tmax + Tmin ) / 2 = ( 67 + 10 ) / 2 = 38,5 C.
Devemos observar que o uso de diferenças médias de temperaturas novamente apresenta resultados muito ruins se comparados com a LMTD.
Exemplo 3 
�
�
Objetivos do Exemplo
Enunciado
Objetivos do Exemplo
Ilustrar o cálculo da área de um trocador de calor. 
Enunciado 
Benzeno é obtido a partir de uma coluna de fracionamento na condição de vapor saturado a 80 C. Determine a área de troca de calor necessária para condensar e sub-resfriar cerca de 3630 kg / hr de benzeno até 46 C se o fluido refrigerante for água, escoando com o fluxo de massa igual a 18 140 kg / hr, disponível à 13 C. Compare as áreas supondo escoamento em correntes opostas e correntes paralelas. Um coeficiente global de troca de calor de 1135 W / m2.K pode ser considerado. 
SOLUÇÃO
O primeiro passo será listar de forma mais organizada a lista de informações passadas pelo enunciado. Portanto:
	
	Tentrada
	Tsaída
	Fluxo de massa:
	fluido quente: benzeno
	80 C
	46 C
	3630 kg / hr
	fluido frio: água
	13 C
	?
	18140 kg / hr
Outras informações:
Teremos condensação do benzeno e algum sub-resfriamento; 
Coeficiente Global - U: 1135 W / m2.K; 
Escoamento: Correntes paralelas e opostas; 
calor trocado: ? 
LMTD: ? 
Área: ? 
Como teremos a condensação do benzeno, precisaremos saber a entalpia de vaporização do mesmo. Uma consulta às tabelas de propriedades termodinâmicas indica o valor de hfg = 394,5 kJ / kg. Precisaremos também do calor específico para o benzeno (suposto constante nesta faixa de temperaturas) = 1758,5 J / kg. Naturalmente, precisaremos também das propriedades da água (suposta líquido sub-resfriado). Observando ainda a condensação, precisaremos determinar as áreas do condensador e da região do sub-resfriamento. 
Trocador de Correntes Paralelas
Nesta situação, a água de resfriamento encontra inicialmente a região de condensação. Ao terminar a condensação, a água, mais aquecida, troca calor na região do sub-resfriamento do benzeno. O calor liberado na região de condensação vale:
qcondens = 3630 x 394,5 kJ / hr = 398 kW
Precisamos saber qual é a temperatura da água na saída do condensador, pois isto irá determinar as condições de entrada na seção de sub-resfriamento. Um balanço de energia nos indicará:
q = 398 * 1000 [W = J / s] = 18140 [ kg / hr ] x [ 1 hr / 3600 s ] x 4186,9 [ J / kg C ] x (Tsaída - Tentrada) 
Após os cálculos, tomando cuidado com as unidades, obtemos que à saída do condensador, a água estará à 31,9 C. Assim, estamos prontos para calcular a LMTD desta região. Nossos dados:
	
	Entrada
	Saída
	Benzeno
	80 C
	80 C
	Água
	13 C
	31,9 C
Assim, LMTD segue direto: (80 - 13 ) - (80 - 31,9) = 67 - 48,1 = 18,9 C e Ln [ 67 / 48,1 ] = Ln [ 1,39 ] = 0,329. Com isto, LMTD = 18,9 / 0,329 = 57,4 C. Pela definição do calor trocado, segue finalmente que:
Área [m2 = 398 000 [ W ] / 1135 [ W / m2 K ] x ( 57,4 C ) = 6,1 m2
Na região de sub-resfriamento, o benzeno entrará a 80 C e sairá a 46 C, especificado pelo projeto. Portanto:
qsub = 3630 x 1758,5 x (80 - 46) = 60,3 kW
	
	Entrada
	Saída
	Benzeno
	80 C
	46 C
	Água
	31,9 C
	?
Como podemos ver, o primeiro passo é a determinação da temperatura de saída da água desta seção. Pelo balanço de energia, segue:
60,3 x 1000 [ W ] = 18 140 / 3600 [ kg /s ] x 4186,9 [ J / kg . K ] x (Tsaída - 31,9)
Com isto segue imediatamente que Tsaída = 34,7 C. Podemos atualizar a nossa tabela de dados para esta região.
	
