Buscar

Princípios de transferência de calor tradução 7a ed norte americana

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 22 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 22 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 22 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Frank Kreith,
Raj M. Manglik
e Mark S. Bohn
Para suas soluções de curso e aprendizado,
visite www.cengage.com.br
Outras Obras
Ensino de Física
Coleção Ideias em Ação
Anna Maria Pessoa de Carvalho, Elio 
Carlos Ricardo, Lúcia Helena Sasseron, 
Maria Lúcia Vital dos Santos Abib e 
Maurício Pietrocolo
Princípios de Física – Volume 1 
Mecânica clássica e relatividade
Tradução da 5ª edição norte-americana
Raymond A. Serway e John W. Jewett, Jr.
Princípios de Física – Volume 2 
Oscilações, ondas e termodinâmica 
Tradução da 5ª edição norte-americana
Raymond A. Serway e John W. Jewett, Jr.
Princípios de Física – Volume 3 
Eletromagnetismo
Tradução da 5ª edição norte-americana
Raymond A. Serway e John W. Jewett, Jr.
Princípios de Física – Volume 4 
Óptica e física moderna
Tradução da 5ª edição norte-americana
Raymond A. Serway e John W. Jewett, Jr.
Frank Kreith, Raj M
. M
anglik e M
ark S. Bohn
P
R
IN
CÍP
IO
S de TR
A
N
SFER
ÊN
CIA
 de CA
LO
R
m Princípios de Transferência de Calor – Tradução da 7ª edição norte-americana, 
os alunos encontram soluções de problemas práticos de engenharia e de 
utilização de computadores para análise numérica, além de exemplos e estudos 
de casos industriais ilustrativos e criteriosos, redutíveis à análise de ordem de magnitude, 
e problemas aplicados à prática, enfatizando assuntos multidisciplinares no moderno 
controle térmico.
O delineamento básico de como ensinar transferência de calor foi estabelecido em sua 
primeira edição, publicada há 60 anos, e agora é universalmente aceito pela maioria dos 
autores de livros sobre o tema. Assim, a organização deste livro permaneceu a mesma 
em todos esses anos, mas dados experimentais mais recentes, e, em especial, com o 
advento da tecnologia computacional, demandaram reorganização, adições e integração 
de métodos numéricos e computacionais de solução no livro.
Nesta nova edição, a abordagem com o MathCAD foi substituída pelo MATLAB no 
capítulo sobre análises numéricas; também foram substituídos os problemas ilustrativos 
nas aplicações do mundo real de transferência de calor em alguns capítulos. Além disso, 
os autores apresentam alguns problemas adicionais que lidam diretamente com tópicos 
de interesse atual, como programas espaciais e energia renovável.
APLICAÇÕES: 
Destina-se aos cursos de Engenharia, especialmente Engenharia Química, Mecânica e de 
Materiais, na disciplina de (ou sobre) transferência de calor. Também pode ser utilizado 
nos cursos de Física e em disciplinas que tratem do tema em questão.
Trilha é uma solução digital, com plataforma de acesso em português, que disponibiliza 
ferramentas multimídia para uma nova estratégia de ensino e aprendizagem.
PRINCÍPIOS de TRANSFERÊNCIA de CALOR
E
TRADUÇÃO DA 7ª EDIÇÃO NORTE-AMERICANA
Frank Kreith, Raj M. Manglik e Mark S. Bohn
ISBN-10: 85-221-1803-5
ISBN-13: 978-85-221-1803-8
9 7 8 8 5 2 2 1 1 8 0 3 8
PRINCÍPIOS 
deTRANSFERÊNCIA de
CALOR
TRADUÇÃO DA 7ª EDIÇÃO
NORTE-AMERICANA
capa.calor5_33.mmfinal2.pdf 1 31/10/14 15:49
Princípios de 
TRANSFERÊNCIA DE CALOR
Tradução da 7a edição norte-americana
Frank Kreith
Professor Emérito, Universidade de Colorado em Boulder, Boulder, Colorado
Raj M. Manglik
Professor, Universidade de Cincinnati, Cincinnati, Ohio
Mark S. Bohn
Ex-Vice-Presidente, Engineering Rentech, Inc., Denver, Colorado
Edição SI preparada por:
ShaligramTiwari
Indian Institute of Technology Madras
Revisão técnica:
Keli Fabiana Seidel
Licenciada em Física pela Universidade do Estado de Santa Catarina (UDESC) e doutora em Física pela 
Universidade Federal do Paraná (UFPR), professora adjunta – Universidade Tecnológica Federal do Paraná
(UTFPR) – Campus Curitiba.
Sergio Roberto Lopes
Licenciado em Física pela Universidade Estadual de Maringá (UEM) e doutor em Ciência Espacial pelo Instituto
Nacional de Pesquisas Espaciais (INPE), professor associado IV – Universidade Federal do Paraná (UFPR) –
Campus Curitiba.
Tradução: 
Noveritis do Brasil
Austrália • Brasil • Japão • Coreia • México • Cingapura • Espanha • Reino Unido • Estados Unidos
00Fisica:Layout 1 11/14/14 6:38 AM Page III
PREFÁCIO PARA A EDIÇÃO SI
Esta edição de Princípios de transferência de calor, Sétima edição, foi adaptada para incorporar o Sistema Interna-
cional de Unidades (Le Système International d’Unitésou SI) em todo o livro.
Le Système International d’Unités
O Sistema Habitual dos Estados Unidos (United States Customary System - USCS) de unidades usa as unidades
FPS (pé-libra-segundo) (também chamadas de unidades inglesas ou unidades imperiais). As unidades SI são pri-
mariamente as do sistema MKS (metro-quilograma-segundo). Entretanto, as unidades CGS (centímetro-grama-
segundo), muitas vezes, são aceitas como unidades SI, especialmente em livros didáticos.
Usando as Unidades SI neste livro
Neste livro, usamos tanto unidades MKS quanto CGS. As unidades USCS ou FPS usadas na edição americana do
livro foram convertidas para unidades SI no livro e nos problemas. Entretanto, para dados extraídos de manuais, nor-
mas governamentais e manuais de produtos, não só é extremamente difícil converter todos os valores para SI, como
também constitui uma infração sobre a propriedade intelectual da fonte. Portanto, alguns dados nas figuras, tabe-
las e referências permanecem nas unidades FPS. Para leitores não familiarizados com a relação entre os sistemas
FPS e SI, é fornecida uma tabela de conversão dentro da capa.
Para resolver problemas que exigem o uso de dados extraídos, os valores podem ser convertidos de unidades FPS
para unidades SI antes de serem usados em um cálculo. Para obter quantidades padronizadas e dados de fabrican-
tes em unidades SI, os leitores podem entrar em contato com as agências ou autoridades governamentais adequa-
das em seus países/regiões.
Recursos para instrutores
O Manual de Soluções dos Instrutores em unidades SI está disponível com seu representante de vendas ou on-line
por meio do web site do livro em <www.login.cengage.com.>.
O feedback dos leitores sobre essa Edição SI será altamente apreciado e nos ajudará a melhorar edições subse-
quentes.
Os Editores
00Fisica:Layout 1 11/14/14 6:38 AM Page VII
PREFÁCIO
Quando um livro didático que foi usado por mais de um milhão de alunos em todo o mundo chega em sua sétima
edição, é natural perguntar “O que levou os autores a revisarem esse livro?”. O delineamento básico de como en-
sinar o assunto de transferência de calor, que foi primeiramente estabelecido pelo autor sênior em sua primeira edi-
ção, publicada há 60 anos, agora é universalmente aceito por todos os autores subsequentes de livros sobre esse as-
sunto. Assim, a organização deste livro permaneceu essencialmente a mesma durante os anos, mas dados
experimentais mais recentes, e especialmente o advento da tecnologia computacional, demandaram reorganização,
adições e integração de métodos numéricos e computacionais de solução.
