Prévia do material em texto
. Geankodis PROCESOS DE TRANSPORTE Y OPERACIONES UNITARIAS Christie J. Geankoplis University of Minnesota TERCERA EDICIÓN MÉXICO, 1998 COMPAÑÍA EDITORIAL CONTINENTAL, S.A. DE C.V. MÉXICO Contenido Prefacio . . .XIII PARTE 1 PRINCIPIOS FUNDAMENTALES DE PROCESOS DE TRANSPORTE DE MOMENTO LINEAL, DE CALOR Y DE MASA Capitulo 1 Introducción a los principios de ingeniería y sus unidades 1.1 Clasificación de las operaciones unitarias y los procesos de transporte 1.2 El sistema (SI) de unidades fundamentales usado en este texto y otros sistemas de unidades 1.3 Métodos para expresar temperaturas y composiciones 1.4 Leyes de los gases y presión de vapor 1.5 Conservación de la masa y balances de materia 1.6 Unidades de energía y calor 1.7 Conservación de energía y balances de calor 1.8 Métodos matemáticos, gráficos y numéricos Capitulo 2 Principios de transferencia de momento lineal y balances globales 38 2.1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 2 .10 2.11 Introducción 38 Estática de fluidos 3 9 Ecuación general de transporte molecular para transferencia de momento lineal, calor y masa Viscosidad de los fluidos Tipos de flujo de fluidos y número de Reynolds Balance total de masa y ecuación de continuidad Balance global de energía Balance general de momento lineal Balance de momento lineal en el recinto y perfil de velocidades en flujo laminar Ecuaciones de diseño para flujo laminar y turbulento en tuberías Flujo compresible de gases 4 7 52 56 59 6 6 80 9 0 96 115 1 3 3 5 7 1 0 1 3 17 23 2 9 ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln Capítulo 3 Principios de la transferencia de momento lineal y aplicaciones 130 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 Flujo alrededor de objetos inmersos y lechos empacados y fluidizados Medición del flujo de fluidos Bombas y equipo para manejar gases Agitación y mezclado de fluidos y necesidades de potencia Fluidos no newtonianos Ecuaciones diferenciales de continuidad Ecuación diferencial de transferencia de momento lineal o de movimiento Uso de las ecuaciones diferenciales de movimiento y continuidad Otros métodos para la resolución de ecuaciones diferenciales de movimiento Flujo de capa límite y turbulencia Análisis dimensional de la transferencia de momento lineal Capítulo 4 Principios de transferencia de calor en estado estacionario 2 4 1 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 Introducción y mecanismos de la transferencia de calor Transferencia de calor por conducción Conducción a través de sólidos en serie Conducción de estado estacionario y factores de forma Transferencia de calor por convecci6n forzada dentro de tuberias Transferencia de calor por convección forzada en el exterior de diferentes geometrias Transferencia de calor en convección natural Ebullición y condensación Intercambiadores de calor Introducción a la transferencia de calor por radiación Principios avanzados de transferencia de calor por radiación Transferencia de calor en fluidos no newtonianos Casos especiales de coeficientes de transferencia de calor Análisis dimensional en la transferencia de calor Métodos numéricos para la conducción en estado estacionario en dos dimensiones Capítulo 5 Principios de transferencia de calor en estado no estacionario 368 5.1 Deducción de la ecuación básica 368 5.2 Caso simplificado de sistemas con resistencia interna despreciable 3 7 0 5.3 Conducción del calor en estado no estacionario en diversas geometrías 3 7 3 5.4 Métodos numéricos de diferencia finita para conducción en estado no estacionario 390 5.5 Enfriamiento y congelación de alimentos y materiales biológicos 4 0 1 5.6 Ecuación diferencial de cambio de energía 407 5.7 Flujo de capa límite y turbulencia en la transferencia de calor 4 1 3 Capítulo 6 Principios de transferencia de masa 425 6.1 Introducción a la transferencia de masa y difusión 425 6.2 Difusión molecular en gases 430 6.3 Difusión molecular en líquidos 444 130 145 152 1 6 1 174 186 193 199 209 215 228 2 4 1 247 251 263 265 279 285 292 301 3 1 0 316 3 3 3 336 345 3 4 8 Viii Contenido ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln 6.4 Difusión molecular en soluciones y geles biológicos 450 6.5 Difusión molecular en sólidos 455 6.6 Métodos numéricos para la difusión molecular en estado estacionario en dos dimensiones 461 Capítulo 7 Principios de transferencia de masa en estado no estacionario y por convección 474 474 481 487 503 506 517 524 530 532 7.1 Difusión de estado no estacionario 7.2 Coeficientes de transferencia convectiva de masa 7.3 Coeficientes de transferencia de masa para diversas geometrías 7.4 Transferencia de masa a suspensiones de partículas pequeñas 7.5 Difusión molecular más convección y reacción química 7.6 Difusión de gases en sólidos porosos y capilares 7.7 Métodos numéricos para difusión molecular en estado no estacionario 7.8 Análisis dimensional en la transferencia de masa 7.9 Flujo de capa límite y turbulencia en la transferencia de masa PARTE 2 OPERACIONES UNITARIAS Capítulo 8 Evaporación 545 8.1 Introducción 545 8.2 Tipos de equipos de evaporación y métodos de operación 547 8.3 Coeficientes totales de transferencia de calor en evaporadores 551 8.4 Métodos de cálculo para evaporadores de un solo efecto 553 8.5 Métodos de cálculo para evaporadores de efecto múltiple 560 8.6 Condensadores para evaporadores 569 8.7 Evaporación de materiales biológicos 571 8.8 Evaporación mediante recompresión de vapor 572 Capítulo 9 Secado de materiales de proceso 579 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 Introducción y métodos de secado Equipo para secado Presión de vapor del agua y humedad Contenido de humedad de equilibrio de los materiales Curvas de velocidad de secado Métodos para calcular el periodo de secado de velocidad constante Métodos para calcular el periodo de secado de velocidad decreciente Transferencia de calor por combinación de convección, radiación y conducción, durante el periodo de velocidad constante Secado por difusión y flujo capilar durante el periodo de velocidad decreciente Ecuaciones para diversos tipos de secadores Liofilización de materiales biológicos Procesamiento térmico en estado no estacionario y esterilización de materiales biológicos 545 579 580 584 593 596 601 606 609 619 630 634 Contenido ix ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln Capítulo 10 Procesos de separación gas-líquido por etapas y continuos 650 10.1 Tipos de procesos y métodos de separación 650 10.2 Relaciones de equilibrio entre fases 652 10.3 Contacto de equilibrio en una y en múltiples etapas 653 10.4 Transferencia de masa entre fases 661 10.5 Procesos continuos de humidifícación 670 10.6 Absorción en torres empacadas y de platos 679 10.7 Absorción de mezclas concentradas en torres empacadas 698 10.8 Estimación de los coeficientes de transferencia de masa para torres empacadas 703 Capítulo 11 Procesos de separación vapor-líquido 11.1 Relaciones de equilibrio vapor-líquido l l .2 Contacto de equilibrio de una sola etapa para un sistema vapor-líquido 11.3 Métodos simples de destilación l l .4 Destilación con reflujo y el método de McCabe-Thiele l l .5 Eficiencias de los platos en la destilación y la absorción l l .6 Destilación fraccionada con el método de entalpía-concentraciónl l .7 Destilación de mezclas multicomponentes Capítulo 12 Procesos de separación liquido-líquido y sólido-fluido 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12 Introducción a los procesos de adsorción Adsorción por lotes Diseño de columnas de adsorción de lecho fijo Procesos de intercambio de iones Procesos de extracción líquido-líquido en una sola etapa Equipo para extracción líquido-líquido Extracción a continua contracorriente en etapas múltiples Introducción y equipo para lixiviación líquido-sólido Relaciones de equilibrio y lixiviación en una sola etapa Lixiviación a contracorriente en etapas múltiples Introducción y equipo de cristalización Teoría de la cristalización Capítulo 13 Procesos de separación a través de una membrana 13.1 Introducción y tipos de procesos de separación a través de las membranas 13.2 Procesos de membrana de permeación de líquidos o diálisis 13.3 Procesos a través de una membrana para permeación de gases 13.4 Modelo de mezcla completa para la separación de gases por medio de membranas 13.5 Modelo de mezcla completa para mezclas multicomponentes 13.6 Modelo de flujo cruzado para la separación de gases por membranas 13.7 Modelo de flujo a contracorriente para la separación de gases a través de membranas 712 712 715 716 722 740 743 753 773 773 776 777 784 791 794 800 807 810 815 822 833 833 834 838 844 850 853 860 Contenido ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln 13.8 Efectos de las variables de proceso en la separación de gases a través de membranas 13.9 Procesos a través de una membrana de ósmosis inversa 13.10 Aplicaciones, equipo y modelos para ósmosis inversa 13.11 Procesos a través de una membrana de ultrafiltración Capitulo 14 Procesos de separación físicos-mecánicos 8 8 4 14.1 Introducción y clasificación de los procesos de separación físico-mecánicos 8 8 4 14.2 Filtración en la separación sólido-líquido 885 14.3 Precipitación y sedimentación en la separación partícula-fluido 9 0 0 14.4 Procesos de separación por centrifugación 9 1 5 14.5 Reducción mecánica de tamaño 9 2 8 APÉNDICES Apéndice A.l Apéndice A.2 Apéndice A.3 Apéndice A.4 Apéndice A.5 Constantes fundamentales y factores de conversión Propiedades físicas del agua Propiedades físicas de compuestos inorgánicos y orgánicos Propiedades fisicas de materiales alimenticios y biológicos Propiedades de tuberías, ductos y tamices 9 3 9 9 4 3 9 5 3 9 7 8 9 8 1 Notación 9 8 4 Índice 9 9 3 Contenido 863 865 871 8 7 5 xi ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln ojlhljk uihnojkln Prefacio En esta tercera edición, los objetivos principales y el formato de las ediciones primera y segunda no han variado. Las secciones sobre transferencia de momento lineal se han ampliado en gran medida, sobre todo las que se refieren a las ecuaciones diferenciales de la transferencia de momento lineal. Esto permite ahora cubrir por completo los procesos de transferencia de momento lineal, de calor y de masa. Por otra parte, a las secciones de operaciones unitarias se les agregaron una sección sobre adsorción y un capítulo ampliado sobre los procesos a través de membrana. En los últimos años, el campo de la ingenieria química relacionado con los cambios físicos y fisicoquímicos de materiales orgánicos e inorgánicos y, hasta cierto punto también, de los materiales biológicos, se ha ido mezclando con otras áreas de la ingenieria de procesos. Entre éstas están la ingeniería sanitaria o de tratamiento de aguas de desperdicio (ingeniería civil) y la bioingenieria. Todos estos campos utilizan los principios de momento lineal, transporte de masas y de calor, y operaciones unitarias en sus procesos, Tradicionalmente, la mayoría de los ingenieros toman cursos en los que estudian la transferencia de momento lineal o el flujo de fluidos y la transferencia de calor. El estudio de la transferencia de masas se ha limitado casi siempre a los ingenieros químicos. Sin embargo, recientemente se ha visto que los ingenieros de otras especialidades tienen interés en la transferencia de masas de gases, líquidos y sólidos. Puesto que el ingeniero químico de la actualidad debe estudiar muchos temas, resulta necesario proporcionar una introducción más unificada a los procesos de transporte de momento lineal (dinámica de fluidos), calor y transferencia de masas, y a las aplicaciones de operaciones unitarias. En este texto, se estudian primero los principios de los procesos de transferencia o transporte, para pasar después a las operaciones unitarias. Para lograr esto, el libro se divide en dos partes principales. PARTE 1: Principiosfindamentales de procesos de transporte de momento lineal, de calor y de masa Esta parte, que estudia los principios fundamentales, incluye los siguientes capítulos: 1, Introduc- ción a los principios y unidades de la ingeniería; 2. Principios de transferencia de momento lineal y balances globales; 3. Principios de transferencia de momento lineal y aplicaciones; 4. Principios de transferencia de calor en estado estacionario; 5. Principios de transferencia de calor estado no estacionario; 6. Principios de transferencia de masa; 7. Principios de la transferencia de masa convectiva y en estado no estacionario. PARTE 2: Operaciones unitarias Esta parte, dedicada a las aplicaciones, cubre las siguientes operaciones unitarias: 8. Evaporación; 9. Secado de materiales de proceso; 10. Procesos de separación gas-líquido por etapas y continuos (humidificación, absorción); ll. Procesos de separación vapor-líquido (destilación); 12. Procesos de separación líquido-líquido y líquido-sólido por etapas y continuos (adsorción, intercambio iónico, extracción, lixiviación, cristalización); 13. Procesos de separación de membrana (diálisis, separación de gases, ósmosis inversa, ultrafiltración); 14. Procesos de separación mecánico-físicos (filtración, sedimentación, separación centrifuga, reducción de tamaño mecánico). En el capítulo 1 se repasan algunos principios elementales de ingeniería, métodos gráficos y matemáticos, leyes de física y química, balances de materia y balances de calor. Muchos estudiantes, en especial los de ingeniería química, están ya familiarizados con la mayoría de estos principios y pueden omitir algunas partes del capítulo o su totalidad. Algunos temas relacionados con los procesos de materiales biológicos, pueden omitirse a discreción del estudiante o del profesor; por ejemplo, las secciones 2.10, 3.10,4.4,4.8, 5.4, 5.8, 6.7 y 7.11. El texto incluye más de 170 problemas de ejemplos y más de 380 problemas para ser resueltos por el estudiante. Algunos de estos últimos de estudio se relacionan con sistemas biológicos y fueron incluidos para los lectores especialmente interesados en esta área. Una de las características específicas de este libro es la división de cada capítulo en secciones elementales y secciones de temas selectos. En las secciones elementales (que aparecen al principio de cada capítulo) se estudian los principios fundamentales necesarios para una comprensión adecuada de los temas. Después, y dependiendo de las necesidades del lector o el profesor, pueden estudiarse diversos temas selectos. Por ejemplo, en el capítulo 2, las secciones 2.1 a 2.5 cubren los principios básicos y las secciones 2.6 a 2.13, identificadas como temas selectos, abarcan temas especializados o estudios avanzados de los principios básicos. Un caso típico son las secciones 2.6 (tema selecto) “Flujo compresible de gases” y la 2.10 (tema selecto) “Fluidos no newtonianos”, que por lo general se omiten en el estudio elemental de los principios básicos. La totalidad del texto se basa en este tipo de distribución de los temas de estudio. Este libro puede usarse para un curso formal, recomendándose entonces los siguientes planes, en todos los cuales puede incluirse o no el capítulo 1. 1. Estudiode los principios de transferencia de momento lineal, de calor y de masa, y de las operaciones unitarias. En este plan se estudia la mayor parte del texto que cubre los principios de los procesos de transporte en la parte 1 y de las operaciones unitarias en la parte 2. Además, se puede incluir, si así se desea, varios temas selectos. Este plan puede aplicarse en especial a la ingeniería química y a otros campos de la ingeniería de procesos en curso de un año al nivel de los cuatro últimos semestres de licenciatura. 2. Estudio de los principios de transferencia de momento lineal, de calor y de masa , y de operaciones unitarias selectas. Sólo se cubren las secciones elementales de la parte 1 (los capítulos de principios 2, 3,4 y 5), además de temas selectos de operaciones unitarias en la parte II aplicables a la especialización considerada para un curso de un semestre. Los estudiantes de ingeniería de tratamiento de aguas de desperdicio, ingeniería de procesos de alimentos y procesos metalúrgicos, pueden adoptar este plan. 3. Estudio de los principios de transferencia de momento lineal, de calor y de masa. El propósito de este plan para un curso de un semestre o un trimestre es el de obtener una comprensión básica de los procesos de transporte de transferencia de momento lineal, calor y masa. Esto implica el estudio de las secciones elementales y de temas selectos de los capítulos dedicados a los principios: 2, 3,4 y 5 en la parte 1, omitiendo la parte 2, es decir, los capítulos de aplicaciones de las operaciones unitarias. xiv Prefacio 4. Estudio de las operaciones unitarias. Si el estudiante ya ha tomado cursos de principios de transferencia de momento lineal, de calor y de masa, los capítulos 2, 3 , 4 y 5 pueden omitirse y estudiarse solamente los correspondientes a operaciones unitarias de la parte II en un curso de un semestre o un trimestre. Este plan puede ser útil para ingenieros químicos y otras especialidades. 