	Entrada
	Saída
	Benzeno
	80 C
	46 C
	Água
	31,9 C
	34,7 C
Assim, LMTD segue novamente direto: (80 - 31,9 ) - (46 - 34,7) = 48,1 - 11,3 = 36,8 C e Ln [ 48,1 / 11,3 ] = Ln [ 4,26 ] = 1,448. Com isto, LMTD = 36,8 / 1,45 = 25,4 C. Pela definição do calor trocado, segue finalmente que:
Área [m2 = 60 300 [ W ] / ( 1135 [ W / m2 K ] x 25,4 [C] ) = 2,1 m2
Nesta situação, a área total vale 6,1 (condensador) + 2,1 (sub-resfriamento) = 8,2 m2. 
Trocador de Correntes Opostas
Neste caso, a água de resfriamento "encontra" primeiro a região do sub-resfriamento do benzeno, onde tem um primeiro aquecimento. Só após isto é que a água entra na região de condensação. O calor liberado na região de sub-resfriamento vale: 
qsub = 3630 x 1758,5 x (80 - 46) = 60,3 kW
determinado pelas condições de entrada e saída do benzeno desta seção. É o mesmo valor pois as condições limites do problema não foram alteradas. Precisamos saber qual é a temperatura da água na saída desta região, pois isto irá determinar as condições de entrada na seção de condensação. Um balanço de energia nos indicará:
q = 60,3 * 1000 [W = J / s] = 18140 [ kg / hr ] x [ 1 hr / 3600 s ] x 4186,9 [ J / kg C ] x (Tsaída - Tentrada) 
Aqui, Tentrada = 13 C. Após os cálculos, tomando cuidado com as unidades, obtemos que à saída da região do sub-resfriamento, a água estará à 15,9 C. Assim, estamos prontos para calcular a LMTD desta região. Nossos dados:
	
	Entrada
	Saída
	Benzeno
	80 C
	46 C
	Água
	13 C
	15,9 C
Assim, LMTD segue direto: (80 - 13 ) - (46 - 15,9) = 67 - 30,1 = 36,9 C e Ln [ 67 / 30,1 ] = Ln [ 2,226 ] = 0,800. Com isto, LMTD = 36,9 / 0,800 = 46,1 C. Pela definição do calor trocado, segue finalmente que:
Área [m2 = 60 300 [ W ] / (1135 [ W / m2 K ] x 46,1 [C]) = 1,1 m2
Na região de condensação, o benzeno estará sempre na mesma temperatura e a água irá se aquecer. São nossos dados:
	
	Entrada
	Saída
	Benzeno
	80 C
	80 C
	Água
	15,9 C
	?
Como podemos ver, o primeiro passo é a determinação da temperatura de saída da água desta seção. Pelo balanço de energia, segue:
398 x 1000 [ W ] = 18 140 / 3600 [ kg /s ] x 4186,9 [ J / kg . K ] x (Tsaída - 15,9 C)
Com isto segue imediatamente que Tsaída = 34,8 C. Podemos atualizar a nossa tabela de dados para esta região.
	
	Entrada
	Saída
	Benzeno
	80 C
	80 C
	Água
	15,9 C
	34,8 C
Assim, LMTD segue novamente direto: (80 - 15,9 ) - (80 - 34,8) = 64,1 - 45,2 = 18,9 C e Ln [ 64,1 / 45,2 ] = Ln [ 1,418 ] = 0,349. Com isto, LMTD = 18,9 / 0,349 = 54,1 C. Pela definição do calor trocado, segue finalmente que:
Área [m2= 398 000 [ W ] / 1135 [ W / m2 K ] x ( 54,1 C ) = 6,5 m2
Nesta situação, a área total vale 6,5 (condensador) + 1,1 (sub-resfriamento) = 7,6 m2.
Observação final: Note que a área necessária para efetivar a troca de calor nas condições especificadas de troca é menor para o caso do trocador de correntes opostas. Embora a diferença seja pequena, cerca de 8%, isto é certamente um ganho interessante. 
Volta ao texto de trocadores de calor. 
Exemplo 4 
�
�
Objetivos do Exemplo
Enunciado
Objetivos do Exemplo
Cálculo do Fator Corretivo para a Diferença Média Logaritmica de Temperaturas 
Enunciado 
(Exemplo 11.2, do livro texto, página 596). Um trocador de calor, carcaça e tubos, deve ser projetado para aquecer 2,5 kg/s de água de 15 a 85 C. O aquecimento deve ser feito utilizando óleo de motor, que está disponível a 160 C, escoando ao longo da carcaça do trocador. O óleo é capaz de prover um coeficiente médio de troca de calor por convecção de hext = 400 W / m2.K no lado exterior dos tubos. Imagina-se que 10 tubos conduzam água através da carcaça. Cada tubo, de paredes finas, tem diâmetro igual a 25 mm, e passam 8 vezes através da carcaça. Se o óleo deixar o trocador a 100 C, qual é a sua vazão? Qual deve ser o comprimento dos tubos para que o aquecimento se verifique? 
SOLUÇÃO
O primeiro passo será listar de forma mais organizada a lista de informações passadas pelo enunciado. Portanto:
	