A necessidade de uma nova edição foi primariamente exigida pelos seguintes fatores:
Quando um aluno começa a ler um capítulo em um livro que aborda temas que são novos para ele, é necessá-
rio delinear os tipos de problemas que serão importantes. Portanto, a cada início de capítulo, apresentamos um re-
sumo dos principais pontos que serão abordados para que o aluno possa reconhecê-los quando ao longo da leitura.
Esperamos que essa técnica pedagógica torne mais fácil o aprendizado de um tópico tão específico quanto a trans-
ferência de calor. 
Um aspecto importante de aprender ciência da engenharia é conectá-la a aplicações práticas e o modelamento
adequado de sistemas ou dispositivos associados. Novas aplicações, exemplos de modelos ilustrativos e, mais atual-
mente, as correlações preditivas de ponta foram adicionadas em vários capítulos nesta edição. 
A sexta edição usou MathCAD como o método computacional para resolver problemas reais de engenharia. Du-
rante os dez anos desde a publicação da sexta edição, o ensino e o uso do MathCAD foi substituídopelo MATLAB.
Assim, aquela abordagem foi substituída pelo MATLAB no capítulo sobre análises numéricas, além dos problemas
ilustrativos nas aplicações do mundo real de transferência de calor em outros capítulos. 
Novamente, de uma perspectiva pedagógica de avaliar o desempenho do aprendizado do aluno, foi considerado
importante preparar problemas gerais que testam sua habilidade em absorver os principais conceitos do capítulo.
Fornecemos, portanto, um conjunto de Perguntas de Revisão de Conceitos que solicita que o aluno demonstre sua
habilidade de entender os novos conceitos relacionados a uma área específica de transferência de calor. Essas per-
guntas de revisão, assim como suas soluções, estão disponíveis no web site do livro no Site Companheiro do Aluno,
em <www.cengagebrain.com.>. Além disso, embora na sexta edição houvesse muitos problemas para que os alunos
resolvessem em casa, apresentamos outros que lidam diretamente com tópicos de interesse atual, como programas es-
paciais e energia renovável.
O livro foi projetado para ser um curso de um semestre sobre transferência de calor em nível júnior ou sênior.
Entretanto, há alguma flexibilidade. As seções marcadas com asterisco podem ser omitidas sem quebrar a conti-
nuidade da apresentação. Caso todas as seções marcadas com um asterisco forem omitidas, o material no livro pode
ser coberto em um único bimestre. Para um curso de um semestre, o instrutor pode selecionar de cinco a seis des-
sas seções e, assim, enfatizar suas próprias áreas de interesse. 
O autor sênior expressa seu apreço ao Professor Raj M. Manglik, que auxiliou na tarefa de atualizar a sexta edi-
ção para que ela estivesse aos moldes dos alunos do século XXI. Por sua vez, RajManglik é profundamente grato
pela oportunidade de participar da autoria desta edição revisada, que fornece uma experiência de aprendizagem mo-
tivadora sobre a transferência de calor aos alunos do mundo todo. Embora o Dr. Mark Bohn tenha decidido não par-
ticipar da sétima edição, desejamos expressar nosso apreço por sua contribuição prévia. Além disso, os autores agra-
decem aos revisores da sexta edição, que deram valiosas sugestões para a atualização levando à nova edição do livro:
B. Rabi Baliga, McGillUniversity; F.C. Lai, Universityof Oklahoma; S. Mostafa Ghiaasiaan, Georgia Tech; Michael
Pate, Iowa State University; and Forman A. Williams, University of California, San Diego. Os autores também es-
tendem seus agradecimentos a Hilda Gowans, a Editora de Desenvolvimento Sênior para Engenharia na Cengage
Learning, que apoiou e encorajou o preparo dessa nova edição. Particularmente, Frank Kreith agradece a sua as-
sistente, Bev Weiler, que apoiou seu trabalho de formas tangíveis e intangíveis, e a sua esposa, Marion Kreith, cuja
paciência pelo tempo despendido em escrever livros tem sido de uma ajuda incalculável. Raj Manglik agradece a
seus alunos de graduação Prashant Patel, Rohit Gupta e Deepak S. Kalaikadal pelas soluções computacionais e al-
goritmos no livro. Também gostaria de expressar sua gratidão a sua esposa, Vandana Manglik, por sua paciência e
encorajamento durante as longas horas necessárias para esta empreitada, e a seus filhos, Aditi e Animaesh, pela afei-
ção e disposição em abrir mão de um pouco do tempo que compartilhariam.
00Fisica:Layout 1 11/14/14 6:38 AM Page VIII
Sumário
Capítulo 1 Modos básicos de transferência de calor 2
1.1 Relação de transferência de calor e termodinâmica 2
1.2 Dimensões e unidades 5
1.3 Condução de calor 6
1.4 Convecção 13
1.5 Radiação 16
1.6 Sistemas combinados de transferência de calor 18
1.7 Isolamento térmico 36
1.8 Transferência de calor e as leis de conservação de energia 41
Referências 47
Problemas 47
Problemas de projeto 56
Capítulo 2 Condução de calor 58
2.1 Introdução 59
2.2 A equação da condução 59
2.3 Condução de calor estável em geometrias simples 65
2.4 Superfícies estendidas 79
2.5* Condução estacionária multidimensional 88
2.6 Condução de calor transiente ou instável 97
2.7* Gráficos para a condução transiente de calor 111
2.8 Considerações finais 126
Referências 127
Problemas 128
Problemas de projeto 139
Capítulo 3 Análise numérica da condução de calor 143
3.1 Introdução 144
3.2 Condução unidimensional em regime estável 145
3.3 Condução unidimensional em regime instável 154
3.4* Condução bidimensional em regime estável e instável 165
3.5* Coordenadas cilíndricas 182
3.6* Limites irregulares 184
3.7 Considerações finais 187
Referências 188
Problemas 188
Problemas de projeto 194
Capítulo 4 Análise da transferência de calor por convecção 196
4.1 Introdução 197
4.2 Transferência de calor por convecção 197
4.3 Fundamentos da camada-limite 199
4.4 Equações de conservação de massa, momento e energia para fluxo laminar 
em uma placa plana 200
4.5 Equações adimensionais da camada-limite e parâmetros de similaridade 204
4.6 Cálculo de coeficientes de transferência de calor por convecção 207
4.7 Análise dimensional 208
4.8* Solução analítica para o escoamento laminar da camada-limite 
sobre uma placa plana 214
X Princípios de transferência de calor
00Fisica:Layout 1 11/14/14 6:38 AM Page X
4.9* Análise aproximada da camada-limite por integração 222
4.10* Analogia entre transferência de momento e de calor em fluxo turbulento sobre 
uma superfície plana 227
4.11 Analogia de Reynolds para o escoamento turbulento sobre superfícies planas 232
4.12 Camada-limite mista 233
4.13* Condições de contorno especiais e escoamento de alta velocidade 235