5. Estudio de transferencia de masa. Para estudiantes de ingeniería química o mecánica que han tomado cursos de transferencia de momento lineal y de calor, así como para los que sólo desean adquirir conocimientos generales de transferencia de masa en un semestre o un trimestre, se recomienda estudiar los capítulos 5 y 8. Los capítulos 7, 9 y 10 pueden cubrirse o no, dependiendo de los requerimientos del estudiante. La comunidad científica ya ha adoptado el sistema de unidades internacional SI (Systéme Internationale d ‘Unités) y el cambio se ha efectuado con gran rapidez. Debido a ello, este libro utiliza el sistema de unidades SI para ecuaciones, problemas de ejemplo y problemas de estudio. Sin embargo, las ecuaciones más importantes del texto se expresan en un sistema doble de unidades, SI e inglés, cuando ambos difieren. Algunos problemas de ejemplo y de estudio también se expresan en unidades inglesas, para aquellos que desean utilizar este sistema. Christie J. Geankoplis PARTE 1 Principios fundamentales de procesos de transporte de momento lineal de calor y de masa CAPÍTULO 1 Introducción a los principios de ingenieria y sus unidades 1.1 CLASIFICACIÓN DE LAS OPERACIONES UNITARIAS Y LOS PROCESOS DE TRANSPORTE CAPÍTULO 1 Introducción a los principios de ingenieria y sus unidades 1.1 CLASIFICACIÓN DE LAS OPERACIONES UNITARIAS Y LOS PROCESOS DE TRANSPORTE l.lA Introducción En las industrias de procesos químicos y físicos, así como en las de procesos biológicos y de ali- mentos, existen muchas semejanzas en cuanto a la forma en que los materiales de entrada o de alimentación se modifican o se procesan para obtener los materiales finales de productos químicos o biológicos. Es posible considerar estos procesos químicos, físicos o biológicos, aparentemente distintos, y clasificarlos en una serie de etapas individuales y diferentes llamadas operaciones unitarias. Estas operaciones unitarias son comunes a todos los tipos de industrias de proceso. Por ejemplo, la operación unitaria conocida como destilación se usa para purificar o separar alcohol en la industria de las bebidas y también para separar los hidrocarburos en la industria del petróleo. El secado de granos y otros alimentos es similar al secado de maderas, precipitados filtrados y estopa de rayón. La operación unitaria absorción se presenta en la absorción de oxigeno del aire en los procesos de fermentación o en una planta de tratamiento de aguas, así como en la absorción de hidrógeno gaseoso en un proceso de hidrogenación líquida de aceites. La evaporación de sahnueras en la industria química es similar a la evaporación de soluciones de azúcar en la industria alimenticia. La sedimentación de sólidos en suspensiones en las industrias de tratamiento de aguas y minería, es una operación similar. El flujo de hidrocarburos líquidos en refinerías de petróleo y el flujo de leche en una planta de productos lácteos se llevan a cabo de manera semejante. Las operaciones unitarias estudian principalmente la transferencia y los cambios de energía, la transferencia y los cambios de materiales que se llevan a cabo por medios físicos, pero también por medios fisicoquímicos. A continuación se describen las operaciones unitarias importantes que se cubren en este libro, y que corresponden a aquellas que se pueden combinar en diversas secuencias en un proceso. l.lB Clasificación de las operaciones unitarias 1. Flujo de fluidos. Estudia los principios que determinan el flujo y transporte de cualquier fluido de un punto a otro. 4 1.1 Clasificación de las operaciones unitarias y los procesos de transporte 2. Transferencia de calor. Esta operación unitaria concierne a los principios que gobiernan la acumulación y transferencia de calor y de energía de un lugar a otro. 3. Evaporación. Éste es un caso especial de transferencia de calor, que estudia la evaporación de un disolvente volátil (como el agua), de un soluto no volátil como la sal o cualquier otro tipo de material en solución. 4. Secado. Separación de líquidos volátiles casi siempre agua de los materiales sólidos. 5. Destilación. Separación de los componentes de una mezcla líquida por medio de la ebullición basada en las diferencias de presión de vapor. 6. Absorción. En este proceso se separa un componente gaseoso de una corriente por tratamiento con un líquido. 7. Separación de membrana. Este proceso implica separar un soluto de un fluido mediante la difusión de este soluto de un líquido o gas, a través de la barrera de una membrana semipermeable, a otro fluido. 8. Extracción líquido-líquido. En este caso, el soluto de una solución líquida se separa poniéndolo en contacto con otro disolvente líquido que es relativamente inmiscible en la solución. 9. Adsorción. En este proceso, un componente de una corriente líquida o gaseosa es retirado y adsorbido por un adsorbente sólido. 10. Lixiviación líquido-sólido. Consiste en el tratamiento de un sólido finamente molido con un líquido que disuelve y extrae un soluto contenido en el sólido. ll. Cristalización. Se refiere a la extracción de un soluto, como la sal, de una solución por precipitación de dicho soluto. 12. Separaciones físico-mecánicas. Implica la separación de sólidos, líquidos o gases por medios mecánicos, tales como filtración, sedimentación o reducción de tamaño, que por lo general se clasifican como operaciones unitarias individuales. Muchas de estas operaciones unitarias tienen ciertos principios básicos o fundamentales comu- nes. Por ejemplo, el mecanismo de difusión o de transferencia de masa se presenta en el secado, absorción, destilación y cristalización. La transferencia de calor es común al secado, la destilación, la evaporación, etc. Por lo tanto, es conveniente establecer la siguiente clasificación más fundamental de los procesos de transporte o de transferencia. l.lC Procesos fundamentales de transporte 1 . Transferencia de momento lineal. Se refiere a la que se presenta en los materiales en movimiento, como en operaciones unitarias de flujo de fluidos, sedimentación y mezclado.2. Transferencia de calor. En este proceso fundamental se considera como tal a la transferencia de calor que pasa de un lugar a otro; se presenta en las operaciones unitarias de transferencia de calor, secado, evaporación, destilación y otras. 3. Transferencia de masa. En este caso se transfiere masa de una fase a otra fase diferente; el mecanismo básico es el mismo, ya sea que las fases sean gaseosas, sólidas o líquidas. Este proceso incluye destilación, absorción, extracción líquido-líquido, separación por membranas, adsorción y lixiviación. l.lD Contenido de las partes 1 y 2 Este texto está constituido por dos partes: Parte 1: Principios fundamentales de los procesos de transporte de momento lineal, de calor C a p . 1 Introducción a los principios de ingeniería y sus unidades 5 y de masa. Estos principios fundamentales se estudian con detalle en los capítulos 1-7 para proporcionar las bases de las operaciones unitarias. Parte 2: Operaciones unitarias. En esta parte del texto se estudian las diversas operaciones unitarias y sus aplicaciones en las áreas de proceso. Existen varios principios elementales de ingeniería, técnicas matemáticas y leyes de física y química que son fundamentales para el estudio de los principios de transferencia de momento lineal, calor y masa y de las operaciones unitarias, Todo ello se repasa en este primer capítulo. Muchos lectores, en especial los ingenieros químicos, agrícolas, civiles y los químicos, probablemente conocerán ya estos principios y técnicas y pueden omitir este capítulo. Los problemas de estudio al final de cada capítulo están distribuidos por secciones y cada una de ellas corresponde al numero de una determinada sección del capítulo. 1.2 EL SISTEMA SI DE UNIDADES FUNDAMENTALES USADO EN ESTE TEXTO Y OTROS SISTEMAS DE UNIDADES Existen tres sistemas de unidades fundamentales empleados actualmente en la ciencia y la ingeniería. El primero y más importante es el sistema SI (Systeme International d’unités), cuyas tres unidades básicas son el metro (m), el kilogramo (kg) y el segundo (s). Los otros son el sistema inglés: pie (ft) - libra (Ib) - segundo (s) o sistemapls (fps); y el sistema centímetro (cm) - gramo (g) - segundo (s), o sistema cgs. En la actualidad se ha adoptado ya el sistema SI de manera oficial para usarse en ingeniería y las ciencias, aunque los sistemas inglés y cgs todavía tienen bastante aceptación. Muchos de los datos químicos y físicos, así como las ecuaciones empíricas, están expresados en estos dos sistemas. Por tanto, el ingeniero no sólo debe conocer a la perfección el sistema SI, sino además poseer cierto grado de familiarización con los otros dos sistemas. 1.2A El sistema de unidades SI Las unidades fundamentales del sistema SI son como sigue: la unidad de longitud es el metro (m); la de tiempo es el segundo (s); la de masa es el kilogramo (kg); la de temperatura es el Kelvin (K); y la de un elemento es el kilogramo mol (kg mol). Las unidades restantes se derivan de estas cantidades. La unidad de fuerza es el newton (N), que se define como 1 newton (N) = 1 kg * m/s* La unidad básica de trabajo, energía o calor es el newton-metro, o joule (J): 1 joule (J) = 1 newton * m (N . m) = 1 kg . m*/s* La potencia se mide en joule/s o watts (W): 1 joule/s (J/s) = 1 watt (W) La unidad de presión es el newton/m* o Pascal (Pa): 1 newton/m* (N/m*) = 1 Pascal (Pa) 6 1.2 El Sistema SI de unidades fundamentales usado en este texto y otros sistemas de unrdades La presión en atmósferas (atm) no es una unidad estándar del sistema SI, pero se usa en la etapa de transición. La aceleración de la gravedad se define como: 1 g = 9.80665 mIs Algunos de los prefijos para múltiplos de las unidades básicas son: giga (G) = lo’, mega (M) = 106, kilo (k) =103, centi (c) = lo-*, mili (m) = 10V3, micro (p) = lOA y nano (n) = lo-‘. El prefijo c es poco usual. Las temperaturas se definen en Kelvins (K), como unidad estándar del sistema SI. Sin embargo, en la práctica se usa mucho la escala Celsius (“C) que se define como t °C = T(K) - 273.15 Nótese que 1 °C = 1 K cuando se trata de diferencias de temperatura, At”C=ATK La unidad estándar de tiempo preferible es el segundo (s), pero también puede expresarse en unidades no decimales de minutos (min), horas (h) o días (d). 1.2B El sistema de unidades cgs El sistema cgs se relaciona con el sistema SI como sigue: 1 g masa (g) = 1 x 10w3 kg masa (kg) 1 cm = 1 x 10V2 m 1 dina = 1 g * cms = 1 x 10m5 newton (N) 1 erg = 1 dina . cm = 1 x lOe7 joule (J) . La aceleración estándar de la gravedad es g = 980.665 cmIs 1.2C El sistema inglés de unidades (pls) La equivalencia entre el sistema inglés y el SI es como sigue: 1 Ib masa (Ib,) = 0.45359 kg 1 pie = 0.30480 m 1 Ib fuerza (lbr) = 4.4482 newtons (N) 1 pie . lbr = 1.35582 newton . m (N * m) = 1.35582 joules (J) Cap. 1 Introducción a los principios de ingeniería y sus unidades 1 lb/pulg2 abs = 6.89476 x lo3 newton/m2 (N/m2) 1.8 ° F = 1 K = 1 ° C (centígrado o Celsius) g = 32.174 piels El factor de proporcionalidad para la ley de Newton es gc = 32.174 pie . Ib,/ lbf * s2 El factor g, en unidades SI y cgs es 1.0 y se omite. En el apéndice A. 1 se incluyen tablas de factores de conversión para los tres sistemas, además, en varias secciones de este texto aparecen ejemplos del uso de estas relaciones. Este texto usa el sistema SI como conjunto primario de unidades para ecuaciones, problemas de ejemplo y de estudio. Sin embargo, las ecuaciones importantes que se deducen en el texto se expresan en dos sistemas de unidades, SI e ingles, cuando las ecuaciones difieren. Algunos problemas de ejemplo y de estudio también usan unidades inglesas. En algunos casos, las etapas intermedias y las respuestas de los problemas de ejemplo también se expresan en unidades del sistema inglés. 1.2D Ecuaciones dimensionalmente homogéneas y con unidades congruentes Una ecuación dimensionalmente homogénea es aquella en la cual todos los términos tienen el mismo tipo de unidades. Estas unidades pueden ser las básicas o derivadas (por ejemplo, kg/s2 . m o Pa). Esta clase de ecuaciones puede usarse con cualquier sistema de unidades siempre y cuando se utilicen idénticas unidades básicas o derivadas en toda la ecuación. (No se requieren factores de conversión cuando se emplean unidades congruentes.) El lector debe ser cuidadoso en el uso de ecuaciones, comprobando siempre su homogeneidad dimensional. Para proceder así, primero se selecciona un sistema de unidades (SI, inglés, etc.). Después, se incluyen las unidades de cada término y se comprueba su equivalencia luego de cancelar las que sean iguales en cada término 1.3 MÉTODOS PARA EXPRESAR TEMPERATURAS Y COMPOSICIONES 1.3A Temperatura Existen dos escalas de temperatura comunes en las industrias química y biológica. Ellas son grados Fahrenheit (OF) y Celsius (°C). Es muy frecuente que se necesite obtener valores equivalentes de una escala a la otra. Ambas usan el punto de congelación y el punto de ebullición del agua a 1 atmósfera de presión como patrones. Las temperaturas también se expresan en grados K absolutos (sistema SI) o grados Rankine (°R) en vez de °C o °F. La tabla 1.3-1 muestra las equivalencias de estas cuatro escalas de temperaturas. La diferencia entre el punto de ebullición del agua y el punto de fusión del hielo a 1 atm es 100 °C o 180 °F. Por lo tanto, un cambio de 1.8 |°F es igual a un cambio de 1 °C. En general, el valor de -273.15 ° C se redondea a -273.2 ° C y el de -459.7 °F a -460 °F. Para convertir de una escala a otra pueden usarse las siguientes ecuaciones: 8 1.3 Métodos para expresar temperaturas y composiciones TABLA 1.3- 1. Escalas de tempera tura y equiva lenc ias Cen t ígrada Fahrenhe i t Kelvin Rankine Cels ius Agua en ebullición 100 ° C 212 °F 373.15 K 671.7 °R 100 °C Fusión del hielo 0 ° C 32 °F 273.15 K 491.7 °R 0 °C Cero absoluto -273.15 ° C -459.7 °F OK 0 ° R -273.15 °C °F = 32 + 1.8(°|C) (1.3-1) 1‘C=$‘F-32) (1.3-2) ° R = °F + 460 (1.3-3) K = °C + 273.15 (1.3-4) 1.3B Unidades molares y unidades de peso y masa Existen muchos métodos para expresar las composiciones de gases, líquidos y sólidos. Uno de los más útiles es el de las unidades molares, pues las reacciones químicas y las leyes de los gases resul- tan más simples al expresarlas en unidades molares. Un mol de una sustancia pura se define como la cantidad de dicha sustancia cuya masa es numéricamente igual a su peso molecular. De esta manera, 1 kg mol de metano, CH4, contiene 16.04 kg. También, 1.0 Ib mol contiene 16.04 Ib,. La fracción mol de una determinada sustancia es el número de moles de dicha sustancia dividido entre el número total de moles. De la misma forma, la fracción en peso o en masa es la masa de la sustancia dividida entre la masa total. Estas dos composiciones que se aplican por igual a gases, 1íquidos y sólidos, pueden expresarse como sigue para el componente A de una mezcla: moles de A xA (fracción mol de A) = moles totales masa de A wA (fracción en masa o en peso de A) = masa total (1.3-5) EJEMPLO 1.3-1. Fracción mol y en masa o en peso de una sustancia Un recipiente contiene 50 g de agua (B) y 50 g de NaOH (A). Calcule la fracción en peso y la fracción mol de NaOH. Calcule también el valor Ib, para NaOH (A) y H20 VO- Solución: Tomando como base el cálculo 50 + 50 o 100 g de solución, se determinan los siguientes datos: cap. 1 Introducción a los principios de ingeniería y sus unidades C o m p o n e n t e G Fracc ión en peso Peso molecular Gramos Mo1 Fracc ión mol Hz0 VO 50.0 -2% =1 0 0 0 5 0 0 ’ 18.02 50.0 = 2 . 7 8 2.78 =18.02 0690 .4 . 0 3 NaOH (A) 5 0 . 0 50 = 1 0 0 0500 . 4 0 . 0 50.0 = 1.25 1.25 = 4 0 . 0 0 3 1 0 .4 . 0 3 - Total 100.0 1.00 4 . 0 3 1 .ooo, Por consiguiente, xA = 0.3 10 y xB = 0.690 y X, + xB = 0.310 + 0.690 = 1.00. Además, WA + wB = 0.500 + 0.500 = 1.00. Para calcular Ib, de cada componente, en el apéndice A.l se ve que el factor de conversión es 453.6 g por 1 Ib,. Usando esto, 5Og A Ib masa de A = mlbIbmA___ = 0.1102 lbmA Nótese que los gramos de A en el numerador se cancelan con los gramos de A en el denominador, quedando Ib, de A en el numerador. Siempre debe tomarse la precaución de incluir todas las unidades de la ecuación y cancelar las que aparezcan en el numerador y en el denominador. De la misma manera se obtiene el valor 0.1102 Ib, de B (0.0500 kg de B). Los análisis de sólidos y líquidos generalmente se expresan como fracción en peso o en masa o porcentaje en peso, y los gases en porcentaje o fracción mol. A menos que se indique lo contrario, se supondrá que los análisis de sólidos y líquidos están expresados en fracción peso (masa) o porcentaje, y los correspondientes a los gases en fracción mol o porcentaje. 