	Tentrada
	Tsaída
	Fluxo de massa:
	fluido quente: óleo
	160 C
	100 C
	?
	fluido frio: água
	15 C
	85 C
	2,5 kg / hr
Outras informações:
ho: 400 W / m2; 
Carcaça e Tubos; 
10 Tubos, D = 25 mm, 8 passes; 
1 passe na carcaça; 
calor trocado: ? 
LMTD: ? 
Área: ? 
Propriedades Termodinâmicas:
óleo: Cp = 2350 J / kg.K, determinado a Tb = (100 + 160)/2 = 130 C;
água: Cp = 4181 J / kg.K, = 548 x 10-6 N.s/m2; k = 0,643 W / m.K e Pr = 3,56 (propriedades determinadas a Tb = 50 C;
Precisamos inicialmente determinar o calor trocado. Por aplicação direta do Balanço de Energia com as hipóteses comentadas no texto, podemos escrever: 
q = Cf (Tf,e - Tf,s) = 2,5 [ kg / s ] x 4186,9 [ J / kg C ] x (85 - 15) = 7,32 x 105 W
Por outro lado, o mesmo balanço de energia indica que:
q = Cq (Tq,e - Tq,s) = Cf (Tf,s - Tf,e) 
Assim, podemos determinar o fluxo de massa de óleo: 7,32 x 10 5 [W] / 2350 [J / kg.K] x (160 - 100) [C] = 5,19 kg/s.
Comprimento necessário: q = U.A.F.LMTD. Em primeiro lugar, vamos determinar U. Como é dito que os tubos têm paredes finas, teremos duas únicas resistências térmicas equivalentes: uma devida à convecção interna e a outra à convecção externa. Como hext é dado, precisaremos apenas determinar hint. Para isto, precisaremos inicialmente conhecer o número de Reynolds:
Re = V.D / = 4 mágua / . D. 
O fluxo de massa de água foi dado como sendo 2,5 kg / s. Entretanto, o valor que nos interessa aqui é o fluxo de massa que passa em um tubo e não dos 10 indicados. Assim, nosso valor aqui é 0,25 kg/s. Calculando, obtemos que Re = 23 234, o que é regime turbulento. Determinaremos o número de Nusselt e daí o coeficiente de troca de calor por convecção a partir da correlação de Dittus-Boelter:
Após as contas, obtemos que Nu = 119, resultando que hint = 3061 W / m2K. Finalmente, obtemos que U = 354 W / m2.K
A determinação do fator F é feita através da figura do caso 1 (um passe na carcaça e 8 nos tubos). Para isto, vamos precisar determinar os valores de R e de P:
Valor de R = ( 160 - 100 ) / ( 85 - 15 ) = 0,86
Valor de P = ( 85 - 15 ) / (160 - 15 ) = 0,48
No gráfico, tiramos que F = 0,87 (aproximadamente). A determinação do LMTD segue diretamente, sem grandes problemas e vale 79,9 C. Assim, supondo 10 tubos:
L = q / U (N.. D) .F. LMTD = 37,9 metros.
Observações finais:
Nossa hipótese que U seja constante ao longo do tubo deve ser verificada. No caso, com L = 37,9, L / D = 1516, muito maior que 10, a relação necessária pela equação de Dittus-Boelter; 
Como temos 8 passes, o comprimento da carcaça vale 37,9 / 8 = 4,7 m, aproximadamente; 
Volta ao texto de trocadores de calor. 
Exemplo 5 
�
�
Objetivos do Exemplo
Enunciado
Objetivos do Exemplo
Comparar o desempenho de Trocadores de Carcaça e Tubos de um e de dois passes na carcaça
Enunciado 
Água quente a 116 C entra em um trocador e sai a 49 C. Ela é usada para aquecer água escoando a 2,5 kg/s de 21C até 55C, utilizando um regenerador de carcaça e tubos com um passe na carcaça e dois passes no tubo. A área superficial externa dos tubos é de Ao = 9,5 m2. Pede-se: 
determinar a diferença média logarítmica de temperaturas e o coeficiente global de troca de calor;
determinar a diferença média logarítmica de temperaturas para um regenerador de dois passes na carcaça e quatro passes nos tubos;
SOLUÇÃO
O primeiro passo será listar de forma mais organizada a lista de informações passadas pelo enunciado. Portanto:
	