4.14 Considerações finais 240
Referências 241
Problemas 241
Problemas de projeto 251
Capítulo 5 Convecção natural 252
5.1 Introdução 253
5.2 Parâmetros de similaridade para convecção natural 254
5.3 Correlação empírica para várias formas 262
5.4* Cilindros, discos e esferas rotativos 273
5.5 Convecção forçada e natural combinadas 275
5.6* Superfícies aletadas 278
5.7 Considerações finais 282
Referências 287
Problemas 288
Problemas de projeto 295
Capítulo 6 Convecção forçada dentro de tubos e dutos 297
6.1 Introdução 298
6.2* Análise de convecção forçada laminar em um tubo longo 305
6.3 Correlações para convecção forçada laminar 314
6.4* Analogia entre momento e transferência de calor em fluxo turbulento 324 
6.5 Correlações empíricas para convecção forçada turbulenta 327
6.6 Melhoramento de transferência de calor e arrefecimento de dispositivo eletrônico 335
6.7 Considerações finais 344
Referências 347
Problemas 349
Problemas de projeto 356
Capítulo 7 Convecção forçada sobre superfícies exteriores 357
7.1 Fluxo sobre corpos bojudos 358
7.2 Cilindros, esferas e outros formatos bojudos 359
7.3* Packed-beds 373
7.4 Feixes de tubos em fluxo cruzado 376
7.5* Feixes de tubos com aletas em fluxo cruzado 390
7.6* Jatos livres 392
7.7 Considerações finais 400
Referências 402
Problemas 404
Problemas de projeto 409
Capítulo 8 Trocadores de calor 411
8.1 Introdução 412
8.2 Tipos básicos de trocadores de calor 412
8.3 Coeficiente global de transferência de calor 419
8.4 Diferença de temperatura média logaritmica 422
8.5 Eficiência do trocador de calor 429
Sumário XI
00Fisica:Layout 1 11/14/14 6:38 AM Page XI
8.6* Melhoria de transferência de calor 437
8.7* Trocadores de calor em microescala 445
8.8 Considerações finais 445
Referências 447
Problemas 448
Problemas de projeto 459
Capítulo 9 Transferência de calor por radiação 460
9.1 Radiação térmica 461
9.2 Radiação de corpo negro 462
9.3 Propriedades de radiação 472
9.4 O fator de forma da radiação 486
9.5 Envoltórios com superfícies negras 495
9.6 Envoltórios com superfícies cinza 498
9.7* Inversão da matriz 503
9.8* Propriedade de radiação de gases e vapores 512
9.9 Radiação combinada com convecção e condução 519
9.10 Considerações finais 522
Referências 523
Problemas 524
Problemas de projeto 530
Capítulo 10 Transferência de calor com mudança de fase 532
10.1 Introdução à ebulição 533
10.2 Ebulição em recipiente 533
10.3 Ebulição em convecção forçada 551
10.4 Condensação 563
10.5* Projeto de condensador571
10.6* Tubos de calor 572
10.7* Congelamento e fusão 582
Referências 586
Problemas 589
Problemas de projeto 593
Apêndice 1 Sistema Internacional de Unidades A3
Apêndice 2 Tabelas de dados A6
Propriedades dos sólidos A7
Propriedades termodinâmicas dos líquidos A13
Fluidos de transferência de calor A22
Metais líquidos A23
Propriedades termodinâmicas dos gases A25
Outras propriedades e função de erro A36
Equações de correlação para propriedades físicas A44
Apêndice 3 Programas computacionais de matriz tridiagonal A48
Solução de um sistema tridiagonal de equações A48
Apêndice 4 Códigos de computador para transferência de calor A53
Apêndice 5 Literatura de transferência de calor A54
Índice remissivo I1
00Fisica:Layout 1 11/14/14 6:38 AM Page XII
NOMENCLATURA
Símbolo Quantidade Sistema 
Internacional
de Unidades
a velocidade do som m/s
a aceleração m/s2
A área; Ac área transversal; Ap, área projetada de um corpo normal à direção 
de fluxo; Aq, área através da qual a taxa de fluxo de calor é q; As, 
área de superfície; Ao, área de superfície externa; Ai, área de superfície interna m
2
b extensão ou largura m
c calor específico; cp, calor específico em pressão constante; cv, 
calor específico em volume constante J/kg K
C constante
C capacidade térmica J/K
C taxa de capacidade de calor por hora no Cap. 8; Cc, taxa de capacidade 
de calor por hora do fluido mais frio em um trocador de calor; Ch, 
taxa de capacidade de calor por hora do fluido mais quente em 
um trocador de calor W/K
CD coeficiente de arrasto total
Cf coeficiente de atrito de superfície; Cfx, valor local de Cf na distância x de 
uma borda dianteira; , valor médio de Cf definido pela Eq. (4.31)
d, D diâmetro; DH, diâmetro hidráulico; Do, diâmetro externo; Di, diâmetro interno m
e base de logaritmo natural ou nepieriano
e energia interna por unidade de massa J/kg
E energia interna J
E potência emissiva de um corpo de radiação; Eb, potência emissiva de 
um corpo negro W/m2
El potência emissiva monocromática por mícron no comprimento de onda � W/m
2 mm
� eficiência do trocador de calor definida pela Eq. (8.22)
f Fator de atrito de Darcy para o fluxo por um cano ou duto, definido 
pela Eq. (6.13)
f coeficiente de atrito para o fluxo sobre bancos de tubos definidos 
pela Eq. (7.37)
F força N
FT fator de temperatura definido pela Eq. (9.119)
F1–2 fator de formato geométrico para radiação de um corpo negro a outro
�1–2 fator de formato geométrico e emissividade para radiação de um corpo 
cinza a outro
g aceleração devido à gravidade m/s2
gc fator de conversão dimensional 1,0 kg m/N s
2
G taxa de fluxo de massa por unidade de área (G � rU�) kg/m
2 s
G radiação incidente na superfície unitária no tempo unitário W/m2
h entalpia por unidade de massa J/kg
hc coeficiente de transferência de calor por propagação local W/m2 K
coeficiente de transferência de calor combinado ; hb, coeficiente
de transferência de calor de um líquido em ebulição, definido pela Eq. (10.1);
–
hc, coeficiente médio de transferência de calor por propagação; 
–
hr, coeficiente 
hq = hqc + hqrhq
Cqf
Nomenclatura XIII
00Fisica:Layout 1 11/14/14 6:38 AM Page XIII
médio de transferência de calor para radiação W/m2 K
hfg calor latente de condensação ou evaporação J/kg
Símbolo Quantidade Sistema 
Internacional
de Unidades
i ângulo entre a direção do Sol e a superfície normal rad
i corrente elétrica ampère (A)
I intensidade da radiação W/sr
I� intensidade por unidade de comprimento de onda W/sr
J radiosidade W/m2
k condutividade térmica; ks, condutividade térmica de um sólido; kf, 
condutividade térmica de um fluido W/m K
K condutância térmica; Kk, condutância térmica para a transferência de calor 
por condução; Kc, condutância térmica para a transferência de calor por 
convecção; Kr, condutância térmica para a transferência de calor por radiação W/K
l comprimento, geral m
L comprimento ao longo de um caminho de fluxo de calor ou comprimento 
característico de um corpo m
Lf calor latente de solidificação J/kg
taxa de fluxo de massa kg/s
M massa kg
m peso molecular gm/gm-mol
N número em geral; número de tubos, etc.