1.3C Unidades de concentración para líquidos En general, cuando un líquido se mezcla con otro en el que sea miscible, los volúmenes no son aditivos. Por consiguiente, las composiciones de los líquidos no suelen expresarse en porcentaje en volumen sino como porcentaje en peso o molar. Otra forma conveniente de expresar las concentra- ciones de los componentes de una solución es la molaridad, que se define como el número de g mol de u n componente por litro de solución. Otros de los métodos expresan en kg/m3, g/l, gIcm3, Ib mol/pie3, lb,/pie3 y lb,/galón. Todas estas medidas de concentración dependen de la temperatura, por lo que es necesario especificarla. El método más común para expresar la concentración total por unidad de volumen es la densidad, kg/m3, g/cm3 o lb,/pie3. Por ejemplo, la densidad del agua a 277.2 K (4 “C) es 1000 kg/m3 o 62.43 lb,/pie3. Algunas veces la densidad de una solución se expresa como densidad relativa (peso específico), que se define como la densidad de la solución a una temperatura específica, dividida entre la densidad de una sustancia de referencia a esa temperatura. Si la sustancia de referencia es el agua a 277.2 K, la densidad relativa (peso específico) y la densidad de una sustancia son numéricamente iguales. 10 1.4 Leyes de los gases y presión de vapor 1.4 LEYES DE LOS GASES Y PRESIÓN DE VAPOR 1.4A Presión Existen muchas formas para expresar la presión ejercida por un fluido o un sistema . Una presión absoluta de 1.00 atm es equivalente a 760 mm de Hg a 0 “C, 29.921 pulg de Hg, 0.760 m de Hg, 14.696 Ib fuerza por pulgada cuadrada (lb/pulg2 abs), o 33.90 pies de agua a 4 “C. La presión manométrica es la presión por encima de la presión absoluta. De esta manera, una presión manométrica de 2 1.5 Ib por pulgada cuadrada (Zb/puZg2 ) es igual a 2 1.5 + 14.7 (redondeando) o 36.2 lb/pulg2 abs. En unidades SI, 1 lb/pulg2 abs = 6.89476 x lo3 pascales (Pa) = 6.89476 x lo3 newtons/m’. Además, 1 atm = 1.01325 x lo5 Pa. En algunos casos, en especial cuando se trata de evaporación, puede expresarse la presión como pulgadas de vacío de mercurio. Esto significa la presión en pulgadas de mercurio medida “por debajo” de la presión barométrica absoluta. Por ejemplo, una lectura de 25.4 pulg de vacío de Hg es 29.92 - 25.4, o 4.52 pulg de Hg de presión ‘absoluta. (Las conversiones de unidades de presión pueden buscarse en el apéndice A. 1.) 1.4B Ley de los gases ideales Un gas ideal se define como aquel que obedece a leyes simples. Además, las moléculas gaseosas de un gas ideal se consideran como esferas rígidas que no ocupan volumen por sí mismas y que no se afectan mutuamente. Ningún gas real obedece estas leyes con exactitud, pero a temperaturas y presiones normales de pocas atmósferas, la ley de los gases ideales proporciona respuestas con bastante aproximación. Por consiguiente, esta ley tiene una precisión suficiente para los cálculos de ingeniería. La ley de los gases ideales de Boyle indica que el volumen de un gas es directamente proporcional a la temperatura absoluta e inversamente proporcional a la presión absoluta. Esto se expresa como pV = nRT (1.4-1) donde p es la presión absoluta en N/m2, Ves el volumen del gas en m3, n es el número de kg mol de gas, T es la temperatura absoluta en K, y R es la constante de la ley de los gases y tiene un valor de 8314.3 kg * m2/kg mol . s2 * K. Cuando el volumen se expresa en pie3, n en Ib mol y Ten °R, el valor de R es 0.7302 pie3 atm/lb mol T = K, R = 82.057 cm3 * °R. Para unidades cgs (véase el apéndice A. l), V = cm3, - atm/g mol * K y n = g mol. Para comparar diferentes cantidades de gases, las condiciones estándar de temperatura y presión (abreviadas TPE o CE) se definen arbitrariamente como 101.325 kPa (1.0 atm) abs y 273.15 K (0 “C). En estas condiciones, los volúmenes son volumen de 1.0 kg mol (CE) = 22.414 m3 volumen de 1.0 g mol (CE) = 22.414 litros = 22 414 cm3 volumen de 1.0 Ib mol (CE) = 359.05 pies3 Cap. 1 Introducción a los principios de ingeniería y sus unidades l l EJEMPLO 1.4-I. Constante de la ley de los gases Calcule el valor de la constante de la ley de los gases, R, cuando la presión está en Ib/pulg2 abs, las moles en Ib moles, el volumen en pie3 y la temperatura en “R. Repita para unidades SI. Solución: En condiciones estándar, p = 14.7 lb/pulg2 abs, V = 359 pies3 y T = 460 + 32 = 492 °R (273.15 K). Sustituyendo en la ecuación (1.4-l) n = 1 .O Ib mol y despejando R, R = E = (14.7 lb/pulg2 abs)(359 pie3) = 10.73 pie3. lb/pulg2 abs nT (1.0 Ib mo1)(492 °R) Ib m o l °R R= c = (1.01325 x lo5 Pa)(22.414 m3) = 8314 m3. Pa nT (1.0 kg mo1)(273.15 K) kg mol .K De la ecuación (1.4-l) puede obtenerse una relación muy útil para n moles de gas en condiciones ~1, VI, Tl y para condiciones p2, V2, T2. Sustituyendo en la ecuación (1.4-l), p2V2 = nRT2 Al combinar se obtiene & - I; P25 - q 1.4C Mezclas de gases ideales (1.4-2) La ley de Dalton para mezclas de gases ideales enuncia que la presión total de una mezcla de gases es igual a la suma de las presiones parciales individuales: P = PA f PB + PC + . . . (1.4-3) donde P es la presión total y PA , PB , pc , . . . son las presionesparciales de los componentes A, B, C , . . . de la mezcla. Puesto que el número de moles de un componente es proporcional a su presión parcial, la fracción mol de un componente es .,dL A P Pa+Pp+Pc+ ... (1.4-4) 1 2 1.4 Leyes de los gases y presión de vapor La fracción volumen es igual a la fracción mol. Las mezclas de gases casi siempre se expresan en términos de fracciones mol y no de fracciones en peso. Para cálculos de ingeniería, la ley de Dalton tiene la suficiente precisión para usarla en mezclas reales a presiones totales de pocas atmósferas. EJEMPLO 1.4-2. Composición de una mezcla gaseosa Una mezcla gaseosa contiene los siguientes componentes y presiones parciales: COZ, 75 mm de Hg; CO, 50 mm de Hg; N2, 595 mm de Hg; 02, 26 mm de Hg. Calcule la presión total y la composición en fracciones mol. Solución: Sustituyendo en la ecuación (1.4-3), P = PA + PB + PC + PD = 75 + 50 + 595 + 26 = 746 mm Hg La fracción mol de COZ se obtiene mediante la ecuación (1.4-4) XA (CO,) &+.lol P De la misma manera, las fracciones mol de CO, N2 y O2 son 0.067, 0.797 y 0.035, respectivamente. 1.4D Presión de vapor y punto de ebullición de los líquidos Cuando un líquido se introduce en un recipiente cerrado, las moléculas de dicho líquido se evaporan en el espacio por encima de él y lo llenan por completo. Después de un tiempo se establece un equilibrio. Este vapor ejerce una presión al igual que un gas y a esta presión se le puede llamar presión de vapor del líquido. El valor de la presión de vapor es independiente de la cantidad de líquido en el recipiente siempre y cuando haya algo de líquido presente. Si un gas inerte como el aire también está presente en el espacio del vapor, su efecto sobre la presión de vapor es muy bajo. En general, el efecto de la presión total sobre la presión de vapor puede considerarse como despreciable para presiones de unas cuantas atmósferas. La presión de vapor de un líquido aumenta notablemente al elevarse la temperatura. Por ejem- plo, en los datos del agua del apéndice A.2, se ve que la presión de vapor a 50 ° C es 12.333 kPa (92.5 1 mm de Hg). A 100 °C, la presión de vapor aumenta en alto grado a un valor de 101.325 kPa (760 mm de Hg). El punto de ebullición de un líquido se define como la temperatura a la cual la presión de vapor del líquido es igual a la presión total. Por lo tanto, si la presión atmosférica total es de 760 mm de Hg, el agua hierve a 100 “C. En la cumbre de una montana alta, donde la presión es considerablemente más baja, el agua hierve a temperaturas inferiores a 100 °C. Una gráfica de la presión de vapor PA de un líquido en función de la temperatura no produce una linea recta sino una curva. Sm embargo, para intervalos de temperatura moderados, una gráfica de log PA en función de l/T es casi una línea recta, cuya expresión corresponde a @PA= donde m es la pendiente, b es una constante para el líquido A y T es la temperatura en K. Cap. I Introducción a los principios de ingeniería y sus unidades 1 3 1.5 CONSERVACIÓN DE LA MASA Y BALANCES DE MATERIA 1.5A Conservación de la masa Una de las leyes básicas de física es la ley de la conservación de la masa. Esta ley, expresada en forma simple, enuncia que la masa no puede crearse ni destruirse (excluyendo, por supuesto, las reacciones nucleares o atómicas). Por consiguiente, la masa (o el peso) total de todos los materiales que intervienen en el proceso debe ser igual a la de todos los materiales que salen del mismo, más la masa de los materiales que se acumulan o permanecen en el proceso. entradas = salidas + acumulación (1.5-1) En la mayoría de los casos no se presenta acumulación de materiales en el proceso, por lo que las entradas son iguales a las salidas. Expresado en otras palabras, “ lo que entra debe salir”. A este tipo de sistema se le llama proceso en estado estacionario. entradas = salidas (estado estacionario) (1.5-2) 1.5B Balances simples de materia En esta sección se estudiarán balances simples de materia (en peso o en masa) en diversos procesos en estado estable sin que se verifique una reacción química. Podemos usar unidades kg, Ib,, mol, Ib, g, kg mol, etc., para estos balances. Conviene recordar la necesidad de ser congruentes y no mezclar varios tipos de unidades en los balances. Cuando intervienen reacciones químicas en los balances (tal como sucede en la sección 1 .5D), deben usarse unidades de kg mol, pues las ecuaciones químicas relacionan moles reaccionantes. En la sección 2.6 se estudiarán con más detalle los balances totales de masa y en la sección 3.6, los balances diferenciales de masa. Para resolver un problema de balance de materia es aconsejable proceder mediante una serie de etapas definidas, tal como se explican a continuación: 1 . Trácese un diagrama simple del proceso. Este puede ser un diagrama de bloques que muestre simplemente la corriente de entrada con una flecha apuntando hacia dentro y la corriente de salida con una flecha apuntando hacia fuera. Inclúyanse en cada flecha composiciones, cantidades, temperaturas y otros detalles de la corriente. Todos los datos pertinentes deben quedar incluidos en este diagrama. 2. Escríbanse las ecuaciones químicas involucradas (si las hay). 3. Selecciónese una base para el cálculo. En la mayoría de los casos, el problema concierne a la cantidad específica de una de las corrientes del proceso, que es la que se selecciona como base. 4. Procédase al balance de materia. Las flechas hacia dentro del proceso significarán entradas y las que van hacia fuera, salidas. El balance puede ser un balance total de material, como en la ecuación (1.52), o un balance de cada componente presente (cuando no se verifican reacciones químicas). Los procesos típicos en los que no hay una reacción química son, entre otros, secado, evaporación, dilución de soluciones, destilación, extracción, y puedenmanejarse por medio de balances de materia con incógnitas y resolviendo posteriormente las ecuaciones para despejar dichas incógnitas. 14 1.5 Conservación de la masa y balances de materia EJEMPLO 1.5-1. Concentración de jugo de naranja En el proceso de concentración de jugo de naranja, el zumo recién extraído y filtrado que contiene 7.08% de sólidos en peso, se alimenta a un evaporador al vacío. En el evaporador se extrae agua y el contenido de sólidos aumenta al 58% en peso. Para una entrada de 1000 kg/h, calcule la cantidad de las corrientes de jugo concentrado y agua de salida. Solución: Siguiendo las cuatro etapas descritas, se traza un diagrama de flujo del proceso (etapa 1) en la figura 1.5-1. Note que la letra W representa la cantidad desco- nocida o incógnita de agua y C es la cantidad de jugo concentrado. No hay reacciones químicas (etapa 2). Base: 1000 kg/h de jugo de entrada (etapa 3). Para llevar a cabo los balances de materia (etapa 4), se procede a un balance total de materia usando la ecuación (1.5-2). 1000 = w + c (1.5-3) Esto produce una ecuación con dos incógnitas. Por lo tanto, se hace un balance de componentes con base en el sólido: (1.5-4) Para resolver estas ecuaciones, primero se despeja C en la ecuación (1.5-4) pues W desaparece. Se obtiene C = 122.1 kg/h de jugo concentrado. Sustituyendo el valor de C en la ecuación (1.5-3), 1000 = w + 122.1 se obtiene que W = 877.9 kg/h de agua. Para comprobar los cálculos, puede escribirse un balance del componente agua. lOOO( 1oo;;‘08) = 877.9 + 122.1( 10;;58) -1 Evaporador / C kg/h jugo concentrado . 58% sólidos (1.5-5) FIGURA 1.5-l. Diagrama de flujo del proceso para el ejemplo 1.5-I Cap. 1 Introducción a los principios de ingeniería y sus unidades 1 5 Al resolver, 929.2 = 877.9 + 51.3 = 929.2 En el ejemplo 1.5-1 solo intervino un proceso. Muchas veces se presentan varios procesos en serie, en cuyo caso puede llevarse a cabo un balance por separado de cada proceso y un balance para la totalidad del proceso general. 1.5C Balance de materia y recirculación En algunas ocasiones se presentan casos en los que hay una recirculacióno retroalimentación de parte del producto a la corriente de alimentación. Por ejemplo, en una planta de tratamiento de aguas, parte de los lodos activados de un tanque de sedimentación se recirculan al tanque de aereación donde se trata el líquido. En algunas operaciones de secado de alimentos, la humedad del aire de entrada se controla recirculando parte del aire húmedo y caliente que sale del secador. En las reacciones químicas, el material que no reaccionó en el reactor puede separarse del producto final y volver a alimentarse al reactor. EJEMPLO 1.5-2. Cristalización y recirculación de KV03 En un proceso que produce KNOs, el evaporador se alimenta con 1000 kg/h de una solu- ción que contiene 20% de KNO, de sólidos en peso y se concentra a 422 K para obtener una solución de KNOs al 50% de sólidos en peso. Esta solución se alimenta a un cristalizador a 311 K, donde se obtienen cristales de KNOs al 96% de sólidos en peso. La solución saturada que contiene 37.5% de KN03 de sólidos en peso se recircula al evaporador. Calcule la cantidad de corriente de recirculación R en kg/h y la corriente de salida de cristales P en kg/h. Solución: En la figura 1.5-2 se muestra el diagrama de flujo. Como base del cálculo usaremos 1000 kg/h de alimentación original. No se verifican reacciones químicas. Podemos efectuar un balance general de la totalidad del proceso para el KN03 y obtener directamente el valor de P, lOOO(O.20) = W(0) + P(0.96) (1.5-6) P = 208.3 kg cristales/h Para calcular la corriente de recirculación, podemos llevar a cabo un balance con respecto al evaporador o al cristalizador. Efectuando el balance en el cristalizador sólo existen dos incógnitas, S y R y se obtiene que S = R+ 208.3 (1.5-7) Para el balance de KN03 en el cristalizador, S(O.50) = R(0.375) + 208.3(0.96) (1.5-8) Sustituyendo el valor de S de la ecuación (1.5-7) en la (1.5-8) y despejando: R = 766.6 kg, recirculando/h y S = 974.9 kg/h. 16 1.5 Conservación de la masa y balances de materia t Agua, Wkgh I Alim. 1000 kg/h Evaporador Skg/h Cristalizador 20% KNo3 . ' 4 2 2 K 5O%KNO3 ' 311 K Recirc. R kg/h Cristales, P kg/h 37.5% KNo3 -a/,HzO b FIGURA 1.5-2. Diagrama de flujo para el proceso del ejemplo 1.5-2. 