	Tentrada
	Tsaída
	Fluxo de massa:
	fluido quente: água
	116 C
	49 C
	?
	fluido frio: água
	21 C
	55 C
	2,5 kg / s
Outras informações:
Coeficiente Global - U: ? / m2.K - desconhecido; 
Trocador de carcaça e tubos, N passes na carcaça e 2N passes nos tubos; 
Número de tubos = ? 
calor trocado: ? 
LMTD: ? 
Área de troca: 9,5 m2 externa 
Pelos dados do problema, podemos calcular diretamente o calor trocado utilizando os dados da água fria:
q = Cf(Tf,s - Tf,e) = 2,5 x 4186,9 x (55 - 21) = 355886,5 W
Com isto, poderemos determinar o fluxo de massa da água quente:
Cq = 355886,5 / [4186,9 x (116 - 49)] = 1,27 kg / s
Pelo método da diferença média logaritmica, temos que:
q = Ui Ai F (LMTD) = Uo Ao F (LMTD)
onde os índices "i" e "o" dizem respeito às áreas interna e externa, respectivamente. Como vimos na teoria, o método LMTD é utilizado com uma correção, o fator "F" na fórmula acima. A obtenção de "F" depende de dois parâmetros:
Pelos dados do problema, temos que:
R = 1,97;
P = 0,358;
Assim, consultando o livro texto, páginas 426 e 427, obtemos: F = 0,75 para o regenerador de um passe na carcaça e F = 0,95 para o regenerador de dois passes na carcaça. Com isto, obtemos:
Regenerador com 1 passe na carcaça: F x LMTD = 0,75 x 42,4 = 31,8 C;
Regenerador com 2 passes na carcaça: F x LMTD = 0,95 x 42,4 = 40,3 C;
Observando os dois resultados, podemos concluir que o trocador de 2 passes é mais eficiente pois a diferença de temperatura média é mais elevada. Finalmente obtemos:
Uo = 1178,6 W / m2.K
Uo = 930,5 W / m2.K
Volta ao texto de trocadores de calor. 
Exemplo 6 
�
�
Objetivos do Exemplo
Enunciado
Objetivos do Exemplo
Ilustrar o uso da efetividade no projeto de trocadores de calor 
Enunciado 
O trocador de calor descrito no exemplo 1 é utilizado para a recuperação de calor residual de um fluido quente. Usando o método da efetividadade-NTU, estime o tamanho (isto é, a área) do trocador capaz de aquecer 22700 kg / hr de água nas temperaturas dadas se o trocador de correntes paralelas tiver um coeficiente global de 200 W / m2.
SOLUÇÃO
O primeiro passo será listar de forma mais organizada a lista de informações passadas pelo enunciado. Portanto:
	