p pressão estática; pc, pressão crítica; pA, pressão parcial do componente A N/m
2
P perímetro molhado (úmido) m
q taxa de fluxo de calor; qk, taxa de fluxo de calor por condução; 
qr, taxa de fluxo de calor por radiação; qc, taxa de fluxo de calor por 
convecção; qb, taxa de fluxo de calor por ebulição nucleada W
taxa de geração de calor por unidade de volume W/m3
q” fluxo de calor W/m2
Q quantidade de calor J
taxa volumétrica de fluxo de fluido m3/s
r raio; rH, raio hidráulico; ri, raio interno; ro, raio externo m
R resistência térmica; Rc, resistência térmica para transferência de calor por 
convecção; Rk, resistência térmica para transferência de calor por condução; K/W
Rr, resistência térmica para transferência de calor por radiação
Re resistência elétrica ohm
r constante de gás perfeito 8,314 J/K kg-mol
S fator de forma para fluxo de calor por condução
S espaçamento m
SL distância entre linhas de centro de tubos em linhas longitudinais adjacentes m
ST distância entre linhas de centro de tubos em linhas transversais adjacentes m
t espessura m
T temperatura; Tb, temperatura do centro do fluido; Tf, temperatura média 
de filme; Ts, temperatura superficial; Tra, temperatura de fluido removido longe 
da fonte de calor ou sumidouro; Tm, temperatura média do centro do fluido 
fluindo em um duto; Tsv, temperatura de vapor saturado; Ts, temperatura de 
um líquido saturado; Tf, temperatura de congelamento; T, temperatura de 
líquidos; Tas, temperatura da parede adiabática K ou °C
Q
#
q
#
G
m
#
XIV Princípios de transferência de calor
00Fisica:Layout 1 11/14/14 6:38 AM Page XIV
u energia interna por unidade de massa J/kg
Símbolo Quantidade Sistema 
Internacional
de Unidades
u velocidade média temporal na direção x; u’, flutuação instantânea na 
componente x da velocidade; u–, velocidade média m/s
U coeficiente de transferência de calor total W/m2 K
U� velocidade de fluido livre m/s
y volume específico m3/kg
y velocidade média temporal na direção y; ��, flutuação instantânea 
na componente y da velocidade m/s
V volume m3
w velocidade média de temporal na direção z; w’, flutuação instantânea 
na componente z da velocidade m/s
w largura m
taxa de produção de trabalho W
x distância da borda dianteira; xc, distância da borda dianteira onde 
o fluxo se torna turbulento m
x coordenada m
x qualidade
y coordenada m
y distância de um limite sólido medido em uma direção normal à superfície m
z coordenada m
Z razão das taxas de capacidade de calor por hora em trocadores de calor
Letras gregas
� absortividade para radiação; �l, absortividade monocromática no 
comprimento de onda �
� difusão térmica � k/�c m2/s
	 coeficiente de temperatura da expansão de volume 1/K
	k coeficiente de temperatura da condutividade térmica 1/K
 razão de calor específico, cp/c�
� força do corpo por unidade de massa N/kg
�c taxa de fluxo de massa de condensado por extensão unitária 
para um tubo vertical kg/s m

 espessura da camada-limite; 
h, espessura da camada-limite 
hidrodinâmica; 
th, espessura da camada-limite térmica m
� diferença entre valores
� fração entre lacunas em leitos empacotados (packed bed)
� emissividade para radiação; �l, emissividade monocromática no 
comprimento de onda �; �f, emissividade em direção de �
�H difusividade de turbilhão térmico m
2/s
�M difusividade de turbilhão de momento m
2/s
� razão da espessura de camada-limite térmica a hidrodinâmica, 
th/
h
hf eficiência da aleta
� tempo s
l comprimento de onda; lmáx, comprimento de onda no qual a energia 
emissiva monocromática Eb� é um máximo mm
l calor latente de vaporização J/kg
� viscosidade absoluta N s/m2
W
#
Nomenclatura XV
00Fisica:Layout 1 11/14/14 6:38 AM Page XV
Conceitos e análises a serem aprendidos
O calor é transportado ou “movido” basicamente por um gradiente de temperatura;
ele flui ou é transferido de uma regiãode alta temperatura para uma de baixa tem-
peratura. Uma compreensão desse processo e de seus diferentes mecanismos re-
quer conectar princípios de termodinâmica e fluxo de fluidos aos princípios de trans-
ferência de calor. Este último aspecto tem seu próprio conjunto de conceitos e
definições, e os princípios de base dentre eles são apresentados neste capítulo com
suas descrições matemáticas e algumas aplicações de engenharia típicas. O es-
tudo deste capítulo abordará:
• Como aplicar a relação básica entre termodinâmica e transferência de calor.
• Como modelar os conceitos de diferentes modos ou mecanismos de transfe-
rência de calor para aplicações práticas de engenharia.
• Como usar a analogia entre o calor e o fluxo de corrente elétrica, bem como a
resistência térmica e elétrica, na análise de engenharia.
• Como identificar a diferença entre o estado estacionário e os modos transien-
tes de transferência de calor.
CAPÍTULO 1
Modos Básicos de
Transferência de Calor
Uma estação de energia solar com suas matrizes ou campo de heliostatos e a
torre de energia solar no primeiro plano – este tipo de sistema envolve todos os
modos de transferência de calor – radiação, condução e convecção, incluindo
ebulição e condensação.
Fonte: Foto cortesia da Abengoa Solar.
01Fisica:Layout 1 11/6/14 2:35 PM Page 1
1.1 Relação de transferência de calor e termodinâmica
A energia será transferida sempre que houver um gradiente de temperatura dentro de um sistema ou cada vez
que dois sistemas com diferentes temperaturas sejam postos em contato. O processo pelo qual se efetua o trans-
porte de energia é conhecido como transferência de calor. O objeto em trânsito, chamado calor, não pode ser
observado ou medido diretamente. No entanto, é possível identificar e quantificar seus efeitos por meio de me-
dições e análise. O fluxo de calor, como o desempenho do trabalho, é um processo pelo qual a energia inicial
de um sistema é alterada.
O ramo da ciência que lida com a relação entre calor e outras formas de energia, incluindo o trabalho me-
cânico em particular, é chamado termodinâmica. Como todas as leis da natureza, seus princípios são basea-
dos em observações e têm sido generalizados em leis que servem para todos os processos que ocorrem na na-
tureza, pois nenhuma exceção foi encontrada. Por exemplo, a Primeira Lei da Termodinâmica afirma que
energia não pode ser criada ou destruída, somente alterada de uma forma para outra. Ela governa todas as trans-
formações de energia quantitativamente, mas não considera restrições na orientação da transformação. Com
base em experiências, sabe-se que nenhum processo cujo único resultado seja a transferência líquida de ca-
lor de uma região de baixa temperatura para uma de alta temperatura é possível. Esta declaração da verdade
experimental é conhecida como a Segunda Lei da Termodinâmica.
Todos os processos de transferência de calor envolvem conversão e/ou troca de energia. Portanto, devem
obedecer a Primeira e a Segunda Lei da Termodinâmica. À primeira vista, pode-se considerar que os princí-
pios de transferência de calor podem ser derivados das leis básicas da termodinâmica. Esta conclusão, no en-
tanto, é errônea, porque a termodinâmica clássica é restrita basicamente ao estudo dos estados de equilíbrio
(incluindo equilíbrio mecânico, químico e térmico) e é, por si só, de pouca ajuda na determinação quantita-
tiva das transformações que ocorrem devido à falta de equilíbrio nos processos de engenharia. Desde que o
fluxo de calor é o resultado do não equilíbrio da temperatura, seu tratamento quantitativo deve se basear em
outros ramos da ciência. O mesmo raciocínio aplica-se a outros tipos de processos de transporte, tais como
transferência de massa e difusão.
Limitações da termodinâmica clássica A termodinâmica clássica trabalha com os estados dos sistemas a partir
de um ponto de vista macroscópico e não levanta hipóteses sobre a estrutura da matéria. Para executar uma
análise termodinâmica, é necessário descrever o estado de um sistema considerando características tais como
pressão, volume e temperatura, que podem ser medidas diretamente e não envolvem suposições especiais so-
bre a estrutura da matéria. Essas variáveis (ou propriedades termodinâmicas) são importantes para o sistema
como um todo apenas quando são uniformes em todo o sistema, ou seja, quando o sistema está em equilíbrio.
Assim, a termodinâmica clássica não se preocupa com os detalhes de um processo, mas com os estados de equi-
líbrio e as relações entre eles. Os processos utilizados em uma análise termodinâmica são idealizados, con-
cebidos para dar informações relativas aos estados de equilíbrio.
O exemplo esquemático do motor de um automóvel na Fig. 1.1 ilustra as distinções entre a termodinâ-
mica e a análise de transferência de calor. Enquanto a Lei Básica da Conservação de Energia é aplicável em
ambos os casos, do ponto de vista da termodinâmica, a quantidade de calor transferida durante um processo
é igual à diferença entre a mudança de energia do sistema e o trabalho realizado. Esse tipo de análise não
considera o mecanismo de fluxo de calor nem o tempo necessário para transferi-lo. Ele prescreve quanto ca-
lor deve-se fornecer ou rejeitar a partir de um sistema durante um processo entre os estados finais especifi-
cados sem considerar se, ou como, isso poderia ser feito. A questão de quanto tempo levaria para transferir
uma quantidade específica de calor através de diferentes mecanismos ou modos de transferência e seus pro-
cessos (tanto em termos de espaço quanto de tempo), embora de grande importância prática, não costuma
entrar na análise termodinâmica.