1.5D Balances de materia y reacciones químicas En muchos casos, los materiales que entran a un proceso toman parte en una reacción química, por lo que los materiales de salida son diferentes de los de entrada. En estos casos suele ser conveniente llevar a cabo un balance molar y no de peso para cada componente individual, tal como kg mol de H2 o kg átomo de H, kg mol de ion CO3-, kg mol de CaC03, kg átomo de Na+, kg mol de N2, etcétera. Por ejemplo, en la combustión de CH4 con aire, se pueden efectuar balances de kg mol de HZ, C, 02 0 N2. EJEMPLO 1.5-3. Combustión de un gas combustible Un gas combustible que contiene 3.1 mol % de Hz, 27.2% CO, 5.6% de COZ, 0.5% de 02 y 63.6% de N2, se quema con 20% de exceso de aire (esto es, aire sobrante con respecto al que es necesario para una combustión completa hasta CO2 y H20). La combustión del CO sólo se completa al 98%. Para 100 kg de gas combustible, calcule los moles de cada componente en el gas de salida. Solución: Primero se traza el diagrama de flujo del proceso (Fig. 1.5-3). En el diagrama se muestran los componentes del gas de salida. Si A son los moles de aire y F los moles de gas de combustión, el diagrama queda completo. Las reacciones químicas son co+~02+co2 (1.5-9) H, + + O2 + H,O (1.5-10) La contabilidad del total de moles de 02 en el gas combustible es: moles de 02 en el gas combustible = (t) 27.2 (CO) + 5.6 (COZ) + 0.5 (02) = moles de 02 Para que todo el Hz se transforme en H20, la ecuación (1.5-10) indica que se necesita + mol de 02 por 1 mol de Hz, o 3.1(3) = 1.55 moles totales de 02. Con base en la ecuación (1.5-g), para la combustión completa del CO se necesitan 27.2 ($) = 13.6 moles de 02. Por lo tanto, la cantidad teórica de 02 que se debe usar es Cap. 1 Introducción a los principios de ingeniería y sus unidades 17 A kg mol de aire 100 kg mol de gas combustible 3.1 % Hz 27.2 % CO 5.6 % CO2 0.5 % 02 63.6 % N2 100.0 F kg mol de gas de combustión Quemador b Hz0 c o co2 02 N2 FIGURA 1.5-3. Diagrama de flujo del proceso para el ejemplo 1.5-3. moles de O2 teóricamente necesarios = 1.55 + 13.6 - 0.5 (en el gas combustible) = 14.65 moles de 02 Para un exceso de 20% se añaden 1.2 (14.65) o 17.58 moles de 02. Puesto que el aire contiene 79 moles % de N2, la cantidad que se añade de éste es (79/21) (17.58) o 66.1 moles de N2. Para calcular los moles en el gas de combustión final, todo el HZ produce HzO; esto es, 3.1 moles de H20. En el caso del CO, hay un 2.0% que no reacciona. Por consiguiente, quedarán sin quemarse 0.02 (27.2) o 0.54 mol de CO. El balance total de carbono es el siguiente: moles de entrada de C = 27.2 + 5.6 = 32.8 moles de C. En el gas de combustión de salida, 0.54 mol estará como CO y el resto, 32.8 - 0.54 = 32.26 moles como COZ. Para calcular los moles de salida de 02, se procede a un balance general de 02. O2 de entrada = 19.7 (en el gas combustible) + 17.58 (en el aire) = 37.28 moles de 02 O2 de salida = (3.1/2) (en el agua) + (0.54/2) ( en el CO) = 32.26 (en el COZ) + 02 libre Igualando las entradas y salidas de 02, el O2 libre que queda = 3.2 moles de 02. Para el balance de N2, la salida = 63.6 (en el gas combustible) + 66.1 (ene1 aire), o 129.70 moles de N2. El gas de combustión de salida contiene 3.10 moles de H20, 0.54 mol de CO, 32.26 moles de COZ, 3.20 moles de O2 y 129.7 moles de N2. En las reacciones químicas con diversos reactivos, el reactivo limitante se define como el compuesto que está presente en cantidad de menor que la necesaria para que reaccione estequiométricamente con los otros reactivos, De esta manera, el porcentaje de terminación de una reacción es la cantidad de reactivo limitante que se ha transformado, dividida entre la cantidad presente al principio, multiplicada por 100. 1.6 UNIDADES DE ENERGÍA Y CALOR 1.6A Joules, Calorías y Btus Los balances de energía de un proceso se elaboran de manera similar a los correspondientes para procesos químicos y biológicos. Casi siempre una gran parte de la energía que entra a un sistema 1 8 1.6 Unidades de energía y calor o sale del mismo, está en forma de calor. Antes de elaborar estos balances de energía, es necesario comprender los diversos tipos de unidades para la energía y el calor. En el sistema SI, la energía se expresa en joules (J) o kilojoules (kJ). La energía también se expresa en btu, abreviatura de “British thermal units” (unidades térmicas inglesas) o en cal (calorías). La caloría gramo (abreviada cal) se define como la cantidad de calor necesaria para calentar 1.0 g de agua 1.0 °C (de 14.5 °C a 15.5 °C). Otra unidad es la kilocaloría, 1 kcal = 1000 cal. El btu se define como la cantidad de calor necesaria para aumentar 1 °F la temperatura de 1 Ib de agua. Por tanto, con base en el apéndice A. 1, 1 btu = 252.16 cal = 1.05506 kJ (1.6-1) 1.6B. Capacidad calorífica La capacidad calorífica de una sustancia se define como la cantidad de calor necesaria para aumentar su temperatura un grado. Puede expresarse para 1 g, 1 Ib, 1 g mol , 1 kg mol o 1 Ib mol de sustancia. Por ejemplo, una capacidad calorífica expresada en unidades SI es J/kg mol - K: en otras unidades es cal/g ° C, cal/g mol . °C, kcal/kg mol - °C, btu/lb, * °F o btu/lb mol * “F. Se puede demostrar que el valor numérico de la capacidad calorífica es el mismo en unidades de masa y unidades molares. Es decir, 1.0 cal/g *°C = 1.0 btu/lb, . °F (1.6-2) 1.0 cal/g mol - “C = 1.0 btu/lb mol * °F (1.6-3) Por ejemplo, para comprobar esto, supóngase que una sustancia tiene una capacidad calorífica de 0.8 btu/lb, . °F. La conversión se obtiene tomando 1.8 ° F por 1 ° C o 1 K, 252.16 cal por 1 btu y 453.6 g por 1 Ib,, de la siguiente manera: Capacidad calorífica (&)=(“‘8 lb~°F)(252*16$)(453.6;,lb,)(1’8%)--. Las capacidadescaloríficas de los gases (también conocidas como calores específicos a presión constante, cp, están en función de la temperatura y, para cálculos de ingeniería puede suponerse que son ‘independientes de la presión cuando se trata de pocas atmósferas. En la gran mayoría de los problemas de ingeniería el interés radica en determinar la cantidad de calor que se requiere para calentar un gas de una temperatura tl a otra t2. Puesto que el valor de cp varía con la temperatura, es necesario integrar o bien usar un valor promedio adecuado de cpm. Existen datos experimentales de estos valores medios para una Ti de 298 K o 25 °C (77 “F) y diversos valores de T2 (como los que se muestran en la tabla 1.6-1) a 10 1.325 kPa de presión o menos, con el valor de cp” expresado en kJ/kg mol * K, a diferentes valores de T2 en K o °C. Cap. 1 Introducción a los principios de ingeniería y sus unidades 1 9 TABLA 1.6-1. Capacidades caloríficas molares medias de gases entre 298 y TK (25 y T “C) a 101.325 kPa o menos (unidades SI: cp = kJ/kg mol K) T(K) T°C H2 N2 c o Aire 02 H20 (332 CH4 so2 298 25 28.86 29.14 29.16 29.19 29.38 33.59 37.20 3 5 . 8 3 9 . 9 373 100 28.99 29.19 29.24 29.29 29.66 33.85 38.73 3 7 . 6 4 1 . 2 473 200 29.13 29.29 29.38 29.40 30.07 34.24 40.62 4 0 . 3 4 2 . 9 573 300 29.18 29.46 29.60 29.61 30.53 34.39 42.32 43.1 4 4 . 5 673 400 29.23 29.68 29.88 29.94 31.01 35.21 43.80 4 5 . 9 4 5 . 8 773 500 29.29 29.97 30.19 30.25 31.46 35.75 45.12 4 8 . 8 4 7 . 0 873 600 29.35 30.27 30.52 30.56 31.89 36.33 46.28 5 1 . 4 4 7 . 9 973 700 29.44 30.56 30.84 30.87 32.26 36.91 47.32 5 4 . 0 4 8 . 8 1073 800 29.56 30.85 31.16 31.18 32.62 37.53 48.27 5 6 . 4 4 9 . 6 1173 900 29.63 31.16 31.49 31.48 32.97 38.14 49.15 5 8 . 8 50.3 1273 1000 29.84 31.43 31.77 31.79 33.25 38.71 49.91 6 1 . 0 5 0 . 9 1473 1200 30.18 31.97 32.30 32.32 33.78 39.88 51.29 6 4 . 9 5 1 . 9 1673 1400 30.51 32.40 32.73 32.76 34.19 40.90 52.34 Capacidades caloríficas molares medias de gases entre 2.5 y T °C a 1 atm de presión o menos (unidades del sistema inglés: cp = btu/lb m o l °F) T°C H2 N2 CO Aire 02 NO H20 CO2 HCI CI, C H 4 SO2 C2H4 S O 3 C2H6 25 6.894 6.961 6.965 6.972 7.017 7.134 8.024 8.884 6 .96 8 .12 8.55 9 .54 10.45 12.11 12.63 100 6.924 6.972 6.983 6.996 7.083 7.144 8.084 9.251 6 .97 8 .24 8.98 9.85 l l .35 12.84 13.76 200 6.957 6.996 7.017 7.021 7.181 7.224 8.177 9.701 6 .98 8 .37 9 .62 10.25 12.53 13.74 15.27 300 6.970 7.036 7.070 7.073 7.293 7,252 8.215 10.108 7 .00 8.48 10.29 10.62 13.65 14.54 16.72 400 6.982 7.089 7.136 7.152 7,406 7.301 8.409 10.462 7 .02 8.55 10.97 10 94 14.67 15.22 18.11 500 6.995 7.159 7.210 7.225 7.515 7,389 8.539 10.776 7 .06 8.61 l l .65 l l .22 15.60 15.82 19.39 600 7.01 1 7 .229 7,289 7.299 7.616 7.470 8,678 11.053 7 .10 8 .66 12.27 11.45 16.45 16.33 20.58 700 7.032 7.298 7.365 7,374 7.706 7.549 8.816 11.303 7 .15 8 .70 12.90 l l .66 17.22 16.77 21.68 SOQ 7.060 7.369 7.443 7.447 7.792 7.630 8.963 11.53 7.21 8.73 13.48 11.84 17.95 17.17 22.72 900 7.076 7.443 7.521 7.520 7.874 7.708 9.109 l l .74 7 .27 8 .77 14.04 12.01 18.63 17.52 23.69 1000 7.128 7.507 7.587 7.593 7.941 7.773 9.246 l l .92 7.33 8 .80 14.56 12.15 19.23 17.86 24.56 1100 7.169 7.574 7.653 7.660 8.009 7.839 9.389 12.10 7 .39 8.82 15.04 12.28 19.81 18.17 25.40 1200 7.209 7.635 7.714 7.719 8.068 7.898 9.524 12.25 7 .45 8 .94 15.49 12.39 20.33 18.44 26.15 1300 7.252 7.692 7.772 7.778 8.123 7,952 9.66 12.39 1400 7.288 7.738 7.818 7.824 8.166 7,994 9.77 12.50 1500 7.326 7.786 7.866 7.873 8.203 8.039 9.89 12.69 1600 7.386 7.844 7.922 7.929 8,269 8.092 9.95 12.75 1700 7.421 7.879 7.958 7.965 8.305 8.124 10.13 12.70 1800 7.467 7.924 8.001 8.010 8.349 8.164 10.24 12.94 1900 7.505 7.957 8.033 8.043 8.383 8.192 10.34 13.01 2000 7.548 7.994 8.069 8.081 8.423 8.225 10.43 13.10 2100 7.588 8.028 8.101 8.115 8.460 8.255 10.52 13.17 2200 7.624 8.054 8.127 8.144 8.491 8.277 10.61 13.24 Referencia: 0. A. Hougen, K. W. Watson y R. A. Ragatz. Chemical Process Principles , Parte 1, 2a. ed., Nueva York, John Wiley and Sons, Inc,. 1954. Con permiso. 20 1.6 Unidades de energía y calor EJEMPLO 1.64. Calentamiento de Nt gaseoso Una cierta cantidad de Nz gaseoso a 1 atm de presión se calienta en un intercambiador de calor. Calcule la cantidad de calor necesario expresado en J, para calentar 3.0 g mol de N2 en los siguientes intervalos de temperatura: a) 298-673 K (25-400 °C) b) 298-1123 K (25-850 “C) c) 673-1123 K (400-850 “C) Solución: Para el inciso a), la tabla 1.6-1 muestra los valores de cpm a 1 atm de presión o menos, que pueden usarse hasta varias atmósferas. Para N2 a 673 K, cpm = 29.68 kJ/ kg mol * K o 29.68 J/g mol * K. Ésta es la capacidad calorífica media para el intervalo 298-673 K. calor necesario = M g mol c JPm g mol . K G-TK (1.6-4) Sustituyendo los valores conocidos, calor necesario = (3.0) (29.68) (673 - 298) = 33390 J Para el inciso b), el valor de cpm a 1123 K (obtenido por interpolación lineal entre 1073 y 1173 K) es 31.00 J/g mol * K. calor necesario = 3.0 (3 1.00) (ll23 - 298) = 76725 J Para el inciso c), no existe capacidad de calor media para el intervalo 673-l 123 K. Sin embargo, se puede utilizar el calor requerido para calentar el gas de 298 a 673 K en el inciso a) y restarlo del inciso b), lo cual incluye que el calor pase de 298 a 673 K, más 673 hasta 1123 K. calor necesario (673 - 1123 K) = calor necesario (298 - 1123 K) - calor necesario (298-673) (1.6-5) Sustituyendo los valores apropiados en la ecuación (1.6-5), calor necesario = 76725 - 33390 = 43335 J Al calentar una mezcla gaseosa, el calor total requerido se determina calculando primero el calor necesario para cada componente individual y sumando los resultados. Las capacidades caloríficas de sólidos y líquidos también dependen de la temperatura y son independientes de la presión. Los valores pueden encontrarse en los apéndices A.2, Propiedades físicas del agua; A.3, Propiedades físicas de compuestos inorgánicos y orgánicos; y A.4, Propie- dades físicas de alimentos y materiales biológicos, En las referencias (Pl) pueden obtenerse datos adicionales. Cap. 1 Introducción a los principios de ingeniería y sus unidades 2 1 EJEMPLO 1.6-2. Calentamiento de leche En un intercambiador de calor se calienta leche entera de vaca (4536 kg/h) de 4.4 °C a 54.4 °C, usando agua caliente. ¿Cuánto calor se necesita? Solución: En el apéndice A.4 se ve que la capacidad calorífica de la leche entera de vaca es 3.85 kJ/kg . K. La elevación de la temperatura es AT = (54.4 - 4.4) °C = 50 K. calor necesario = (4536 kg/h) (3.85 kJ/kg . K) (1/3600 h/s) (50 K) = 242.5 kW La entalpía, H, de una sustancia en J/kg representa la suma de la energía interna más el término presión-volumen. Cuando no hay reacción y se trata de un proceso a presión constante y un cambio de temperatura, la variación de calor que se calcula con la ecuación (1.6-4) es la diferencia de entalpía, AH, de la sustancia, con respecto a la temperatura dada o punto base. En otras unidades, H = btu/lb, o cal/g. 1.6C Calor latente y tablas de vapor Cuando una sustancia cambia de fase se producen cambios de calor relativamente considerables a temperatura constante. Por ejemplo, el hielo a 0 °C y 1 atm de presión puede absorber 6014.4 kJ/ kg mol. A este cambio de entalpía se le llama calor latente de fusión. Los valores similares para otros compuestos pueden encontrarse en manuales (Pl, Wl). Cuando una fase líquida pasa a fase vapor con su presión de vapor a temperatura constante, se debe agregar cierta cantidad de calor que recibe el nombre de calor latente de vaporización. Diversos manuales contienen valores y tabulaciones de los calores latentes de vaporización. Para el agua a 25 °C y una presión de 23.75 mm de Hg, el calor latente es 44 020 kJ/kg mol. Por consiguiente, el efecto de la presión puede despreciarse para cálculos de ingeniería. Sin embargo, el efecto de la temperatura sobre el calor latente del agua es bastante considerable;además, el efecto de la presión sobre la capacidad calorífica del agua líquida es pequeño y puede despreciarse. Puesto que el agua es una sustancia muy común, sus propiedades termodinámicas se han recopilado en tablas de vapor que aparecen en el apéndice A.2 en unidades SI y del sistema inglés. EJEMPLO 1.6-3. Uso de las tablas de vapor Determine los cambios de entalpía (esto es, las cantidades de calor que deben añadirse) en cada uno de los siguientes casos en unidades SI y del sistema inglés. a) Calentamiento de 1 kg (Ib,) de agua: de 21.11 °C (70 °F) a 60 °C (140 °F) a 101.325 kPa (latm) de presión. b) Calentamiento de 1 kg (Ib,) de agua: 21. ll °C (70 “F) a 115.6 ° C (240 “F) y vaporización a 172.2 kPa (24.97 lb/pulg2 abs). c) Vaporización de 1 kg (Ib,) de agua a 115.6 ° C (240 °F) y 172.2 kPa (24.97 Ib/ pulg2 abs). Solución: En el inciso a), el efecto de la presión sobre la entalpía del agua líquida es despreciable. Del apéndice A.2, Ha 21.11 °C = 88.60 kJ/kg o a 70 ° F = 38.09 btu/lb, Ha 60 °C = 251.13 kJ/kg o a 140 °F = 107.96 btu/lb, 22 1.6 Unidades de energía y calar cambio de H = AH = 251.13 - 88.60 = 162.53 kJ/kg = 107.96 - 38.09 = 69.87 btu/lb, En el inciso b), la entalpía a 115.6 °C (240 “F) y 172.2 kPa (24.97 lb/pulg2 abs) de vapor saturado es 2699.9 kJ/kg o 1160.7 btu/lb,, cambio de H = AH = 2699.9 - 88.60 = 2611.3 kJ/kg = 1160.7 - 38.09 = 1122.6 btu/lb, El calor latente del agua a 115.6 °C (240 °F) en el inciso c) es 2699.9 - 484.9 = 2215.0 kJ/kg 1160.7 - 208.44 = 952.26 btu/lb, 1.6D Calor de reacción Cuando se verifican reacciones químicas, éstas siempre van acompañadas de efectos caloríficos. Al conjunto de estos fenómenos de cambio de energía se le llama termoquímica. Por ejemplo, cuando se neutraliza HCl con NaOH se desprende calor y la reacción es exotérmica. En las reacciones endotérmicas se absorbe calor. Este calor de reacción depende de la naturaleza química de cada reactivo y cada producto y de sus estados físicos. Para poder comparar valores, el calor de reacción estándar, AH°, se define como la variación de entalpía cuando 1 kg mol reacciona a una presión de 101.325 kPa a temperatura de 298 K (25 “C). Por ejemplo, el valor de AH° en la reacción H,(g) + + o,(g) + HzO(~) (1.6-6) es -285.840 x 103 kJ/kg mol o -68.3 17 kcal/g mol. La reacción es exotérmica y el valor es negativo, pues se pierde entalpía. En este caso, el H2 gaseoso reacciona con el 02 gaseoso para producir agua líquida, todo a 298 K (25 “C). Dependiendo del tipo de reacción, AH° recibe nombres especiales. Cuando se forma un producto a partir de sus elementos, como en la ecuación (1.6-6), a AH° se le llama calor de fir- mación del agua, AHHf. A la combustión del CH4 formando CO2 y H20, se le llama calor de combustión, AH,“. (En el apéndice A.3 se incluyen valores de AH: .) EJEMPLO 1.6-4. Combustión de carbono Un total de 10.0 g mol de grafito se queman en un calorímetro a 298 K i 1 atm. La combustión es incompleta y el 90% del C se transforma en CO2 y el 10% en CO. iCuál es la variación total de entalpía en kJ y kcal? Solución: En el apéndice A.3 se determina que AH: para el C al transformarse en CO2 es -393.513 x 10 kJ/kg mol o -94.0518 kcal/g mol, y para la conversión en CO es -110.523 x lo3 kg/kg mol o -26.4157 kcal/g mol. Puesto que se forman 9 moles de CO2 y 1 mol de CO, cap. 1 Introducción a los principios de ingeniería y sus unidades 2 3 AH total = 9(-393.513) + l(-110.523) = -3652 kJ = 9(-94.0518) + l(-26.4157) = -872.9 kcal Cuando se dispone de una tabla de calores de formación de compuestos, AHY, el calor normal de la reacción AI!?, puede calcularse mediante la expresión (1.6-7) En el apéndice A.3 se muestra una tabla con algunos valores de Mf. Para tablas más completas es necesario consultar otros manuales (Hl, Pl, S 1). EJEMPLO 1.6-5. Reacción del metano Calcule el calor normal de reacción, Mo, en kJ a 298 K para la siguiente reacción de 1 kg mol de C& a 101.32 kPa y 208 K: Solución: Del apéndice A.3 se obtienen los siguientes calores estándar de formación a 298 K: AH; (kl/kg mal) Cluz) -74.848 x lo3 H2W -285.840 x lo3 cw -110.523 x lo3 Hz(g) 0 Nótese que, por definición, AH; es cero para todos los elementos. Sustituyendo en la ecuación (1.6-7), AH0 = [-110.523 x lo3 - 3(O)] - (-74.848 x lo3 - 285.840 x lo3 ) = + 250.165 x lo3 kJ/kg mol (endotérmica) 1.7 CONSERVACIÓN DE ENERGÍA Y BALANCES DE CALOR 1.7A Conservación de energía Para llevar a cabo los balances de materia se usó la ley de conservación de la masa, la cual indica que la masa que entra al sistema es igual a la que sale más la acumulada en el proceso. De manera similar se puede enunciar la ley de consewación de la energia, la cual postula que toda la energía 24 1.7 Conservación de energía y balances de calor que entra a un proceso es igual a la que sale más la que queda en el proceso. En esta sección se incluyen varios balances de energía elementales. En las secciones 2.7 y 5.6 se consideraran otros más complicados. La energía puede manifestarse de varias maneras. Algunas de sus formas más comunes son la entalpía, la energía eléctrica, la energía química (en términos de la AH de la reacción), la energía cinética, la energía potencial, el trabajo y el flujo de calor. En muchos casos de ingeniería de proceso, que casi siempre se llevan a cabo a presión constante, la energía eléctrica, la energía potencial y el trabajo, no están presentes o resultan despreciables. De esta manera, sólo es necesario tomar en cuenta la entalpía de los materiales (a presión constante), la energía normal de la reacción química (AH’) a 25 “C, y el calor añadido o extraído. A esto se le llama balance de calor. 