	Tentrada
	Tsaída
	Fluxo de massa:
	fluido quente: água
	120 C
	65 C
	?
	fluido frio: água
	26 C
	49 C
	22700 kg / hr
Outras informações:
Coeficiente Global - U: 200 W / m2.K; 
Escoamento: Correntes paralelas; 
calor trocado: ? 
LMTD: ? 
Área: ? 
NTU: ? 
: ? 
Precisamos inicialmente determinar o calor trocado. Por aplicação direta do Balanço de Energia com as hipóteses comentadas no texto, podemos escrever: 
q = Cf (Tf,e - Tf,s) = 22700 [ kg / h ] x [ 1 h / 3600 s ] x 4186,9 [ J / kg C ] x (49 - 26) = 607 217 W
Por outro lado, o mesmo balanço de energia indica que:
q = Cq (Tq,e - Tq,s) = Cf (Tf,s - Tf,e) 
Como Cf = 22700 x 4186,9 / 3600 = 26400 J / s C, podemos determinar Cq = 607217 / (120-650 = 11040 J / s C (o que nos dá um fluxo de massa da corrente quente igual à 9493 kg/hr). Claramente, a situação é de fluido quente mínimo. Com isto, podemos determinar Z. Observando que Cq > Cf, Z = 26400/ 63132,2 = 0,418. Para a determinação das unidades de transferência, precisamos calcular a efetividade. Como vimos no texto:
mfq = (Tq,e - Tq,s) / (Tq,e - Tf,e) = (120 - 65) / (120 - 26) = 0,585 ou 58,5%
Usando a tabela do livro ou o aplicativo do cálculo do número de NTU's, tiramos que NTU = 1.25. Como NTU = U.A / Cmin, segue que A = NTU.Cmin / U, o que nos dá 69 m2. Podemos checar este número avaliando a área via LMTD:
q = U.A.LMTD = 607 217 / ( 200 x 44) = 69 m2
onde o valor de 44 C foi retirado do exemplo 1. 
Volta ao texto de trocadores de calor. 
Exemplo 7 
�
�
Objetivos do Exemplo
Enunciado
Objetivos do Exemplo
Ilustrar o uso da efetividade no projeto de trocadores de calor 
Enunciado 
(Exemplo 7.4, do livro do Welty, página 400). Um trocador de calor, carcaça e tubos, com um passe na carcaça e quatro passes nos tubos tem 4,8 m2 de área de troca. O coeficiente global de troca de calor desta unidade é estimado em 312 W / m2C. O trocador foi projetado para uso com água e benzeno mas é pretende-se usá-lo agora para resfriar uma corrente de óleo (Cp = 2219 J / kg C) a 122 C, escoando a 5443 kg / h, com água de resfriamento, disponível a 12,8 C e com um fluxo de massa igual a 2268 kg /h. Nesta nova aplicação, determine as temperaturas de saída das duas correntes de fluido.
SOLUÇÃO
O primeiro passo será listar de forma mais organizada a lista de informações passadas pelo enunciado. Portanto:
	
	cp [J/kg.K]
	Tentrada
	Tsaída
	Fluxo de massa:
	fluido quente: óleo
	2219
	122 C
	?
	5443 kg / h
	fluido frio: água
	4186,9
	12,8 C
	?
	2268 kg / hr
Outras informações:
Coeficiente Global - U: 312 W / m2.K; 
Trocador de carcaça e tubos, 1 passe na carcaça e 4 passes nos tubos; 
Número de tubos = ? 
calor trocado: ? 
LMTD: ? 
Área de troca: 4,8 m2 
NTU: ? 
: ? 
Temos poucas informações diretas neste problema que devem ser complementadas com as equações. Por exemplo: 
Calor Trocado (água): q = Cfrio (Tf,s - Tf,e) = 2268 x ( 1 / 3600 ) x 4186,9 x (Tf,s - 12,8)
Calor Trocado (óleo): q = Cquente (Tq,e - Tq,s) = 5443 x ( 1 / 3600 ) x 2219 x (122 - Tq,s)
Calor Trocado: q = U.A.F.LMTD = 312 x 4,8 x LMTD, onde LMTD depende das duas temperaturas de saída, neste momento, desconhecidas. 
Calor Trocado: q = . Cmin. (Tq,e - Tf,e) = . (2268 x 4186,9) / 3600. (122 - 12,8) = x 288 kW
A obtenção das incógnitas, Tq,s e Tf,s é "simples": basta resolver um conjunto de 3 equações, escolhidas entre as 4. Se escolhermos as três primeiras, teremos um problema iterativo, o que demandará um grande esforço. Entretanto, se trabalharmos com a efetividade, o grau de dificuldade diminui consideravelmente. Vejamos isto.
Pela análise do problema, podemos concluir:
Cmin = Cágua = 2268 x 4186,9 / 3600 = 2637 W / K; 
Cmax = Cóleo = 5443 x 2219 / 3600 = 3355 W / K; 
Z = 2637 / 3355 = 0,786; 
NTU = U. A / Cmin = 312 x 4,8 / 2637 = 0,568; 
Consultando um gráfico ou o aplicativo do cálculo da Efetividade, obtemos que = 0,4 aproximadamente. Com isto, podemos determinar os outros dados:
Calor trocado: x 288 kW = 0,4 x 288 000 = 115200 W ou 115,2 kW; 
Tf,s: se q = 1398 x (Tf,s - 12,8), temos que Tf,s = 95,2 C; 
Tq,s: se q = 5443 x ( 1 / 3600 ) x 4186,9 x (122 - Tq,s), temos que Tq,s = 103,8 C; 
Como deve ser observado, este alternativa é muito mais fácil. Ficará para o interessado, o cálculo da LMTD e do fator corretivo, F, para a validação da equação não-utilizada.
 