2 Princípios de transferência de calor
01Fisica:Layout 1 11/6/14 2:35 PM Page 2
Engenharia de transferência de calor Do ponto de vista da engenharia, o principal problema é a determinação
da taxa de transferência de calor a uma diferença de temperatura especificada. Para estimar o “custo”, via-
bilidade e tamanho do equipamento necessário para transferir uma quantidade especificada de calor em de-
terminado momento, deve ser feita uma análise de transferência de calor detalhada. As dimensões de caldei-
ras, aquecedores, refrigeradores e trocadores de calor dependem da quantidade de calor a ser transmitida, e
da taxa em que o calor vai ser transferido sob determinadas condições. A bem-sucedida operação de compo-
nentes de equipamentos, tais como lâminas de turbina ou paredes das câmaras de combustão, depende da pos-
sibilidade de resfriamento de certas peças de metal removendo continuamente o calor de uma superfície a uma
taxa rápida. Também deve ser feita uma análise de transferência de calor no projeto de máquinas elétricas, trans-
formadores e rolamentos para evitar condições que possam causar sobreaquecimento e, com isso, danificar o
equipamento. A listagem na Tabela 1.1, que não é abrangente, dá uma indicação do significado amplo de trans-
ferência de calor e suas diferentes aplicações práticas. Esses exemplos confirmam que muitos ramos da en-
genharia encontram problemas de transferência de calor, o que mostra a impossibilidade de serem resolvidos
pelo raciocínio termodinâmico isoladamente, sendo necessária uma análise baseada na ciência de transferên-
cia de calor.
Como em outros ramos da engenharia, em transferência de calor, a solução bem-sucedida de um problema
exige suposições e idealizações. Não é possível descrever fenômenos físicos de forma exata e é necessário fa-
zer algumas aproximações para expressar um problema sob a forma de uma equação que pode ser resolvida.
Nos cálculos de circuitos elétricos, por exemplo, geralmente presume-se que os valores de resistências, ca-
Modos Básicos de Transferência de Calor 3
Conjunto de combustão
cilindro-pistão
Motor de automóvel
Parede do cilindro
Modelo de transferência de calor
Carcaça
do motor
Câmara de
combustão
qcond
qconv
qL qrad
qrad
qconv= qcond=+
Motor de 
combustão interno
Volume de controle
EE
WC
EAEF
Perda de
calor
qL
Gases de
exaustãoEixo da
manivela
Ar
Entrando 
Trabalho
realizado
Combustível de
entrada
Modelo termodinâmico
=qL WC+ + EF EA EE 0+ −−
FIGURA 1.1 Um modelo de termodinâmica clássica e um modelo de transferência de calor de um motor de
automóvel típico (combustão interna de ignição por faísca).
Fonte: Motor de um automóvel, cortesia de Ajancso/Shutterstock.
01Fisica:Layout 1 11/6/14 2:35 PM Page 3
pacitâncias e indutâncias são independentes da corrente que flui por eles. Essa suposição simplifica a análise,
mas pode, em certos casos, limitar severamente a precisão dos resultados.
TABELA 1.1 Significado e diversas aplicações práticas de transferência de calor
Indústria química, petroquímica e de processo: trocadores de calor, reatores, refervedores etc.
Geração e distribuição de energia: caldeiras, condensadores, torres de resfriamento, aquecedores de alimentação, resfriamento de trans-
formadores, resfriamento de cabos de transmissão etc.
Aviação e exploração do espaço: resfriamento de lâmina de turbina a gás, blindagem de veículos contra o calor, resfriamento de motor/bico
de foguete, trajes espaciais, geração de energia espacial etc.
Máquinas elétricas e equipamentos eletrônicos: resfriamento de motores, geradores, computadores e dispositivos microeletrônicos etc.
Fabricação e processamento de materiais: Processamento de metal, tratamento térmico, tratamento de material composto, crescimento de
cristais, microusinagem, usinagem a laser etc.
Transporte: resfriamento de motores, radiadores de automóveis, controle de temperatura, armazenamento móvel de alimentos etc.
Incêndio e combustão
Aplicações biomédicas e cuidados com a saúde: aquecedores de sangue, armazenamento de órgãos e tecidos, hipotermia etc.
Aquecimento, ventilação e ar-condicionado para conforto: condicionadores de ar, aquecedores de água, fornos, câmaras frias, refrigeradores etc.
Mudanças de clima e ambientais
Sistema de energia renovável: coletores de placa planos, armazenamento de energia térmica, resfriamento de módulo PV etc.
Para interpretar os resultados finais, é importante levar em consideração as idealizações, as aproximações
e os pressupostos, feitos no decorrer de uma análise. Às vezes, informações insuficientes sobre propriedades
físicas tornam necessário usar aproximações de engenharia para ser possível resolver um problema. Por exem-
plo, na concepção de peças de máquina para operação em temperaturas elevadas, pode ser necessário estimar
o limite proporcional ou a tensão de fadiga do material a partir de dados de baixa temperatura. Para garantir
o bom funcionamento de uma peça específica, um designer deve aplicar um fator de segurança para os re-
sultados obtidos a partir da análise. Também são necessárias aproximações similares em problemas de trans-
ferência de calor. Propriedades físicas, como a condutividade térmica ou viscosidade, mudam com a tempe-
ratura, mas, se são selecionados valores médios apropriados, os cálculos podem ser consideravelmente
simplificados sem introduzir um erro significativo no resultado final. Quando o calor é transferido de um fluido
a uma parede, como o que ocorre em uma caldeira, uma película forma-se em operação contínua e reduz a taxa
de fluxo de calor. Portanto, para garantir o funcionamento satisfatório durante longo período de tempo, deve
ser aplicado um fator de segurança que considere essa eventualidade.
Quando se torna necessário fazer suposição ou aproximação na solução de um problema, o engenheiro deve
se basear na criatividade e em experiências anteriores. Não existem guias simples para problemas novos e inex-
plorados, e uma suposição válida para um problema pode ser equivocada em outro. A experiência tem mos-
trado, no entanto, que o primeiro requisito para fazer suposições ou aproximações sólidas na engenharia é uma
compreensão física completa e abrangente do problema em mãos. No campo da transferência de calor, isso
significa ter familiaridade com leis e mecanismos físicos de fluxo de calor, e também com as da mecânica dos
fluidos, física e matemática.
Transferência de calor pode ser definida como a transmissão de energia de uma região para outra, como
resultado de uma diferença de temperatura entre elas. Considerando que existem diferenças nas temperaturas
de tudo sobre o universo, o fenômeno de fluxo de calor é tão universal quanto aqueles associados às atrações
gravitacionais. Entretanto, ao contrário da gravidade, o fluxo de calor é governado não por uma relação única,
mas por uma combinação de várias leis independentes da física.
Mecanismos de transferência de calor A literatura referente à transferência de calor geralmente reconhece três
modalidades distintas de transmissão de calor: condução, radiação e convecção. Especificamente falando, ape-
nas condução e radiação devem ser classificadas como processos de transferência de calor, porque apenas es-
ses mecanismos dependem da existência de uma diferença de temperatura para sua operação. A convecção não
4 Princípios de transferência de calor
01Fisica:Layout 1 11/6/14 2:35 PM Page 4
satisfaz completamente a definição de transferência de calor porque sua operação também depende do trans-
porte mecânico em massa. Mas, como a convecção também realiza transmissão de energia de regiões de maior
temperatura para regiões de menor temperatura, o termo “transferência de calor por convecção” torna-se ge-
ralmente aceito.