1.7B Balances de calor Para establecer un balance de calor en estado estable se usan métodos similares a los aplicados en los balances de material. La energía o calor que entra a un proceso con los materiales alimentados, más la energía neta que se afíade al proceso, es igual a la energía de salida de los materiales. Expresando esto de forma matemática, (1.7-1) donde ~HR es la suma de las entalpías de todos los materiales que entran al proceso de reacción con respecto al estado de referencia para el calor normal de reacción a 298 K y 101.32 kPa. Si la temperatura de entrada es superior a 298 K, esta suma será positiva. AH& = calor normal de reacción a 298 K y 101.32 kPa. La reacción aporta calor al proceso, por lo que el signo negativo de AH& se considera como entrada positiva de calor para una reacción exotérmica. q = energía neta o calor añadido al sistema. Si el sistema desprende calor, este término será negativo. I;Hp= suma de entalpías de todos los materiales de salida con respecto al estado normal de referencia a 298 K (25 “C). Adviértase que si los materiales de entrada a un proceso están por debajo de 298 K, ~HR será negativa. Es necesario tomar precauciones para no confundir los signos de los términos en la ecuación (1.7-1). Si no se produce una reacción química entonces hay un simple calentamiento, enfriamiento o cambio de fase. El uso de la ecuación (1.7-l) se ilustrará con diversos ejemplos. Por conveniencia, para el cálculo es costumbre llamar a los términos del lado izquierdo de la ecuación (1.7-1) términos de entrada, y a los de la derecha, términos de salida. EJEMPLO 1.7-l. Calentamiento de un medio de fermentación Un medio de fermentación líquido a 30 “C se bombea a velocidad de 2000 kglh a través de un calentador, donde su temperatura se eleva a 70 “C bajo presión. El agua caliente de desperdicio que se usa para el calentamiento entra a 95 OC y sale a 85 “C. La capacidad calorífica promedio del medio de fermentación es 4.06 kJ/kg . K, y la del agua, 4.21 kJ1 kg * K (apéndice A.2). Las corrientes de fermentación y de agua de desperdicio están separadas por una superficie metálica a través de la cual se transfiere el calor y que impide la mezcla fisica de ambas. Establezca un balance de calor completo para el sistema. Calcule el flujo delagua y la cantidad de calor añadida al medio de fermentación; suponiendo que no hay perdidas en el sistema. En la figura 1.7-1 se muestra el flujo del proceso. Cap. 1 Introducción a los principios de ingeniería y sus unidades 25 CJ calor añadido 2000 kgih líquido 30 “C 70 “C W kg/h agua 85 “C -95 “C FIGURA 1.7-1. Diagrama de jlujo del proceso para el ejemplo 1.7-l. Solución: Es conveniente usar el estado normal de referencia a 298 K (25 “C) como base para el cálculo de las diversas entalpías. De acuerdo con la ecuación (1.7-l), los términos de la expresión son los siguientes: Términos de entrada. %& de las entalpías de las dos corrientes con respecto a 298 K (25 “C) (nótese que At = 30 - 25 “C = 5 “C = 5 K): H (líquido) = (2000 kg/h) (4.06 kJ/kg . K) (5 K) = 4.060 lo4 kJ/h H (agua) = W(4.21) (95 - 25) = 2.947 x lo2 W kJ/h V’= kg/h) (-A@w) = 0 (puesto que no hay reacción química) q = 0 (puesto que no hay adición o pérdida de calor) Términos de salida. xHp de las dos corrientes con respecto a 298 K (25 OC): H(líquido) = 2000(4.06) (70 - 25) = 3.65 x lo5 kJ/h HGwa) = W(4.21) (85 - 25) = 2.526 x lo2 W kJ/h Igualando entradas y salidas en la ecuación (1.7-1) y despejando W, 4.060 x lo4 + 2.947 x lo2 W = 3.654 x lo5 + 2.526 x lo2 W W = 7720 kgih de flujo de agua La cantidad de calor que se ha agregado al medio de fermentación es simplemente la diferencia de las entalpías de los líquidos de salida y entrada: H (líquido de salida) : H (líquido de entrada) = 3.654 x lo5 - 4.060 x lo4 = 3.248 x lo5 kJ/h (90.25 kW) 26 1.1 Conservación de energía y balances de calor Obsérvese en este ejemplo que, puesto que se supuso que las capacidades caloríficas son constantes, se podría haber escrito un balance más simple como éste: calor que gana el líquido = calor que pierde el agua 2000(4.06)(70 - 30) = ,W(4.21)(95 - 85) Entonces, al resolver la expresión, W= 7720 kg/h. Este balance simple produce buenos resultados cuando cp es constante; sin embargo, cuando el valor varía con la temperatura y el material es un gas, sólo se dispone de valores de cpm entre 298 K (25 “C) y t K y el método simple no puede usarse sin obtener nuevos valores de cpm a diversos intervalos de temperatura. EJEMPLO 1.7-2 Balances de calor y de materia en una combustión El gas de desperdicio de un proceso de 1000 g mol/b de CO a 473 K se quema a 1 atm de presión en un horno usando aire a 373 K. La combustión es completa y se usa 90% de exceso de aire. El gas de combustión de salida está a 1273 K. Calcule el calor extraído en el horno. Solución: Primero se traza el diagrama de flujo del proceso en la figura 1.7-2 y después se procede a hacer un balance de materia: co(g)+ +o,(g)+co2(g) MA7 = -282 x lo3 kJ/kg mol (del apéndice A.3) moles CO = 1000 g mol/h = moles CO:! = 1.00 kg mol/h moles de O2 teóricamente necesarias = f(l.OO) = 0.500 kg mol/h moles de O2 que en realidad se añaden = 0.500(1.9) = 0.950 kg molih 0.79 moles de N2 añadido = 0.950 m= 3.570 kg mol /h 413 K A g mol/h aire 373 K Horno combusti6n 1 2 7 3 K Calor extraído (-q) v FIGURA 1 .Í’-2. Diagrama de jlujo del proceso del ejemplo 1.7-2. cup. 1 Introducción a los principios de ingeniería y sus unidades 27 aireañadido = 0.950 + 3.570 = 4.520 kg mol/h = A O2 en el gas de combustión de salida = añadido - usado = 0.950 - 0.500 = 0.450 kg mol/h CO2 en el gas de combustión de salida = 1.00 kg mol/h N2 en el gas de combustión de salida = 3.570 kg mol/h Para el balance de calor con respecto al estado normal a 298 K, se usa la ecuación (1.7-1) . Términos de entrada H(C0) = l.OO(c,,)(473 - 298) = 1.00(29.38)(473 - 298) = 5142 kJ/h (El valor de 29.38 kJ/kg mol . K para cpm del CO entre 298 y 473 K se obtiene de la tabla 1.6-1.) H(aire) = 4.520(~,,)(373 - 298) = 4.520(29.29)(373 - 298) = 9929 kJ/h q = calor añadido, kJ/h (Esto dará aquí un valor negativo, indicativo de que se extrae calor). -AH& = - (-282.989 x lo3 kJ/kg mol)(l.OO kg mol/h) = 282 990 kJ/h Términos de salida H(CO*) = l.OO(c&( 1273 - 298) = 1.00(49.91)(1273 - 298) = 48660 kJ/h H(02) = 0.450(~,,)(1273 - 298) = 0.450(33.25)(1273 - 298) = 14590 kJ/h H(N2) = 3.570(&(1273 - 298) = 3.570(31.43)(1273 - 298) = 109400 kJ/h Igualando entradas y salidas y despejando q, 5142 + 9929 + q + 282990 = 48660 + 14590 + 109400 q = -125411 kJ/h Por lo tanto, se extrae calor: -34837 W. Con mucha frecuencia, cuando se verifican reacciones químicas en el proceso y las capacidades caloríficas varían con la temperatura, la solución del problema puede obtenerse por aproximaciones sucesivas si se desconoce la temperatura final. 28 1.7 Conservación de energía y balances de calor EJEMPLO 1.7-3. Oxidación de lactosa En muchos procesos bioquímicos se usa lactosa como nutrimento, la cual se oxida como sigue: C~ZHZZOI,(S) + 1202(g) + 12CO&) + llH2W El calor de combustión, ‘AH:, según el apéndice A.3 a 25 “C es -5648.8 x 103 J/g mol. Calcule el calor de la oxidación completa (combustión) a 37 “C, que es la temperatura de la mayoría de las reacciones bioquímicas. El cpm de la lactosa sólida es 1.20 J/g s K, y su peso molecular es 342.3 g masa/g mol. Solución: Este problema puede considerarse como un balance de calor común. Primero se traza el diagrama de la figura 1.7-3, después se selecciona la temperatura base de 25 “C y se calculan las entalpías de entrada y salida. La diferencia de temperatura es At = (37 - 25) “C = (37 - 25) K. Términos de entrada H(lactosa) = (342.3 g) (37 - 25)K = 342.3 (1.20)(37 - 25) = 4929 J H(02 gas) = (12 g mol) J cpm g mo1.K (37 - 25)K . = 12(29.38)(37 - 25) = 4230 J (El cpm del O2 se obtiene de la tabla 1.6-1.) -Aff& =- (-5648.8 x 103) FIGURA 1.7-3. Diagrama de flujo del proceso del ejemplo 1.7-3. cap. 1 Introducción a los principios de ingeniería y sus unidades 2 9 Términos de salida H(l&O líquida) = 1 l( 18.02 g) = 11(18.02)(4.18)(37 - 25) = 9943 J CEl Cpm del agua líquida se obtuvo del apéndice A.2.) fCO2 gas) (37 - 25)K = 12(37.45)(37 - 25) = 5393 J (El Cpm del COZ se obtiene de la tabla 1.6-1.) AH37 oc : Estableciendo entradas = salidas y resolviendo, 4929 + 4230 + 568.8 x lo3 = 9943 + 5393 - h7 oC AH37 oc = -5642.6 x lo3 Jlg mol = AH3r0x 1.8 MÉTODOS MATEMÁTICOS, GRÁFICOS Y NUMÉRICOS 1.8A Integración gráfica En algunos casos, la función matemática f (x) que se tiene que integrar es muy compleja y no se puede proceder analíticamente. En otros casos, la función se ha obtenido con datos experimentales y no se cuenta con una ecuación matemática que represente los datos y que pueda integrarse por métodos analíticos. En estas circunstancias se aplica la integración gráfica. La integración entre los límites x = a y x = b puede representarse gráficamente tal como lo muestra la figura 1.8-1. La gráfica es una curva de y = f (x) en función de x. El área bajo la curva y =f(x) entre los límites x = a y x = b es igual a la integral. Esta área es igual a la suma de las áreas de los rectángulos, por lo que se escribe como sigue: (1.8-1) 30 1.8 Métodos matemáticos, gráficos y numéricos AI A2 -43 -44 AS x=6 FIGURA 1.8-t. Integración gráfica de f(x) &x=a 1.8B Integración numérica y regla de Simpson A menudo se desea o se necesita efectuar una integración numérica calculando el valor de una integral definida a partir de un conjunto de valores numéricos del integrandof(x). Desde luego, esto puede hacerse gráficamente, pero si ‘se tiene una gran cantidad de datos, es conveniente disponer de métodos numéricos adecuados para la computadora digital. La integral que se va a evaluar es ( 1 . 8 - 2 ) donde el intervalo es b - a. El método numérico que más se usa es la regla parabólica llamada regla de Simpson. Este método divide el intervalo total b - a en un número par de subintervalos m, donde b - am=- h (1.8-3) El valor de h, una constante, es el espaciamiento que se usa en x. Por tanto, aproximando f (x) por medio de una parábola en cada subintervalo, la regla de Simpsones x=b +w2 +.h +fe +~.~+fm-2>+fm] (1.8-4) donde fo es el valor de f (x) en x = a, fr el valor de f (x) en x = x1, . . . . fm el valor de f (x) en x = b. El lector deberá. advertir que m debe ser un número par y los incrementos deben estar igualmente espaciados. Este método es muy adecuado para computadoras digitales. Cap. 1 Introducción a los principios de ingeniería y sus unidades 3 1 PROBLXMAS 1.2-1. Temperatura de un proceso quimico. Se determina que la temperatura de un proceso químico es 353.2 K. iCuál es la temperatura en “F, “C y “R? Respuesta: 176 “F, 80 “C, 636 “R 1.2-2. Temperaturapara elproceso de ahumado de carne. En el proceso de ahumado de carne para salchicha, aquélla llega a alcanzar una temperatura de 155 ‘F. Calcule esta temperatura en “C, K y “R. 1.3-1. Peso molecular del aire. En la mayoría de los cálculos de ingeniería se supone que el aire está constituido por 2 1 mol % de oxígeno y 79 mol % de nitrógeno. Calcule el peso molecular promedio. Respuesta: 28.9 g masa/g mol, Ib masa/lb mol o kg masa/kg mol. 1.3-2. Oxidación de CO y unidades molares. Una cierta cantidad de CO se oxida con O2 para formar COZ. ¿Cuántos kilogramos de COZ se obtendrán con 56 kg de CO? Calcule además los kilogramos de 0, teóricamente necesarios para esta reacción, (Sugerencia: Escriba primero la ecuación química balanceada para obtener las moles de O2 necesarias para 1.0 kg mol de CO. Después calcule los kilogramos mol de CO en 56 kg de este compuesto.) Respuesta: 88.0 kg COZ, 32.0 kg O2 1.3-3. Composición de una mezcla gaseosa. Una mezcla gaseosa contiene 20 g de N2, 83 g de 02 y 45 g de COZ. Calcule la composición en fracciones mol y el peso molecular promedio de la mezcla. Respuesta: Peso molecular prom. = 34.1 g masa/g mol, 34.1 kg masaikg mol 1.3-4. Composición de una solución de proteina. Una solución líquida contiene 1.15% en peso de una proteína, 0.27% en peso de KCl y el resto es agua. El peso molecular promedio de la proteína por permeación de gel es 525 000 g masa/g mol. Calcule las fracciones mol de los componentes en la solución. 1.3-5. Concentración de una solución de NaCL Una solución acuosa de NaCl tiene 24% en peso de esta sal y su densidad es 1.178 g/cm3 a 25 “C. Calcule lo siguiente: a) Fracciones mol del NaCl y del agua. b) Concentración del NaCl en g mol/l, lb,/pie3, lb,/gal y kg/m3. 1.4-1. Conversión de mediciones de presión en un secado por congelación. En la medición experimental del secado por congelación de carne de res, la cámara se mantiene a presión absoluta de 2.4 mm de Hg. Convierta esta presión a atm, pulg de agua a 4 “C, Pm de Hg y Pa. (Sugerencia: Vea el apéndice A.l para los factores de conversión.) Respuesta: 3.16 x lOe3 atm, 1.286 pulg H20, 2400 mm de Hg, 320 Pa 1.4-2. Compresión y enfriamiento de nitrógeno gaseoso. Un volumen de 65.0 pie3 de N2 gaseoso 90 “ F y 29.0 lb/pulg2 se comprime a 75 lb/pulg2 y se enfría a 65 OF. Calcule el volumen final en pie3 y la densidad final en lb,/pie3. [Sugerencia: Asegúrese de convertir primero las presiones a lb/pulg2 abs y después a atm. Sustituya las condiciones originales en la ecuación (1.4-l) y obtenga n en libras mol.] 1.4-3. Composición y volumen de gases. Una mezcla de 0.13 g mol de NHs, 1.27 g mol de N2 y 0.025 g mol de vapor de H20, está contenida a una presión total de 830 mm de Hg y 323 K. Calcule lo siguiente: a) Fracción mol de cada componente. b) Presión parcial de cada componente en mm de Hg. c) Volumen total de la mezcla en m3 y pie3. 1.4-4. Evaporación de un liquido orgánico sensible al calor. Un líquido orgánico se evapora de una solución líquida que contiene un bajo porcentaje de sólidos no volátiles disueltos. Puesto que el sólido es sensible al calor y puede volverse amarillento a temperaturas elevadas, es necesario evaporarlo al vacío. Si la presión absoluta más baja que puede obtenerse en el aparato es 32 Ejercicios 12.0 mm de Hg, jcuál será la temperatura de evaporación en K? Se supondrá que la pequeña cantidad de sólidos no afecta la presión de vapor, que se expresa como sigue: log PA = -2250 0 + + 9.05 donde PA está en mm de Hg y Ten K. Respuesta: T = 282.3 K o 9.1 “C. 1 S-l. Evaporación de soluciones de azúcar de caña. Se está usando un evaporador para concentrar soluciones de azúcar de caña. Se evaporan 10000 kg/día de una solución que contiene 38% en peso de azúcar, obteniéndose una solución con 74% en peso. Calcule el peso de la solución obtenida y la cantidad de agua extraída. Respuesta: 5135 kgldía de la solución al 74% en peso, 4865 kgldía de agua 1.5-2. Procesamiento de harina depescado. Algunos pescados se procesan como harina de pescado para usarse como proteínas suplementarias en alimentos. En el proceso empleado primero se extrae el aceite para obtener una pasta que contiene 80% en peso de agua y 20% en peso de harina seca . Esta pasta se procesa en secadores de tambor rotatorio para obtener un producto “seco” que contiene 40% en peso de agua. Finalmente, el producto se muele a grano fino y se empaca. Calcule la alimentación de pasta en kgih necesaria para producir 1000 kg/h de harina “seca”. Respuesta: 3000 kglh de pasta 1.5-3. Secado de madera. Un lote de 100 kg de madera húmeda con 11% en peso de humedad, se seca hasta reducir el contenido de agua a 6.38 kg/l.O kg de madera seca. ¿Cuál es el peso de madera “seca” y la cantidad de agua que se elimina? 1.54. Procesamiento de pulpa de madera. Una pulpa de madera húmeda contiene 68% en peso de agua. Después de secarla se determina que se ha eliminado el 55% de agua original de la pulpa. Calcule la composición de la pulpa “seca” y su peso para una alimentación de 1000 kg/min de pulpa húmeda. 