Exemplo 8 
�
�
Objetivos do Exemplo
Enunciado
Objetivos do Exemplo
Comparar o desempenho de Trocadores de Tubo Duplo com o de Carcaça e Tubos 
Enunciado 
(Exemplo 7.5, do livro do Welty, página 400). Água está disponível para ser usada a 15.5 C e fluxo de massa igual a 67,5 kg/min. Sua temperatura deve chegar à 60 C trocando calor com óleo (Cp = 1884 J /kg.K), que entra no trocador a 115 C e sai a 26,7 C. O coeficiente global de troca de calor por convecção vale 280 W / m2. Determine:
a área de troca para um trocador de correntes opostas; 
a área de troca para um trocador de carcaça (1 passe) e tubos (2 passes); 
a área de troca para um trocador de carcaça (2 passes) e tubos (4 passes); 
SOLUÇÃO
O primeiro passo será listar de forma mais organizada a lista de informações passadas pelo enunciado. Portanto:
	
	Tentrada
	Tsaída
	Fluxo de massa:
	fluido quente: óleo
	115 C
	26,7 C
	?
	fluido frio: água
	15,5 C
	60 C
	67,5 kg / min
Outras informações:
Coeficiente Global - U: 280 W / m2.K; 
Calor específico do óleo = Cp = 1884 J /kg.K; 
Trocador de carcaça e tubos, N passes na carcaça e 2N passes nos tubos; 
Número de tubos = ? 
calor trocado: ? 
LMTD: ? 
Área de troca: ? 
NTU: ? 
: ? 
Pelos dados do problema, podemos calcular diretamente o calor trocado utilizando os dados da água:
q = Cf(Tf,s - Tf,e) = (67,5 / 60) x 4186,9 x (60 - 15,5) = 209606,7 W
Com isto, poderemos determinar o fluxo de massa de óleo:
Cq = 209606,7 / (115 - 26,7) = 2373,8 J / s C
Portanto, o fluxo de massa vale 2373,8 / 1884 = 1,26 kg / s = 75,6 kg / min
Comparando a capacidade térmica da água (67,5 x 4186,9 = 282615,7 J / min C) com a do óleo (75,6 x 1884 = 142430,4 J / min C), concluímos que a situação é tal que o fluido de mínima capacidade, Cmin, é o óleo. Com isto, podemos determinar o número de unidades de transferência:
NTU = U. A / Cmin = 280 . A . 60 / 142430,4
Entretanto, a efetividade pode ser determinada, pois: 
= qefetivo / qmax = 3493,4 / Cmin x (Tq,e - Tf,e) = 3493,4 / [39,56 x (115 - 15,5)] = 0,888 ou 88,8%
Utilizando um dos aplicativos para a situação tubo-duplo, obtemos que o número de unidades é 3,22 para o trocador de correntes opostas. Você deve observar que a resposta para o trocador de correntes paralelas é algo como NaN. Isto indica apenas que não se consegue atingir esta efetividade, nestas condições, com um trocador de calor de correntes paralelas. 
Continuando, vemos que a área é determinada diretamente: NTU = 3,22 = 280 . A . 60 / 142430,4 e daí tiramos que a área de troca nestas condições é de 27,3 m2. 
Trocador de Carcaça e Tubos com N passes na carcaça e 2N nos tubos: 
Os dados são basicamente os mesmos, isto é:
Cmin = 142430,4 J / min C; 
Cmax = 282615,7 J / min C; 
Z = 0,504 
Eps = 88.8 %; 
N = 1; 
Utilizando um dos aplicativos para a situação carcaça e tubos, obtemos que não há resposta do aplicativo, implicando que nenhum trocador de calor deste tipo conseguirá atender às especificações. Entretanto, se aumentarmos o número de passes, utilizando 2 passes por exemplo, obtemos a resposta NTU's = 2,282 e com isto, podemos determinar a nova área como sendo 19,3 m2 por passe da carcaça. A tabela abaixo indica outros valores:
	Número de Passes
	NTU's
	Área [m2] por passe
	Área Total [m2]
	1
	inexistente
	---
	---
	2
	2,282
	19,3
	38,7
	3
	1,201
	10,2
	30,5
	4
	0,853
	7,2
	28,9
Como pode ser visto, o aumento no número de passes da carcaça diminui a área de troca necessária. Que problema isto acarreta?
Volta ao texto de trocadores de calor.

Outros materiais