Nas seções 1.3 – 1.5, serão avaliadas as equações básicas que regem cada um dos três modos de transferên-
cia de calor. O objetivo inicial é obter uma ampla perspectiva da área sem nos envolvermos em detalhes. Deve-
mos, portanto, considerar apenas casos simples. Ainda deve-se ressaltar que, em situações mais naturais, o ca-
lor é transferido não por um, mas por vários mecanismos que operam simultaneamente. Assim, na Seção 1.6 será
apresentado como combinar relações simples em situações em que vários modos de transferência de calor ocor-
rem simultaneamente. Na Seção 1.7, como reduzir o fluxo de calor pelo isolamento. E, finalmente, na Seção 1.8,
será mostrado como usar as leis da termodinâmica na análise de transferência de calor.
1.2 Dimensões e unidades
Antes de prosseguir com o desenvolvimento dos conceitos e dos princípios que regem a transmissão ou o fluxo
de calor, é interessante rever as dimensões primárias e as unidades pelas quais suas variáveis descritivas são
quantificadas. É importante não confundir os significados das unidades de termos e dimensões. Dimensões
são conceitos básicos de medidas como comprimento, tempo e temperatura. Por exemplo, a distância entre
dois pontos é uma dimensão chamada comprimento. Unidades são meios de expressar dimensões numerica-
mente, por exemplo, metro ou centímetro para comprimento; segundo ou hora para tempo. Antes de efetuar
cálculos numéricos, as dimensões devem ser quantificadas por unidades.
Vários sistemas diferentes de unidades estão em uso em todo o mundo. O sistema SI (Systeme International
d’Unites) foi adotado pela Organização Internacional de Normalização e é recomendado pela maioria das or-
ganizações nacionais de normalização dos EUA. Esse sistema será usado neste livro.
As unidades básicas do SI são para comprimento, massa, tempo e temperatura. A unidade de força, o new-
ton, é obtida a partir da Segunda Lei de Newton de Movimento, que afirma que a força é proporcional à taxa
de variação do momento em relação ao tempo. Para dada massa, a lei de Newton pode ser escrita na forma
(1.1)
em que F é a força, m é a massa, a é a aceleração, e gc é uma constante cujo valor numérico e unidades de-
pendem dos selecionados para F, m, e a.
No sistema SI, o Newton é definido como
Assim, vemos que
O peso de um corpo, Fp, é definido como a força exercida sobre o corpo pela gravidade. Assim,
em que g é a aceleração local devido à gravidade. Peso tem as dimensões de força e 1 kg de massa pesará 
9,8 N ao nível do mar.
Deve-se notar que g e gc não são quantidades semelhantes. A aceleração gravitacional g varia de acordo
com a localizaçãoe a altitude, considerando que gc é uma constante cujo valor depende do sistema de unida-
Fp =
g
gc
m
F =
1
gc
ma
gc = 1 kg m/newton s
2
1 newton =
1
gc
* 1 kg * 1 m/s2
Modos Básicos de Transferência de Calor 5
01Fisica:Layout 1 11/6/14 2:35 PM Page 5
des. Uma das grandes convenções do sistema SI é que gc é numericamente igual a 1 e, portanto, não precisa
ser mostrado especificamente.
Com as unidades fundamentais de metro, quilograma, segundo e kelvin, as unidades para força e energia ou
calor são unidades derivadas. Para quantificar o calor, sua taxa de transferência, seu fluxo e sua temperatura, as
unidades utilizadas de acordo com a convenção internacional são dadas na Tabela 1.2. O joule (newton metro)
é a única unidade de energia no sistema SI, e o watt (joule por segundo) é a unidade correspondente de energia.
A unidade de temperatura do SI é o kelvin, mas o uso da escala de temperatura em graus Celsius é consi-
derado admissível. O kelvin é baseado na escala termodinâmica: zero na escala em graus Celsius (0°C) cor-
responde à temperatura de congelamento da água e é equivalente a 273,15 K na escala termodinâmica. Note,
no entanto, que as diferenças de temperatura são numericamente equivalentes em K e °C, uma vez que
1 K é igual a 1°C.
TABELA 1.2 Dimensões e unidades de calor e temperatura
Quantidade Unidades SI Unidades inglesas Conversão
Q, quantidade de calor J Btu 1 J � 9,4787 � 10–4 Btu
q, taxa de transferência de calor J/s ou W Btu/h 1 W � 3,4123 Btu/h
q”, fluxo de calor W/m2 Btu/h ft2 1 W/m2 � 0,3171 Btu/h ft2
T, temperatura K ˚R ou ˚F T ˚C � (T ˚F–32)/1,8 
[K] = [˚C] + 273,15 [R] = [˚F] + 459,67 T K � T ˚R/1,8
*Graus Rankine �˚R
EXEMPLO 1.1 A parede de tijolos de alvenaria de uma casa apresenta temperatura de 13°C na superfície inte-
rior e uma temperatura média de 7°C na superfície externa. A parede tem 0,3 m de espessura e, por causa da
diferença de temperatura, a perda de calor através dela é de 10,7 W/m2 por pé quadrado. Calcule o valor dessa
perda de calor para uma superfície de 9 m² durante um período de 24 horas; considere que a casa é aquecida
por um aquecedor de resistência elétrica e o custo da eletricidade é de 10 ¢ kWh.
SOLUÇÃO A taxa de perda de calor é de 10,7 W/m2 por unidade de área de superfície. 
A perda de calor total para o meio ambiente sobre a área da superfície especificada da parede da casa em
24 horas é de
Isso pode ser expresso em unidades de kWh como
E a 10 ¢ kW�h, o que totaliza � 23 ¢ como o custo da perda de calor em 24 h.
1.3 Condução de calor
Sempre que um gradiente de temperatura existe em meio sólido, o calor fluirá da região de temperatura mais
alta para a de temperatura mais baixa. A taxa na qual o calor é transferido por condução, qk, é proporcional ao
gradiente de temperatura vezes a área A, por meio da qual o calor é transferido:
Nessa relação, T(x) é a temperatura local e x é a distância na direção do fluxo de calor. A taxa real de fluxo de
calor depende da condutividade térmica k, que é uma propriedade física do meio. Para a condução por um meio
homogêneo, a taxa de transferência de calor é, então:
##
qk r A
dT
dx
dT>dx
>
Q = 2,311 [kWh]
Q = 10,7aW
m2
b * 9(m2) * 24(h) = 2311 [Wh]
>
¢T =
¢T =
6 Princípios de transferência de calor
01Fisica:Layout 1 11/6/14 2:35 PM Page 6
(1.2)
O sinal de menos (�) é uma consequência da Segunda Lei da Termodinâmica, que requer que o calor flua
na direção da temperatura maior para a menor. Conforme ilustrado na Fig. 1.2, o gradiente de temperatura será
negativo se a temperatura diminuir com o aumento de valores de x. Portanto, se o calor transferido na dire-
ção positiva de x deve ser uma quantidade positiva, um sinal negativo (�) deve ser inserido no lado direito
da Eq. (1.2).
qk = -kA
dT
dx
Modos Básicos de Transferência de Calor 7
A Equação (1.2) define a condutividade térmica. Chama-se Lei de Fourier da Condução em homenagem
ao cientista francês Jean Baptiste Joseph Fourier, que a propôs em 1822. A condutividade térmica na Eq. (1.2)
é uma propriedade material que indica a quantidade de calor que fluirá através de uma unidade de área por
unidade de tempo, quando o gradiente de temperatura é a unidade. No sistema SI, a área é dada em metros
quadrados (m²), a temperatura em kelvins (K), x em metros (m) e a taxa de fluxo de calor em watts (W). A
condutividade térmica, portanto, tem as unidades de watts por metro por kelvin (W/m K).
Ordens de magnitude da condutividade térmica de vários tipos de materiais são apresentadas na Tabela 1.3.