1.5-5. Producción de jalea a partir de frutas maceradas en un proceso de dos etapas. En un proceso para fabricar jalea, la fruta macerada que tiene 14% en peso de sólidos solubles se mezcla con aztícar (1.22 kg aztícar/l .OO kg de fruta) y pectina (0.0025 kg pectina/1 .OO kg de fruta). La mezcla resultante se evapora en una olla para producir una jalea con 67% en peso de sólidos solubles. Calcule, para una alimentación de 1000 kilogramos de fruta macerada, los kilogramos de mezcla obtenida, los kilogramos de agua evaporada y los kilogramos de jalea producida. Respuesta: 2222.5 kg de mezcla, 189 kg de agua, 2033.5 kg de jalea 1.5-6. Secado de raíces de casave (tapioca). La harina de tapioca se usa en muchos países para hacer pan y productos similares. La harina se procesa secando los granos gruesos de la raíz de casave (que contienen 66% en peso de humedad) hasta reducirla al 5% y moliendo hasta finura de harina. iCuántos kilogramos de granos deben secarse y qué cantidad de agua tiene que extraerse para producir 5000 kilogramos de harina por hora? 1.5-7. Procesamiento de frijol de soya en tres etapas. Una alimentación de 10000 kg de frijol de soya se procesa en una secuencia de tres etapas (El). La alimentación contiene 35% en peso de proteína, 27.1% en peso de carbohidratos, 9.4% en peso de fibras y cenizas,l0.5% en peso de humedad y 18.0% de aceite. En la primera etapa, los frijoles se maceran y se prensan para extraer el aceite, obteniéndose corrientes de aceite y de pasta prensada que todavía contiene 6% de aceite. (Suponga que no hay pérdidas de otros constituyentes en la corriente de aceite.) En la segunda etapa, la pasta prensada se trata con hexano para obtener una corriente de pasta de soya extraída que contiene 0.5% en peso de aceite y una corriente de aceite-hexano. Suponga que no sale hexano en el extracto de soya. Finalmente, en la última etapa se seca el extracto para obtener un producto con 8% en peso de humedad. Calcule: Cap. 1 Introducción a los principios de ingeniería y sus unidades 33 a) Kilogramos de pasta de soya que salen de la primera etapa. * b) Kilogramos de pasta extraída obtenidos en la segunda etapa. c) Kilogramos de pasta seca final y porcentaje en peso de proteína en el producto seco. Respuesta: a) 8723 kg, b) 8241 kg, c) 7816 kg, 44.8%de proteínas 1.5-S. Recirculacidn en un secador. Un material sólido que contiene 15.0 en peso de humedad se seca hasta reducirlo a 7.0% en peso por medio de una corriente de aire caliente mezclada con aire de recirculación del secador. La corriente de aire no recirculado contiene 0.01 kg de agua/kg de aire seco, el aire de recirculación tiene 0.1 kg de agua/kg de aire seco y el aire mezclado contiene 0.03 kg de agua/kg de aire seco. Para una alimentación de 100 kg de sólidos/h al secador, calcule los kilogramos de aire secoib de aire nuevo, los kilogramos de aire seco/h del aire de recirculación y los kg/h de producto “seco”. Respuesta: 95.6 kg/h de aire seco en el aire nuevo, 27.3 kgIh de aire en el aire de recirculación y 91.4 kg/h de producto “seco” 1.5-9. Cristalización y recirculación. Se desea producir 1000 kg/h de cristales de NasPO.+ 12H20 a partir de una solución de alimentación que contiene 5.6% en peso de Na3P04 y trazas de impurezas. La solución se evapora primero en un evaporador hasta obtener una concentra- ción de 35% en peso y después se enfría a 293 K en un cristalizador, de donde se extraen los cristales hidratados y la solución madre. De cada 10 kg de licor madre se pierde 1 .O kg para eliminar las impurezas y el resto se recircula al evaporador. La solubilidad del Na3P04 a 293 K es 9.91% en peso. Calcule los kg/h de solución de alimentación y los kg/h de agua extraída. Respuesta: 7 771 kg/h de alimentación, 6739 kg/h de agua 1.5-10. Evaporación y derivación en la concentración de jugo de naranja. En un proceso para concentrar 1000 kg de jugo de naranja recién obtenido, que contiene 12.5% en peso de sólidos, la maceración produce 800 kg de jugo filtrado y 200 kg de pulpa. El jugo filtrado se concentra en un evaporador al vacío para obtener una concentración del 58% de sólidos. Los 200 kg de pulpa se derivan extrayéndolos antes de entrar al evaporador y se mezclan con el jugo evaporado en un mezclador, para mejorar el sabor. Este jugo concentrado final contiene 42% en peso de sólidos. Calcule la concentración de sólidos en el jugo filtrado, los kg de jugo concentrado final y la concentración de sólidos en la pulpa que se deriva. (Sugerencia: Procédase primero a un balance total y después a un balance de sólidos en el proceso total. Después, hágase el balance en el evaporador y, fmahnente, el balance en el mezclador.) Respuesta: 34.2% en peso de sólidos en la pulpa. 1.5-11. Fabricación de acetileno. Para fabricar 6000 pies3 de acetileno (CHCH) gaseoso a 70 ‘F y 750 mm de Hg, se usa carburo de calcio (CaC,), que contiene 97% en peso de CaC y 3% en peso de sólidos inertes y agua. La reacción es CaC + 2H,O + CHCH + Ca (OH)2 L La lechada final de cal contiene agua, sólidos inertes y Ca(OH)2. En este producto, el porcentanje total en peso de sólidos constituidos por inertes y Ca es 20%. ¿Cuántas libras de agua deben afiadirse y cuantas libras de lechada final se obtienen? [Sugerencia: Use una base de 6000 pie3 de gas y convierta a Ib mol. Esto da 15.30 Ib mol de C2H2, 15.30 Ib mol de Ca( y 15.30 Ib mol de CaC2 añadido. Convierta libras mol de alimentación de CaC a libras y calcule las libras de inertes. Las libras totales de sólidos en la lechada son, entonces, la suma de Ca más los inertes. Al calcular el agua añadida, recuerde que la reacción consume una parte.] Respuesta: 5200 Ib (2359 kg) de agua añadida, 5815 Ib (2638 kg) de lechada de cal. 1.5-12. Combustión de un combustible sólido. El análisis de un combustible reporta 74.0% en peso de C y 12.0% en peso de cenizas (inertes). Se añade aire para la combustión, obteniéndose 34 EJercicios un gas de salida con 12.4% de CO,, 1.2 de CO, 5.7 de O2 y 80.7% de NI. Calcule los kilogramos de combustible usado por cada 100 kg mol de gas de combustión de salida y los kilogramos mol de aire empleado. (Sugerencia: Calcule primero los moles de 02 añadidos con el aire, usando el hecho de que el N2 en este gas es igual al NZ introducido con el aire. Después proceda a un balance de carbono para obtener un total de moles de C añadido.) 1.5-13. Combustión de coque. Un horno quema coque que contiene 81.0% en peso de C, 0.8% de H y el resto son cenizas inertes. El horno utiliza 60% de exceso de aire (con respecto al necesario para la combustión completa del C a COZ y del H a HzO). Calcule los moles de todos los componentes en el gas de combustión de salida cuando sólo se transforma en CO;! el 95% del carbono y el resto queda como CO. 1.5-14. Producción de formaldheído. El formaldehído (CH20) se obtiene por oxidación catalítica de vapor de metano1 puro y aire en un reactor. Los moles de este reactor son 63.1 de Nz, 13.4 de Oz, 5.9 de H20, 4.1 de CH20, 12.3 de CH,OH y 1.2 de HCOOH. La reacción es CH30H + f 0, + CH,0 + H,O Se verifica también una reacción secundaria: CH,0 + f 0, + HCOOH Calcule las alimentaciones de moles de metano1 y de aire y el porcentaje de conversión de metano1 en formaldehído. Respuesta: 17.6 moles de CHsOH, 79.8 moles de aire, 23.3% de conversión 1.6-1. Calentamiento de CO, gmeoso. Un total de 250 g de COZ gaseoso a 373 K se calienta a 623 K con una presión total de 101.32 kPa. Calcule la cantidad de calor necesario en cal, btu y kJ. Respuesta: 15040 cal, 59.8 btu, 62.93 kJ 1.6-2. Calentamiento de una mezcla gaseosa. Una mezcla de 25 Ib mol de N2 y 75 Ib mol de CHa se calienta de 400 “F a 800 ‘F a 1 atm de presión. Calcule la cantidad total de calor necesario x en btu. 1.6-3. Temperaturafinal al calentarpuré de manzana. Una partida de 454 kg de puré de manzana a 10 “C se calienta en un intercambiador de calor por adición de 121 300 kJ. Calcule la temperatura de salida del producto. (Sugerencia: En el apéndice A.4 aparece el valor de la capacidad calorífica del puré de manzana a 32.8 “C . Suponga que es constante y úselo como cpm promedio.) Respuesta: 76.4 “C 1.6-4. Uso de las tablas de vapor. Por medio de las tablas de vapor, determine la variación de entalpía de 1 Ib de agua en cada uno de los casos siguientes: a) Calentamiento de agua líquida de 40 OF a 240 “F a 30 lb/pulg’ abs. (Adviértase que puede despreciarse el efecto de la presión total del agua líquida sobre la entalpía.) b) Calentamiento de agua líquida de 40 ‘F a 240 ‘F y vaporización a 240 “F y 24.97 Ib/ pulg2 abs. c) Enfriamiento y condensación de vapor saturado a 212 ‘F y 1 atm abs a un líquido a 60 “F. d) Condensación de un vapor saturado a 212 “F y 1 atm abs. Respuesta: a) 200.42 btu/lb,, b) 1152.7 btu/lb,, c) -1122.4 btu/lb,, d) -970.3 btu/lb,, -2256.9 kJ/kg. cap. 1 Introducción a los principios de ingeniería y sus unidades 35 ! 1.6-5. 1.6-6. Calentamiento y vaporizacidn usando las tablas de vapor. Un flujo de 1000 kglh de agua a 21.1 “C se calienta 110 “C con una presión total de 244.2 kPa en la primera etapa del proceso. En la segunda etapa a la misma presión se calienta el agua aún más, hasta que se vaporiza a su punto de ebullición. Calcule las variaciones totales de entalpía en la primera etapa y en ambas etapas. Combustidn de CH4 y HP Para 100 g mol de una mezcla gaseosa de 75 moles % de CH4 y 25 moles % de H,, calcule el calor total de la combustión de la mezcla a 298 K y 101.32 kPa, suponiendo que la combustión es completa. 1.6-7. Calor de reacción a partir de calores de formación. Calcule el calor de la reacción. 4NWgI + 5W.g) + 4NW) + 6WW esto es, M, a 298 K y 101.32 kPa para la reacción de 4 g mol de NH3. Respuesta: M, calor de reacción = -904.7 kJ 1.7-1. Balance de calor y enfriamiento de leche. En el procesamiento de leche entera de vaca, se enfrían 4540 kg/h de 60 “C a 4.44 OC por medio de un refrigerante. Calcule el calor extraído de la leche. 1.7-2. Respuesta: Calor extraído de la leche = 269.6 kW Calentamiento de petróleo con aire. Un flujo de 2200 Ib,& de hidrocarburos petrolíferos a 100 “F entra a un intercambiador de calor, donde se calienta a 150 ‘F con aire. El aire caliente entra a 300 ‘F y sale a 200 “F. Calcule el total de Ib mol de aire/h que senecesita. La capacidad calorífica media del petróleo procesado es 0.45 btu/lb, ‘F. 1.7-3. 1.7-4. 1.7-5. Respuesta: 70.1 Ib mol aire& 3 1.8 kg mol/h Combustión de metano en un horno. Una corriente gaseosa de 10000 kg moho de Ch a 10 1.32 kPa y 373 K se quema en un horno usando aire a 3 13 K. La combustión es completa y se usa 50% de exceso de aire. El gas de combustión de salida está a 673 K. Calcule el calor consumido en el horno. (Sugerencia: Use una base de 298 K y agua 1íquida”a 298 K. Las entradas serán como sigue: la entalpía del CH4 a 373 K con respecto a 298; la entalpía del aire a 3 13 K con respecto a 298 K; -AH:, el calor de combustión del C& a 298 K, con respecto al agua líquida y q, el calor añadido. Los términos de salida serán: las entalpías del COZ, el 02, el N2 y el Hz0 gaseosos a 673 K con respecto a 298 K; y el calor latente del vapor de Hz0 a 298 K y 101.32 kPa según el apéndice A.2. Es necesario incluir este calor latente, pues la base del cálculo y de Al$ es agua líquida.) Precalentamiento de aire con vaporpara usarse en un secador. En un secador se va a usar una corriente de aire que está a 32.2 OC y que se debe calentar en un calentador de vapor a 65.5 “C. El flujo de aire es 1000 kg mol/h. La corriente de vapor entra al calentador saturada y a 148.9 YI, se condensa, se enfría y sale como líquido a 137.8 “C. Calcule la cantidad de vapor usado en kgh. Respuesta: 452 kg vaporlh Enfriamiento de latas de sopa de patata después de un procesamiento térmico. Un total de 1500 latas de sopa de patata se someten a un proceso termico en una retorta a 240 “F. Las latas se enfrían a 100 OF en la misma retorta antes de sacarlas por medio de agua fría, que entra a 75 “F y sale a 85 “F. Calcule las libras de agua de enfriamiento que se necesitan. Cada lata contiene 1 .O Ib de sopa líquida y la lata metálica vacía pesa 0.16 lb. La capacidad calorífica media de la sopa es 0.94 btu/lb; “F y la del metal es 0.12 btu/lb; “F. La cesta metálica que se usa para sostener las latas en la retorta pesa 3 50 Ib y su capacidad calorífica es de 0.12 btu/lb; “F. Suponga que la cesta metálica se enfría de 240 ?F a 85 ‘F, que es la temperatura del agua de salida. La cantidad de calor que se pierde ‘por las paredes de la 36 Ejercicios retorta al enfriar de 240 a 100 “F es 10000 btu. Las pérdidas de la retorta por radiación durante el enfriamiento son de 5000 btu. Respuesta: 21320 Ib de agua, 9670 kg 1.8-1. Integración grájica y numérica con el método de Simpson. Se obtuvieron los siguientes datos experimentales de y = f(x). Se desea determinar la integral a) Resuélvala por integración gráfica. b) Aplique el método numérico de Simpson. Respuesta: a) A = 38.55, b) A = 38.45 1.8-2. Integración gráfica y numérica para obtener elflujo de aguas de desperdicio. La medición del flujo de aguas de desperdicio en un canal abierto produce los siguientes datos experi- mentales. Tiempo (min) 0 10 20 30 4 0 50 60 Flujo (m3/min) 655 705 780 830 870 890 870 Tiempo (min) 10 8 0 9 0 100 110 120 Flujo (m’/min) 800 725 670 640 620 610 a) Determine el flujo total en metros cúbicos para los primeros 60 min y también el total para 120 min, por integración gráfica. b) Determine el flujo en 120 min usando el método numérico de Simpson. Respuesta: a) 48640 m3 para 60 min, 90390 m3 para 120 min REFERENCIAS (Cl) CHARM, S. E. The Fundamentals of Food Engineering, 2a. ed., Westport, Conn.: Avi Publishing Co., Inc., 1971. (El) EARLE, R. L. Unit Operations in Food Processing, Oxford: Pergamon Press, Inc., 1966. Cap. 1 Introducción a los principios de ingenieria y sus unidades 31 (Hl) HOUGEN, 0. A., Watson, K. M. y Ragatz, R. A. Chemical Process Principies, Parte 1, 2a. ed., Nueva York: John Wiley & Sons, Inc., 1954. (01) OKOS, M. R., M. S. Tesis. Ohio State University, Columbus, Ohio, 1972. (Pl) PERRY, R. H. y Green, D. Perry’s Chemical Engineers’ Handbook, 6a. ed. Nueva York: McGraw-Hill Book Company, 1984. (Sl) SOBER, H. A. Handbook of Biochemistry, Selected Data for Molecular Biology, 2a. ed., Cleveland: Chemical Rubber Co., Inc., 1970. (Wl) WEAST, R. C. y Selby, S. M. Handbook of Chemistry and Physics, 48a. ed., Cleveland: Chemical Rubber Co., Ix., 1967-1968. CAPÍTULO 2 Principios de transferencia de momento lineal y balances globales 2.1 INTRODUCCIÓN El flujo y el comportamiento de los fluidos reviste gran importancia en muchas de las operaciones unitarias de ingeniería de procesos. Un fluido puede definirse como una sustancia que no resiste, de manera permanente, la deformación causada por una fuerza y, por tanto, cambia de forma. En este texto se considera que los gases, líquidos y vapores tienen las características de fluidos y que obedecen a muchas leyes comunes. En las industrias de proceso, gran parte de los materiales están en forma de fluidos y deben almacenarse, manejarse, bombearse y procesarse, por lo que resulta necesario conocer los principios que gobiernan al flujo de fluidos y también los equipos utilizados. Los fluidos típicos son el agua, el aire, el COZ, aceites, lechadas o suspensiones y jarabes espesos. Si un fluido se ve poco afectado por los cambios de presión, se dice que es incompresible. La mayoría de los líquidos son incompresibles. Los gases se consideran como fluidos compresibles. Sin embargo, si los gases se sujetan a porcentajes pequeños de cambios de presión y temperatura, sus cambios de densidad serán poco considerables y se les puede clasificar entonces como fluidos incompresibles. Como toda la materia física, un fluido está compuesto por un número extremadamente grande de moléculas por volumen unitario. Una teoría como la teoría cinética de los gases o la mecánica estadística trata el movimiento de las moléculas en términos de grupos estadísticos, y no de moléculas individuales. En ingeniería, lo que más interesa es el comportamiento en conjunto o macroscópico de un fluido, y no el comportamiento molecular individual o microscópico. En la transferencia de momento lineal se trata el fluido como una distribución continua de materia o como un “continuo”. Este tratamiento es válido cuando el volumen más pequeño de fluido contiene un número de moléculas lo bastante grande como para que el promedio estadístico sea significativo y las propiedades macroscópicas del fluido, como densidad, presión, etc., varíen poco o de manera continua de un punto a otro. El estudio de la transferencia de momento lineal, o mecánica dejluidos como también se le llama, puede dividirse en dos ramas: estática defluidos, o fluidos en reposo y dinámica defluidos, o fluidos en movimiento. En la sección 2.2 se estudiará la estática de fluidos; en otras secciones de este capítulo y en el capítulo 3 se tratará la dinámica de fluidos. Puesto que en la dinámica de fluidos hay una transferencia de momento lineal, se usa con bastante frecuencia el término “transferencia de momento Cap. 2 Principios de transferencia de momento lineal y balances globales 39 lineal’ ’ 0 ‘ ‘transporte’ ’ . Posteriormente se estudiará la relación entre la transferencia de momento lineal y la transferencia de calor y masa. 2.2 ESTÁTICA DE FLUIDOS 2.2A Fuerza, unidades y dimensiones En un fluido estático, una de las propiedades importantes es la presión del fluido. La presión es la fuerza superficial ejercida por un fluido sobre las paredes del recipiente que lo contiene. Además, se tiene presión en cualquier punto del volumen de un fluido. Para comprender la presión, que se define como la fuerza desarrollada por unidad de área, es necesario estudiar primero la ley básica de Newton. La ecuación para el cálculo de la fuerza ejercida por una masa sujeta a la influencia de la gravedad es F = mg (Unidades SI) F = 7 (Unidades del sistema inglés) c (2.2-l) donde en unidades SI, F es la fuerza ejercida en newtons N (kg . rnh2), m es la masa en kg y g e s la aceleración normal de la gravedad, 9.80665 m/s2. En unidades del sistema inglés, F está en lbf, m en Ib,, g es 32.1740pieh y g, (un factor de conversión gravitacional) es 32.174 Ib, . pie /lbf * s2. El uso del factor de conversión g, significa que g/gc tiene un valor de 1.0 lbdlb, y que 1 Ib, resulta convenientemente igual a 1 lbf. Por lo general, cuando se expresan unidades de presión se omite la palabra “fuerza” y simplemente se pone lb/pulg2 en vez de lb/pulg2. Cuando la masa m está dada en g masa, F es g fuerza, g = 980.665 cmIs y g, = 980.665 g masa * cm/g fuerza *s 2. Sin embargo, rara vez se usan las unidades g fuerza. Otro sistema de unidades común para la ecuación (2.2-l) es aquel en el que se omite g, y la fuerza (F = mg) se da como Ib, . pie/s2, que recibe el nombre de poundal. De esta manera la acción de la gravedad sobre 1 Ib, dará una fuerza de 32.174 poundals (Ib, * pie/s2). Si se usa 1 g masa, la fuerza (F = mg) se expresa en términos de dinas (g * cm/s2). Éste es el sistema de unidades centímetro-gramo- segundo (cgs). Los factores de conversión para diferentes unidades de fuerza o fuerza por unidad de área (presión), están dados en el apéndice A-l. Nótese que siempre, en el sistema SI, y usualmente en el sistema cgs, el término g, no se emplea. EJEMPLO 2.2-l. Unidades y dimensiones de fuerza Calcule la fuerza desarrollada por 3 Ib masa en términos de: a) Lb fuerza (unidades del sistema inglés) b) Dinas (unidades cgs) c) Newtons (unidades SI) Solución: Para el inciso a) usando la ecuación (2.2-l), F (fuerza) = m & = (3 lb,,,)(32174 $) !. 132 174 lbm . pielbf . s2 1 = Ib fuerza (lbf) 40 Para el inciso b), 2.2 Estbtica de fluidos F = mg = (3 Ib,) 45359( &)(980665$ = 1. 332 x lo6 7 = 1.332 x lo6 dina Como otra alternativa para el inciso b), y usando el apéndice A. 1, 1 dina = 2.2481 * lo4 lbf F= (3 lbf) 1 22481 x Lom6 Lbfjdina 1 = 1.332 x lo6 dina Para calcular newtons en el inciso c), F=mg = 3lb,x ’ kg 2.2046 Ib, )( 9.80665;) kg.m = 13.32 7 = 13.32 N Como alternativa, usando los valores del apéndice A. 1, 1 7 (dina) = lOe5 y (newton) F = (1.332 x lo6 dina) 10 -5 newton -dina = 13.32 N 2.2B Presión en un fluido Puesto que la ecuación (2.2-l) expresa la fuerza ejercida por una masa sometida a la acción de la gravedad, la fuerza desarrollada por una masa de fluido sobre su área de apoyo o fuerza/unidad de área (presión) también se obtiene con esta ecuación. En la figura 2.2-l se muestra la columna estacionaria de un fluido de altura Ir2 m y una sección transversal de área constante A m2, donde A = Au = Ar = Al. La presión por encima del fluido es PO N/m2, es decir, podría ser la presión de la atmósfera que lo rodea. En cualquier punto del fluido, digamos hr, éste debe soportar todo el fluido que esta por encima de dicho punto. Se puede demostrar que en cualquier punto de un fluido inmóvil o estático, las fuerzas son iguales en todas las direcciones. Además, para un fluido en reposo, la fuerza/unidad de area o presión es igual en todos los puntos auna misma altura. Por ejemplo, a una distancia hl del nivel superior, la presión es igual en todos los puntos del área de corte transversal A 1. Se mostrará el uso de la ecuación (2.2-l) para calcular la presión en diferentes puntos verticales en la figura 2.2-l. La masa total del fluido para altura h2 y densidad p kg/m3 es kg totales de fluido = (h2 m)(A m2)(p kg/m3) = h2 Ap kg (2.2-2) Cap. 2 Principios de transferencia de momento lineal y balances globales Ao A I PI T h r- ----- 1 ’ I t / 4 -I) ,- - - - _r / I T hz I / -42 -4 FIGURA 2.2- 1. Presión en un jluido estático Al sustituir en la ecuación (2.2-2), la fuerza total F del fluido sobre el área Al, debida únicamente al fluido es kg.m F = @244~ k)k ds2) = hdpg 7 WI (2.2-3) La presión P se define como la fuerza /unidad de área: (h2Apg) f = h2pg N/m2 o Pa (2.2-4) Ésta es la presión sobre AZ debida a la masa de fluido que está encima. Siu embargo, para obtener la presión total P2 sobre Al, debe tiadirse la presión Po que soporta todo el líquido. P2 = h2pg + PO N/m2 o Pa (2.2-5) La ecuación (2.2-5) es la expresión fundamental para calcular la presión de un fluido a cualquier profundidad. Para calcular PI, PI = hm + Po (2.2-6) La diferencia de presión entre los puntos 2 y 1 es P2 - P1 = (h2pg + Po) - (hlpg + PO) = (h2 - hl) pg (Unidades SI) (2.2-7) P2 - P1 = (h2 - hl)p-f c (Unidades del sistema inglés) Puesto que lo que determina la presión en un fluido es la altura vertical del mismo, la forma del reci- piente no afecta la presión. Por ejemplo, en la figura 2.2-2, la presión P1 en el fondo de los tres recipientes es igual y equivale a hlpg + PO. EJEMPLO 2.2-2. Presibn en un tanque de almacenamiento Un gran tanque de almacenamiento contiene petróleo de una densidad igual a 917 kg/m3 (0.9 17 g/cm3). El tanque tiene una altura de 3.66 m (12.0 pies) y está abierto a la atmósfera 42 2.2 Estática de jluidos FIGURA 2.2-2.FIGURA 2.2-2. Presiones en recipientes de diversas formas.Presiones en recipientes de diversas formas. Po = 1 atm abs p2 f 10 pies = h 1 2 pies = h2 1 FIGURA 2.2-3. Tanque de almacenamiento del ejemplo 2.2-2. con una presión de 1 atm abs en la superfkie. El tanque está lleno de petróleo a una profundidad de 3.05 m (10 pies) y también contiene 0.61 m (2.0 pies) de agua en la parte inferior. Calcule la presión en Pa y en psia a 3.05 m de la superficie y en el fondo del tanque. También calcule la presión manométrica del fondo del tanque. Solución: Primero se hace un diagrama del tanque, como el que se muestra en la figura 2.2-3. La presión PO = 1 atm abs = 14.696 psia (del apéndice 1). También, PO = 1.01325 x lo5 Pa Con base en la ecuación (2.2-6) se usan primero unidades del sistema inglés y después SI. PI = hlppet f- + PO = (10 pies) 0917 x 62.43% lbf c pie )( )(l+OIb, 1 144 pu lg2/pie2 + 14.696 lbf/pulg2 = 18.68 lb/pulg2 abs PI = hlppet g + PO = (3.05 m) = 1.287 x lo5 Pa Cap. 2 Principios de transferencia de momento lineal y balances globales 43 Para calcular P2 en el fondo del tanque, pagua = 1.00 g/cm3 y P2 = h2Pagua 8 + P, = (2.0)(1.00 x 62.43)( 1.0)gc ( 1 & + 18.68 = 19.55 lb/pulg2 abs = h2pawa g + P1 = (0.61)(1000)(9.8066) + 1.287 x lOs = 1.347 x lo5 Pa La presión manométrica en el fondo es igual a la presión absoluta P2 menos 1 atm: P man = 19.95 lb/pu$ abs - 14.696 lb/pulg2 abs = 4.85 lb/pulg2 man 2.2C Carga de un fluido Las presiones se expresan en diversas unidades, como lb/pulg2 abs, dinas/cm2 y newtons/m2, y otras más que aparecen en el apéndice A.l. Sin embargo, también es común expresar presiones en términos de carga en metros o pies de un cierto fluido. Esta carga o altura en m o pies de un fluido es aquella que ejerce la misma presión que las presiones que representa. Usando la ecuación (2.2-4) que relaciona la presión P y la altura h de un fluido, al despejar h, que es la carga en m, h (carga) = 5 m (SI) (2.2-8) h = pg,. pg pies (Unidades del sistema inglés) EJEMPLO 2.2-3. Conversión depresión a carga de un fluido Considerando que la presión de 1 atm normal es 101.325 kN/m2 (Apéndice A. l), procédase a lo siguiente: a) Transfórmese esta presión a carga en m de agua a 4 “C. b) Transfórmese esta presión a carga en m de Hg a 0 “C. Solución: Para el inciso a), la densidad del agua a 4 “C, de acuerdo con el apéndice A.2 es 1.000 g/cm3. Con respecto al apéndice A.1, una densidad de 1.000 g/cm3 es igual a 1000 kg/m3. Sustituyendo estos valores en la ecuación (2.2-8), 101.325 x lo3 h(carga) = ; = (1000)(9.80665) = 10.33 m de agua a 4 OC Para el inciso b), la densidad del Hg (Apéndice A.l) es 13.5955 g/cm3. Para presiones P iguales de diferentes fluidos, la ecuación (2.2-8) puede reordenarse como sigue: p = PH&-@ = pH20h20g (2.2-9) Despejando hHs en la ecuación (2.2-9) y sustituyendo los valores conocidos: hHg (CW3-d = 44 Pa Pb Fluido B PS Fluido A pA 2.2 Estática de jhdos Pb (4 (b) FIGURA 2.24. Manómetros para medir diferencias de presión: a) de tubo en U; b) de tuboen U de dos fluidos. 2.2D Dispositivos para medir la presión y las diferencias de presión En las plantas químicas y de otro tipo de procesos industriales con frecuencia es importante medir y controlar la presión en un recipiente o proceso, o el nivel de líquido en un recipiente. Además, como fluyen muchos fluidos en un conducto o tubería, es necesario medir la velocidad con la que se desplaza el fluido. Muchos de esos medidores de flujo dependen de dispositivos para medir una presión o una diferencia de presión. En los párrafos siguientes se consideran algunos dispositivos comunes. 1. Manómetro de tubo en U simple. El manómetro de tubo en U se muestra en la figura 2.2~4a. La presión pa N/m2 se ejerce sobre un brazo del tubo en Uy Pb en el otro brazo. Ambas presiones pa y Pb pueden ser derivaciones de presión de un medidor de fluidos, o pa puede ser una derivación de presión y Pb la presión atmosférica. La parte superior del manómetro está llena con el líquido B que tiene una densidad de PB kg/m3 y la parte inferior contiene un fluido A más denso, que tiene una densidad de PA kg/m3. El líquido A es inmiscible con el B. Para deducir la relación entre pa y pb, pa es la presión en el puto 1 y pb en el pmto 5. La presión en el punto 2 es P2 = Pa + (Z + R ) pfjg N/m2 (2.2-10) donde R es la lectura de un manómetro en m. La presión en el punto 3 debe ser igual a la de 2 debido a los principios de hidrostática P3 = P2 La presión en el punto 3 también es igual a lo siguiente: (2.2-11) p3=pb+ZPBg +RPB (2.2-12) Cap. 2 Principios de transferencia de momento lineal y balances globales 45 Al igualar la ecuación (2.2-10) con la (2.2-12) y al despejar se obtiene Pa ’ (Z + R)PBg = Pb + ZPBg + RPAg Pa - Pb = WPA - PBk (SI) P a - P b =R(PA-PB): (Unidades del sistema inglés) c (2.2-13) (2.2-14) El lector notará que la distancia Z no aparece en el resultado final, como tampoco las dimensiones del tubo, siempre y cuando pu y Pb se midan en el mismo plano horizontal. EJEMPLO 2.2-4. Diferencia de presión en un manómetro Un manómetro como el que se muestra en la figura 2.2-4a se usa para medir la carga o la caída de presión a través de un medidor de flujo. El fluido más pesado es el mercurio, con una densidad de 13.6 g/cm3 y el fluido de la parte superior es agua, con una densidad de 1 .OO g/cm3. La lectura en el manómetro es R = 32.7 cm. Calcule la diferencia de presión en N/m2 usando unidades del SI. Solución: Al convertir R en m, R = g = 0.327m Al convertir también PA y PB en kg/m3 y al sustituir en la ecuación (2.2-14) pu - Pb= R(~A - PB )g = (0.327 m)[(13.6 - l.O)(lOOO kg/m3)](9.8066 m/s2) = 4.040 x lo4 N/m2 (5.85 lb/pulg2 abs) 2. Tubo en U de dos fluidos. En la figura 2.2-4b se muestra un tubo en U de do; fluidos, que es un dispositivo sensible para medir pequeñas cargas o diferencia; de presión. Sea A m el área de corte transversal de cada uno de los depósitos grandes y a m , el área de la sección transversal de cada uno de los tubos que forman la U. Al proceder y hacer un balance de presión para el tubo en U, Pa-Pb=(R PR;PB+%PB-%Pc 8 (2.2-15) donde RO es la lectura cuando pu = Pb, R es la lectura real, PA es la densidad del fluido más pesado y PB la del fluido más ligero. Por lo general, u/A se hace lo suficientemente pequeño como para ser insignificante, y también RO se suele ajustar a cero; entonces, Pa - Pb = @PA - PB >g (SI) (2.2-16) P a - P b =R(PA-PB): c (Unidades del sistema inglés) Si PA y PB están cerca una de otra, la lectura de R se amplifica. EJEMPLO 2.2-S. Medición de la presión en un recipiente El manómetro de un tubo en U de la figura 2.2-5a se usa para medir la presión PA en un recipiente que contiene un líquido cuya densidad es pA. Deduzca la ecuación que relaciona la presión PA con la lectura del manómetro como se muestra. 2.2 Estática de fluidos Solución: En el punto 2, la presión es P2 = Patm + hPBg N/m2 En el punto 1, la presión es PI = PA + hlP& (2.2-17) (2.2-18) Al igualar p1 = p2 por los principios de hidrostática, y reordenando, PA = Patm + h2PBg - hP& (2.2-19) Otro ejemplo de un manómetro de tubo en U se muestra en la figura 2.2-5b. Este dispositivo se usa en este caso para medir la diferencia de presión entre dos recipientes. 3. Manómetro de presión de Bourdon. Aunque los manómetros se usan para medir presiones, el dispositivo más común para medir presiones es el manómetro mecánico de tubo de Bourdon. Un tubo hueco enroscado del manómetro tiende a enderezarse cuando está sujeto a una presión interna, y el grado de enderezamiento depende de la diferencia entre las presiones interna y externa. El tubo está conectado a un indicador en un cuadrante calibrado. 4. Separador por gravedad de dos líquidos inmiscibles. En la figura 2.24 se muestra un separador (decantador) por gravedad continuo para la separación de dos líquidos inmiscibles, A (líquido pesado) y B (líquido ligero). La mezcla de alimentación de los dos líquidos entra por un extremo del recipiente separador y los líquidos fluyen lentamente hacia el otro extremo, y se separan en dos capas distintas. Cada líquido fluye por un tubo de rebosamiento separado, como se muestra. Suponiendo que la resistencia por fricción al flujo por parte de los líquidos es esencialmente despreciable, se pueden usar los principios de la estática de fluidos para analizar su funcionamento. Patm 2 (4 (b) FIGURA 2.2-5. Medidas de la presión en recipientes: a) medida de la presión en un recipiente, b) medida de la presión diferencial. Cap. 2 Principios de transferencta de momento lineal y balances globales 47 Alimentación + Rebosamiento del líquido pesado A FIGURA 2.24. Separador por gravedad atmosférico continuo para líqurdos inmiscibles En la figura 2.2-6, la profundidad de la capa del líquido pesado A es hAl m y la B es hg. La profundidad total es hT = hA 1 + hB y está determinada por la posición del tubo de rebosamiento para B. El líquido pesado A se descarga por el sifón de rebosamiento hA2 m sobre el fondo del recipiente. Éste y los tubos de rebosamiento están abiertos a la atmósfera. Un balance hidrostático da hBPB¿Y + h,il PAg = hA2PAg Al sustituir hB = hr - hAl en la ecuación (2.2-20) y despejando hAl, 'h = ~,,+P,/P, l-PtJP.4 (2.2-21) Esto muestra que la posición de la interfaz o altura hAl depende de la razón de las densidades de los dos líquidos y de las elevaciones hA2 y hT de los dos tubos de rebosamiento. Normalmente, la altura hA2 es movible y el nivel de la interfaz puede ajustarse. 2.3 ECUACIÓN GENERAL DE TRANSPORTE MOLECULAR PARA TRANSFERENCIA DE MOMENTO LINEAL, CALOR Y MASA 2.3A Ecuación general de transporte molecular y balance general de propiedades 1. Introducción a los procesos de transporte. En los procesos de transporte molecular, lo que nos ocupa en general es la transferencia o desplazamiento de una propiedad o entidad dada mediante el movimiento molecular a través de un sistema o medio que puede ser un fluido (gas o líquido) o un sólido. Esta propiedad que se transfiere puede ser masa, energía térmica (calor) o momento lineal. Cada molécula de un sistema tiene una cantidad determinada de la masa, energía térmica o momento lineal asociada a ella, Cuando existe una diferencia de concentración de cualquiera de esas propie- dades de una región a otra adyacente, ocurre un transporte neto de esa propiedad. En los fluidos diluidos, como los gases, donde las moléculas están relativamente alejadas entre sí, la velocidad de transporte de la propiedad será relativamente alta puesto que hay pocas moléculas presentes para bloquear el transporte o para interactuar. En fluidos densos, como los líquidos, las moléculas están 48 2 . 3 EcuaciOn general de transporte molecular para transferencia de momento lineal, calor y masa próximas entre sí y el transporte o la difusión se realiza con mas lentitud. En los sólidos, las moléculas están empacadas mas estrechamente que en los líquidos y la migración molecular es aun más restringida.2. Ecuación general de transporte molecular. Los tres procesos de transporte molecular de momento lineal, calor o energía térmica y de masa se caracterizan, en un sentido elemental, por el mismo tipo general de ecuación de transporte. Primero se debe notar lo siguiente: velocidad del proceso de transporte = fuerza impulsora resistencia (2.3-l) Esta ecuación establece algo que es bastante obvio: que se necesita una fuerza impulsora para vencer una resistencia a fin de transportar una propiedad. Se parece a la ley de Ohm en electricidad, donde la magnitud del flujo de la electricidad es proporcional a la caída del voltaje (fuerza impulsora) e inversamente proporcional a la resistencia. Podemos formalizar la ecuación 2.3-l escribiendo una ecuación como la que sigue para el transporte molecular o la difusión de una propiedad. donde vZ se define como el flujo de la propiedad, es decir, como la cantidad de ésta que se transfiere, por unidad de tiempo, a través de una sección transversal unitaria perpendicular a la dirección z del flujo, en cantidad de propiedads . m2. 