Embora, em geral, a condutividade térmica varie com a temperatura, em muitos problemas de engenharia, a
variação é suficientemente pequena para ser desconsiderada.
Tabela 1.3 Condutividades térmicas de alguns metais, sólidos não metálicos, líquidos e gases 
Material Condutividade térmica, a 300 K (W/m K)
Cobre 399
Alumínio 237
Aço-carbono, 1% C 43
Vidro 0,81
Plásticos 0,2–0,3
Água 0,6
Etilenoglicol 0,26
Óleo de motor 0,15
Freon (líquido) 0,07
Hidrogênio 0,18
Ar 0,026
Direção de fluxo do calor
T
T(x)
+ΔT
+Δx
é (+)dTdx
Direção de fluxo do calor
T(x)
T
x x
−ΔT
+Δx
é (−)dTdx
FIGURA 1.2 A convenção de sinal para o fluxo de calor de condução.
01Fisica:Layout 1 11/6/14 2:35 PM Page 7
1.3.1 Paredes planas
Para o caso simples de fluxo de calor unidimensional no estado estacionário através de uma parede plana, o
gradiente de temperatura e o fluxo de calor não variam com o tempo, e a área transversal ao longo do cami-
nho de fluxo de calor é uniforme. As variáveis na Eq. (1.2) podem ser separadas e a equação resultante é:
Os limites de integração podem ser verificados pela inspeção da Fig. 1.3, em que a temperatura na face es-
querda (x � 0) é uniforme em Tquente e a temperatura na face direita (x � L) é uniforme em Tfrio.
Se k é independente de T, obtemos, após a integração, a seguinte expressão para a taxa de condução de ca-
lor através da parede:
(1.3)
Nessa equação T, a diferença entre a temperatura mais alta Tquente e a temperatura mais baixa Tfrio, é o
potencial de condução que causa o fluxo de calor. A quantidade é equivalente a uma resistência térmica
Rk que a parede oferece ao fluxo de calor por condução:
(1.4)
Há uma analogia entre os sistemas de fluxo de calor e os circuitos elétricos CC. Como mostrado na Fig. 1.3, o
fluxo de corrente elétrica, i, é igual ao potencial da tensão, E1 � E2, dividida pela resistência elétrica, Re, enquanto
a taxa de fluxo de calor, qk, é igual à temperatura potencial T1 � T2, dividida pela resistência térmica R. Essa ana-
logia é uma ferramenta conveniente, especialmente para a visualização de situações mais complexas.
Rk =
L
Ak
L>Ak
¢
qk =
Ak
L
(Tquente - Tfrio) =
¢T
L>Ak
qk
A L
L
0
dx = -
L
Tfrio
Tquente
kdT = -
L
T2
T1
kdT
8 Princípios de transferência de calor
FIGURA 1.3 Distribuição de temperatura para a condução
no estado estacionário através de uma parede plana e a
analogia entre circuitos elétricos e térmicos. 
Sistema físico
T(x)
T2 = Tfrio
qk
L
x
Circuito térmico
qk
T1 T2
Rk =
L
Ak
i
E1 Re E2
Circuito elétrico
O recíproco da resistência térmica é referido como a condutância térmica Kk, definida por
(1.5)
A relação na Eq. (1.5), a condutância térmica por unidade de área, é chamada unidade de condutân-
cia térmica para a condução do fluxo de calor, enquanto a recíproca, , é chamada unidade de resistência
térmica. O k subscrito indica que o mecanismo de transferência é a condução. A condutância térmica tem as
L>k
k>L
Kk =
Ak
L
01Fisica:Layout 1 11/6/14 2:35 PM Page 8
unidades de diferença de temperatura de watts por kelvin, e a resistência térmica tem as unidades kelvin por
watt. Os conceitos de resistência e condutância são úteis na análise de sistemas térmicos em que vários mo-
dos de transferência de calor ocorrem simultaneamente.
O matemático e físico francês Jean Baptiste Joseph Fourier (1768-1830) e o jovem físico alemão Georg
Ohm (1789-1854), o descobridor da lei de Ohm, que é a base fundamental da teoriade circuito elé-
trico, foram praticamente contemporâneos. Acredita-se que o tratamento matemático do Ohm, publi-
cado no Die Galvanische Kette, Mathematisch Bearbeitet (O Circuito Galvânico Investigado Matema-
ticamente) em 1827, foi inspirado e baseado na obra de Fourier. Ele tinha desenvolvido a equação da
taxa para descrever o fluxo de calor em um meio condutor. Assim, o tratamento análogo do fluxo de
calor e eletricidade, em termos de circuito térmico com uma resistência térmica entre uma diferença
de temperatura, não é surpreendente.
Para muitos materiais, a condutividade térmica pode ser aproximada como uma função linear da tempe-
ratura ao longo de intervalos de temperatura limitada:
(1.6)
em que é uma constante empírica, e k0 é o valor da condutividade a uma temperatura de referência. Em
tais casos, a integração da Eq. (1.2) dá
(1.7)
ou
(1.8)
em que kav é o valor de k para a temperatura média .
A distribuição de temperatura para uma constante térmica e para condutividades térmicas que
aumentam e diminuem com temperatura são mostradas na Fig. 1.4.(bk 7 0) (bk 6 0)
(bk = 0)
(T1 + T2)>2
qk =
kavA
L
(T1 - T2)
qk =
k0A
L
c(T1 - T2) + bk2 (T12 - T22) d
bk
k(T) = k0(1 + bkT )
Modos Básicos de Transferência de Calor 9
 k = 0
 k > 0qk
T2
 k < 0
Sistema físico
T(x)
L
x
β
β
β
FIGURA 1.4 Distribuição de temperatura na
condução por meio de uma parede plana com
condutividade térmica constante e variável.
01Fisica:Layout 1 11/6/14 2:36 PM Page 9
EXEMPLO 1.2 Calcule a resistência térmica e a taxa de transferência de calor através de um painel de janela de
vidro (k� 0,81 W/m K) de 1 m de altura, 0,5 m de largura e 0,5 cm de espessura, se a temperatura da super-
fície externa é de 24°C e a temperatura da superfície interna é de 24,5°C.
SOLUÇÃO Um diagrama esquemático do sistema é mostrado na Fig. 1.5. Suponha que existe um estado está-
vel e que a temperatura é uniforme sobre as superfícies internas e externas. A resistência térmica à condução
Rk é dada a partir da Eq. (1.4)
Rk =
L
kA
=
0,005 m
0,81 W/m K * 1 m * 0,5 m
= 0,0123 K/W
10 Princípios de transferência de calor
24°C
Painel de janela de vidro
0,5 cm
Vidro24,5°C
qk
T1 Rk T2
FIGURA 1.5 Transferência de calor por condução
através de um painel de janela.
A taxa de perda de calor da superfície interior para a superfície exterior é obtida a partir da Eq. (1.3):
Observe que uma diferença de temperatura de 1°C é igual a uma diferença de temperatura de 1 K. Portanto,
°C e K podem ser usados de forma permutável quando são indicadas as diferenças de temperatura. Se um ní-
vel de temperatura está envolvido, no entanto, é importante lembrar de que a escala de zero grau Celsius (0°C)
é equivalente a 273,15 K na escala termodinâmica ou de temperatura absoluta e
1.3.2 Condutividade térmica
De acordo com a Lei de Fourier, a Eq. (1.2), a condutividade térmica é definida como
Para cálculos de engenharia, geralmente usamos valores de condutividade térmica medidos experimentalmente,
embora a teoria cinética dos gases possa ser usada para prever os valores experimentais com precisão para ga-
ses em temperaturas moderadas. Também têm sido propostas teorias para calcular condutividades térmicas para
outros materiais, mas, no caso de líquidos e sólidos, teorias não são adequadas para predizer a condutividade
térmica com precisão satisfatória [1, 2].
A Tabela 1.3 relaciona valores de condutividade térmica para diversos materiais. Observe que os melho-
res condutores são metais puros e os gases são os mais pobres. No meio-termo estão as ligas, os sólidos não
metálicos e os líquidos.
qk =
T1 - T2
Rk
=
(24,5 - 24,0)°C
0,0123 K/W
= 40 W
k K
qk>A
ƒdT>dx ƒ
T(K) = T(°C) + 273,15
01Fisica:Layout 1 11/6/14 2:36 PM Page 10
O mecanismo de condução térmica de um gás pode ser explicado em um nível molecular a partir de con-
ceitos básicos da teoria cinética dos gases. A energia cinética de uma molécula está relacionada à sua tempe-
ratura. Moléculas em uma região de alta temperatura têm velocidades mais altas do que aquelas em uma re-
gião de temperaturas mais baixas. Mas as moléculas estão em movimento aleatório contínuo e, como elas
colidem uma com a outra, trocam energia e momento. Quando uma molécula se move de uma região de maior
temperatura para uma de temperatura mais baixa, ela transporta energia cinética da temperatura mais alta para
a mais baixa do sistema. Após a colisão com as moléculas mais lentas, doa um pouco dessa energia e aumenta
a energia de moléculas com um conteúdo energético inferior. Dessa maneira, a energia térmica é transferida
de regiões com temperatura mais alta para mais baixa em um gás pela ação molecular.
De acordo com essa simplificada descrição, quanto mais rápido o movimento das moléculas, mais rápido elas
transportarão energia. Consequentemente, a propriedade de transporte que chamamos condutividade térmica deve
depender da temperatura do gás. Um tratamento analítico um pouco simplificado (por exemplo, veja [3]) indica
que a condutividade térmica de um gás é proporcional à raiz quadrada da temperatura absoluta. Em pressões mo-
deradas, o espaço entre as moléculas é grande em comparação com o tamanho de uma molécula; a condutivi-
dade térmica dos gases, portanto, é essencialmente independente da pressão. As curvas na Fig. 1.6 (a) mostram
como as condutividades térmicas de alguns gases típicos variam de acordo com a temperatura.
O mecanismo básico de condução de energia em líquidos é qualitativamente semelhante ao dos gases. Con-
tudo, as condições moleculares dos líquidos são mais difíceis de descrever e os detalhes dos mecanismos de
condução de líquidos não são bem compreendidos. As curvas na Fig. 1.6 (b) mostram a condutividade térmica
de alguns líquidos não metálicos em função da temperatura. Para a maioria dos líquidos, a condutividade tér-
mica diminui com o aumento da temperatura, mas a água é uma exceção notável. Insensível à pressão exceto
perto do ponto crítico, como regra geral, a condutividade térmica de líquidos diminui com o aumento do peso
molecular. Para fins de engenharia, valores da condutividade térmica de líquidos são obtidos das tabelas em
função da temperatura no estado saturado. O Apêndice 2 apresenta esses dados para vários líquidos comuns.
Os líquidos metálicos têm condutividades muito mais elevadas que os não metálicos e suas propriedades são
listadas separadamente nas tabelas 25 a 27 no Apêndice 2.
Modos Básicos de Transferência de Calor 11
Hidrogênio, H2
Hélio, He
1
0,1
0,01
200 300 400 500
Temperatura, T (K)
(a)
600 700 800
Metano, CH4
C
on
du
tiv
id
ad
e 
té
rm
ic
a,
 k
 (
W
/m
 K
)
Argônio, Ar
Ar
CO2
1
0,1
0.01
200 300
Temperatura, T (K)
(b)
400 500
Óleo de motor (não usado)
Etilenoglicol
Glicerina (glicerol)
Água (@psat)
C
on
du
tiv
id
ad
e 
té
rm
ic
a,
 k
 (
W
/m
 K
)
R134a (@psat)
FIGURA 1.6. Variação da condutividade térmica com a temperatura de fluidos típicos: (a) gases e (b) líquidos.
Fontes de dados de propriedade: ASHRAE Handbook 2005, Union Carbide (etilenoglicol) e Dow Chemicals (glicerina ou glicerol).
01Fisica:Layout 1 11/6/14 2:36 PM Page 11
Frank Kreith,
Raj M. Manglik
e Mark S. Bohn
Para suas soluções de curso e aprendizado,
visite www.cengage.com.br
Outras Obras
Ensino de Física
Coleção Ideias em Ação
Anna Maria Pessoa de Carvalho, Elio 
Carlos Ricardo, Lúcia Helena Sasseron, 
Maria Lúcia Vital dos Santos Abib e 
Maurício Pietrocolo
Princípios de Física – Volume 1 
Mecânica clássica e relatividade
Tradução da 5ª edição norte-americana
Raymond A. Serway e John W. Jewett, Jr.
Princípios de Física – Volume 2 
Oscilações, ondas e termodinâmica 
Tradução da 5ª edição norte-americana
Raymond A. Serway e John W. Jewett, Jr.
Princípios de Física – Volume 3 
Eletromagnetismo
Tradução da 5ª edição norte-americana
Raymond A. Serway e John W. Jewett, Jr.
Princípios de Física – Volume 4 
Óptica e física moderna
Tradução da 5ª edição norte-americana
Raymond A. Serway e John W. Jewett, Jr.Frank Kreith, Raj M
. M
anglik e M
ark S. Bohn
P
R
IN
CÍP
IO
S de TR
A
N
SFER
ÊN
CIA
 de CA
LO
R
m Princípios de Transferência de Calor – Tradução da 7ª edição norte-americana, 
os alunos encontram soluções de problemas práticos de engenharia e de 
utilização de computadores para análise numérica, além de exemplos e estudos 
de casos industriais ilustrativos e criteriosos, redutíveis à análise de ordem de magnitude, 
e problemas aplicados à prática, enfatizando assuntos multidisciplinares no moderno 
controle térmico.
O delineamento básico de como ensinar transferência de calor foi estabelecido em sua 
primeira edição, publicada há 60 anos, e agora é universalmente aceito pela maioria dos 
autores de livros sobre o tema. Assim, a organização deste livro permaneceu a mesma 
em todos esses anos, mas dados experimentais mais recentes, e, em especial, com o 
advento da tecnologia computacional, demandaram reorganização, adições e integração 
de métodos numéricos e computacionais de solução no livro.
Nesta nova edição, a abordagem com o MathCAD foi substituída pelo MATLAB no 
capítulo sobre análises numéricas; também foram substituídos os problemas ilustrativos 
nas aplicações do mundo real de transferência de calor em alguns capítulos. Além disso, 
os autores apresentam alguns problemas adicionais que lidam diretamente com tópicos 
de interesse atual, como programas espaciais e energia renovável.
APLICAÇÕES: 
Destina-se aos cursos de Engenharia, especialmente Engenharia Química, Mecânica e de 
Materiais, na disciplina de (ou sobre) transferência de calor. Também pode ser utilizado 
nos cursos de Física e em disciplinas que tratem do tema em questão.
Trilha é uma solução digital, com plataforma de acesso em português, que disponibiliza 
ferramentas multimídia para uma nova estratégia de ensino e aprendizagem.
PRINCÍPIOS de TRANSFERÊNCIA de CALOR
E
TRADUÇÃO DA 7ª EDIÇÃO NORTE-AMERICANA
Frank Kreith, Raj M. Manglik e Mark S. Bohn
ISBN-10: 85-221-1803-5
ISBN-13: 978-85-221-1803-8
9 7 8 8 5 2 2 1 1 8 0 3 8
PRINCÍPIOS 
deTRANSFERÊNCIA de
CALOR
TRADUÇÃO DA 7ª EDIÇÃO
NORTE-AMERICANA
capa.calor5_33.mmfinal2.pdf 1 31/10/14 15:49
	01Fisica_Layout 1

Outros materiais