6 es una constante de proporcionalidad llamada difusividad en m2/s, IY es la concentración de la propiedad en cantidad de propiedad/m3 y z es la distancia en la dirección del flujo en m. Si el proceso ocurre en estado estacionario, el flujo yZ es constante. Reordenando la ecuación (2.3-2) e integrando, yzJ;2z = -ôJ; ta-- w-, - r2) Yz = z2 - z, 1 (2.3-3) (2.3-4) En la figura 2.3-l se muestra una gráfica de la concentración r en función de z, y es una línea recta. Como el flujo va en la dirección de 1 a 2 de concentración decreciente, la pendiente drldz es negativa, y el signo negativo de la ecuación (2.3-2) da un flujo positivo en la dirección 1 a 2. En la sección 2.3B se demostrará que las ecuaciones especializadas para la transferencia de momento lineal, calor y masa son iguales que la ecuación (2.3-4) para la transferencia general de propiedades. F I G U R A 2.3-l Entra I I I 21 =2 Distancia, z (4 Área unitaria t-Az-l@JI Transporte molecular de una propiednd: a) gr@ca de la concentración en función de la distancia para el estado estacionario, b) balance general de propiedades en estado no estacionario. Cap. 2 Principios de transferencia de momento lineal y bulaxes globales 49 EJEMPLO 2.3-l. Transporte molecular de una propiedad en estado estacionario Se esta transportando una propiedad por difusión a través de un fluido en estado estacionario. En un punto 1 determinado, la concentración es de 1.37 x10-2 cantidad de propiedad/m3 y 0.72 x 1O-2 en el punto 2 a una distancia 22 = 0.40 m. La difusividad 6 = 0.013 m2/s y el área de corte transversal es constante. a) Calcule el flujo. b) Deduzca la ecuación para r como función de la distancia. c) Calcule r en el punto medio de la trayectoria. Solución: Para el inciso a), sustituyendo en la ecuación (2.3-4), vi = ¿j(r, - r2) _ (0.013)(1.37 x 1O-2 - 0.72 x 10-2) q-z, - 0.40 - 0 = 2.113 x lOA cantidad de propiedadls . m2 Para el inciso b), integrando la ecuación (2.3-2) entre rt y r y zr y z y reordenando, (2.3-6) Para el inciso c), usando el punto medio z = 0.20 m y sustituyendo en la ecuación (2.3-6), r = 1.37 x lo-2 + 2’1’,“o~:om4 (0 - 0.2) = 1.045 x 1 OV2 cantidad de propiedad/m3 3. Balance general de propiedadpara estado estacionario. Al calcular las velocidades de transporte en un sistema usando la ecuación de transporte molecular (2.3-2), es necesario tomar en cuenta la cantidad de esta propiedad que se transporta en todo el sistema. Esto se hace escribiendo una ecuación general de balance o conservación para la propiedad (momento lineal, energía térmica o masa) en estado no estacionario. Se empieza por escribir una ecuación sólo para la dirección z, que indica toda la propiedad que entra por transporte molecular, la que sale, la que se genera y la que se acumula en un sistema como el que se muestra en la figura 2.3-lb, que es un elemento de volumen b(1)m3 fijo en el espacio. tasa de propiedad que entra tasa de generación de propiedad tasa de propiedad que sale tasa de acumulación de propiedad (2.3-7) 50 2.3 Ecuación general de transporte molecular para transferencia de momento lineal, calor y masa La velocidad de entrada es ( I,u--I,) al cantidad de propiedads, y la velocidad de salida es ( I,U+ + & 1, donde el área de corte transversal es 1 .O m2. La velocidad de generación de la propiedad es R(Az~ l), donde R es la velocidad de generación de propiedads . m3. El término para la acumulacjón es velocidad de acumulación de propiedad = s (AZ . 1) (2.3-S) Al sustituir los diferentes términos en la ecuación (2.3-7), (y-qz) *l + R(b.1) = (&lz + AJ . 1 + $ (AZ . 1) Al dividir entre AZ y dejando que AZ llegue a cero, ar : avz - R at az (2.3-9) (2.3-10) Al sustituir I,U- de la ecuación (2.3-2) en la ecuación (2.3-10) y suponiendo que ¿I es constante, ar aa21- =R- - - at a2 En el caso de que no haya generación, ar aa2r- - - at a2 (2.3-11) (2.3-12) Esta última ecuación relaciona la concentración de la propiedad r con la posición z y el tiempo t. Las ecuaciones (2.3-l 1) y (2.3-12) son ecuaciones generales para la conservación de momento lineal, energía térmica, o masa, y se usaran en muchas secciones de este libro. Las ecuaciones sólo consideran aquí el transporte molecular que ocurre, y no otros mecanismos de transporte como la convección, por ejemplo, que se tratarán cuando se deduzcan en secciones posteriores de esta obra las ecuaciones de conservación específicas para momento lineal, energía, o masa. 2.3B Introducción al transporte molecular La teoría cinética de los gases da una buena interpretación física del movimiento de las moléculas individuales en los fluidos. Debido a su energía cinética, las moléculas están en un rápido movimiento aleatorio, y a menudo chocan unas con otras. El transporte molecular o la difusión molecular de una propiedad como el momento lineal, el calor, o la masa, se lleva a cabo en un fluido gracias a esos movimientos aleatorios de las moléculas individuales. Cada molécula individual que contiene la propiedad que se transfiere se mueve al azar en todas direcciones, y se producen flujos en todas direcciones. Por lo tanto, si existe un gradiente de concentración de la propiedad, habrá un flujo neto de la propiedad desde la concentración alta hasta la baja. Esto sucede porque se difunde el mismo número de moléculas en todos sentidos entre las regiones de alta y baja concentración. Cap. 2 Principios de transferencia de momento lineal y balances globales 5 1 1. Transporte de momento lineal y la ley de Newton. Cuando un fluido fluye en la dirección x en forma paralela a una superficie sólida, existe un gradiente de velocidad donde la velocidad v, en la dirección x disminuye al acercarse a la superficie en la dirección z. El fluido tiene un momento lineal con dirección x y su concentración es vXp momento lineal/m3, donde el momento lineal tiene unidades de kg . m/s. Así, las unidades de vXp son (kg . m/s)/m3. Debido a la difusión aleatoria de las moléculas, existe un intercambio de moléculas en la dirección z, moviéndose igual número de ellas en cada dirección (direcciones + z y -z ) entre la capa de moléculas que se mueve mas rápido y la capa adyacente más lenta. Por lo tanto, el momento lineal con dirección x se ha transferido en la dirección z desde la capa que se mueve más rápido hacia la que lo hace más lentamente. La ecuación para este transporte de momento lineal es similar a la ecuación (2.3-2) y es la ley de Newton de la viscosidad escrita como sigue para una densidad p constante: 4% PI z2x = -v -z- (2.3-13) donde ~~~ es el flujo de momento lineal con dirección x en la dirección z (kg . m/s)/s * m2; v es Np, la difusividad de momento lineal en m2/s; z es la dirección de transporte o difusión en m; p es la densidad en kg/m3, y p es la viscosidad en kglm ’ s. 2. Trbnsporte de calor y ley de Fourier. La ley de Fourier para el transporte molecular de caloro la conducción de calor en un fluido o sólido puede escribirse como sigue para una densidad p constante y una capacidad calorífica cp. (2.3-14) donde &4 es el flujo de calor en J/s . m2, a es la difusividad térmica en m2/s y pcpT es la concentración de calor o energía térmica en J/m3. Cuando hay un gradiente de temperatura en un fluido, se difunden igual número de moléculas en todas direcciones entre la región caliente y la más fría. De esta manera se transfiere la energía en la dirección z. 3. Transporte de masa y la ley de Fick . La ley de Fick para el transporte molecular de masa en un fluido o en un sólido para una concentración total constante del fluido es (2.3-15) donde Ji, es el flujo de A en kg mol Ah *m 2, DAR es la difusividad molecular de la molécula A en B en m2/s, y CA es la concentración de A en kg mol A/m3. Del mismo modo que con el transporte de momento lineal y de calor, donde existe un gradiente de concentración en un fluido, se difundirán igual número de moléculas en todas direcciones entre las regiones de alta y de baja concentración, y ocurrirá un flujo neto de masa. Por consiguiente, las ecuaciones (2.3-13), (2.3-14) y (2.3-15) para la transferencia de momento lineal, de calor y de masa son similares entre sí y a la ecuación general de transporte molecular (2.3- 2). Todas estas ecuaciones tienen un flujo en el lado izquierdo, una difusividad en m2/s y la derivada de la concentración con respecto a la distancia. Las tres ecuaciones de transporte molecular son matemáticamente idénticas, por lo que se dice que tienen analogía o similitud entre sí. Pero debe resaltarse que, aunque existe una analogía matemática, los mecanismos físicos reales que ocurren 52 2.4 Viscosidad de los fluidos pueden ser completamente diferentes. Por ejemplo, en la transferencia de masa con frecuencia se transportan dos componentes mediante un movimiento relativo entre uno y otro. En el transporte de calor en un sólido, las moléculas están relativamente estacionarias y el transporte es realizado principalmente por los electrones. El transporte de momento lineal puede ocurrir por varios tipos de mecanismos. Algunas consideraciones más detalladas sobre los procesos de transporte de momento lineal, de energía y de masa se presentan en lo que resta de este capítulo y en los siguientes. 2.4 VISCOSIDAD DE LOS FLUIDOS 2.4A La ley de Newton y la viscosidad Cuando un fluido fluye a través de un canal cerrado, esto es, una tuberia o entre dos placas planas, se representan dos tipos de flujo, dependiendo de la velocidad de dicho fluido. A velocidades bajas, el fluido tiende a fluir sin mezclado lateral y las capas adyacentes se resbalan unas sobre las otras como los naipes de una baraja. En este caso no hay corrientes cruzadas perpendiculares a la dirección del flujo, ni tampoco remolinos de fluido. A este régimen o tipo de flujo se le llamaflujo laminar. A velocidades más altas se forman remolinos, lo que conduce a un mezclado lateral. Esto se llama j7ujo turbulento. En esta sección nos limitaremos a estudiar el flujo laminar. Con respecto a la viscosidad, un fluido puede diferenciarse de un sólido por su comportamiento cuando se somete a un esfuerzo (fuerza por unidad de área) o fuerza aplicada. Un sólido elástico se deforma en una magnitud proporcional similar al esfuerzo aplicado. Sin embargo, cuando un fluido se somete a un esfuerzo aplicado similar continúa derformándose, esto es, fluye a una velocidad que aumenta con el esfuerzo creciente. Un fluido exhibe resistencia a este esfuerzo. La viscosidad es la propiedad de un fluido que da lugar a fuerzas que se oponen al movimiento relativo de capas adyacentes en el fluido. Estasfuerzas viscosas se originan de las que existen entre las moléculas del fluido y son de carácter similar a lasfuerzas cortantes de los sólidos. Estas ideas resultaran más claras al estudiar la viscosidad desde un punto de vista cuantitativo. En la figura 2.4-l se muestra un fluido encerrado entre dos placas paralelas infinitas (muy largas y muy anchas). Supóngase que la placa inferior se desplaza paralelamente a la superior a una velocidad constante Av, rn/s mayor que la de la placa superior, debido a la aplicación de una fuerza uniforme de F newtons. Esta fuerza se llama retardo viscoso y tiene su origen en las fuerzas viscosas del fluido. Las placas tienen una separación Ay m. Todas las capas del líquido se desplazan en la dirección z. La capa inmediatamente adyacente a la placa inferior se desplaza a la velocidad de dicha placa. La capa que le sigue hacia arriba se mueve a una velocidad un poco menor, y cada una de ellas tiene una velocidad un poco menor que la anterior al recorrer el fluido en la dirección y. Este perfil de velocidades es lineal con respecto a la dirección y, tal como se muestra en la figura 2.4-l. Una analogía de este fluido seria un mazo de naipes donde al mover el naipe de abajo, todos los demás presentan también cierto grado de desplazamiento. Para muchos fluidos se ha determinado en forma experimental que la fuerza F en newtons es directamente proporcional a la velocidad Av, en m/s , el área A en m2 de la placa usada, inversamente proporcional a la distancia Ay en m. Expresada con la ley de viscosidad de Newton cuando el flujo es laminar, (2.4-l) donde p es una constante de proporcionalidad llamada viscosidad del fluido en Pa . s o kg ! m . s. Cuando Ay tiende a cero y usando la definición de derivada, (Unidades SI) (2.4-2) Cap. 2 Principios de transferencia de momento lineal y balances globales 53 FIGURA 2.3-1. Esfuerzo cortante en un fluido entre placas paralelas donde zyZ = F/A es el esfuerzo cortante o fuerza por unidad de área en newtons/m2 (N/m2). En el sistema cgs, F está en dinas, p en g/cm * s, v, está en cm/s y y en cm. La ecuación (2.2-2) también puede escribirse así: dvz =J.& = -Pdy (Unidades del sistema inglés) (2.4-3) ryZ está en lbf/pie2. Las unidades de viscosidad en el sistema cgs son g/cm . s, llamadas poise o centipoise (cp). En el sistema SI, la viscosidad se expresa en Pa . s(N * s/m2 o kg/m . s). 1 cp = 1 x 1 O-3 kg/m * s = 1 x 1 O-3 Pa * s = 1 x 10m3 N * s/m2 (SI) 1 cp = 0.01 poise = 0.01 g/cm * s 1 cp = 6. 7197 x lOA lb,/pie . s En el apéndice A.l se incluyen otros factores de conversión para la viscosidad. Algunas veces, la viscosidad se expresa como flp o viscosidad cinematica, en m2/s o cm2/s, donde p es la densidad del fluido. Ejemplo 2.4-l. Cálculo del esfuerzo cortante en un líquido. Con respecto a la figura 2.4-1, la distancia entre las placas es Ay = 0.5 cm, Av = 10 cm/s y el fluido es alcohol etílico a 273 K, cuya viscosidad es 1.77 cp (0.0177 g/cm . s). a) Calcule el esfuerzo cortante zyZ y el gradiente de velocidad o velocidad cortante dv,ldy en unidades cgs. b) Repita en Ib fuerza, s y pies (unidades del sistema inglés). c ) Repita esto en unidades SI. Solución: Se puede sustituir directamente en la ecuación (2.4-l) o integrar la ecuación (2.4-2). Usando este último método, reordenando la ecuación (2.4-2), llamando a la placa inferior punto 1 e integrando: (2.4-4) z VI -v2 YZ =p- Y2 -Y, (2.4-5) 54 2.4 Yiscasidad de los Judos Al sustituir los valores conocidos = 0,354 g.crn/s2 = 0.354dina cm2 cm2 (2.4-6) Para calcular la velocidad cortante dwz/dy, y puesto que el cambio de velocidad es lineal con respecto a y, velocidad cortante = 3 = $$ = Po-ob-is = zoo s-I (05- 0)cm ’ (2.4-7) Para el inciso (b), usando Ib fuerza como unidades y el factor de conversión de la viscosidad del apéndice A. 1, ,u = 1.77 ~~(6.7197 x lOA Ib,/pie . s)/cp = 1.77(6.7197 x lOA) lb,/pie . s Al integrar la ecuación (2.4-3), p Ib, /pie. s (v, - v2 )pie/s h .pie ‘Yz = gc lbf . s2 (y2 - yl )pie (2.4-8) Al sustituir los valores conocidos en la ecuación (2.4-S) y convertir Av, a pieh y Ay a pie, TYz = 7.39 x lo4 lbf/pie2. También, dvz/dy = 20 s-l. Para el inciso c), Ay = 0.5/100 = 0.005 m, Av, = lO/lOO = 0.1 n-h, y p = 1.77 x 10w3 kg/m* s = 1.77 x lOe3 P a * s. Al sustituir la ecuación (2.4-5), 7yz = (1.77 x 1O-3 )(O.lO)/O.OOS = 0.0354 N/m2 La velocidad cortante será la misma a 20.0 s-l. 2.4B Transferencia de momento lineal en un fluido El esfuerzo cortante ~~~ en las ecuaciones (2.4-l) a (2.4-3) también puede interpretarse como unJujo de momento lineal dirigido a z en la dirección y, esto es, la velocidad de flujo de momento lineal por unidad de área. Las unidades de momento lineal son masa por velocidad, kg . mIs. El esfuerzo cortante puede escribirse como kg.m/s = momento lineal zyz = m2 .s m2.s (2.4-9) Esta ecuación expresa una cantidad de momento lineal transferida por segundo y por unidad de área. Cap. 2 Principios de transferencia de momento lineal y balances globales 55 Lo anterior puede ilustrarse considerando la interacción entre dos capas adyacentes de un fluido en la figura 2.4- 1, cuyas velocidades son diferentes y que, por tanto, tienen momento lineal distintos en la direcciónz. Los movimientos desordenados de las moléculas en la capa de mayor velocidad envían a algunas de ellas a la capa más lenta, donde chocan con las moléculas de menor velocidad y tienden a acelerarlas o a aumentar su momento lineal en la dirección z. Además, y de la misma manera, las moléculas de la capa más lenta tienden a retardar a las de la capa más rápida. Este intercambio de moléculas entre las capas produce una transferencia o flujo de momento lineal en la dirección z de las capas de mayor velocidad a las de velocidad más baja. El signo negativo de la ecuación (2.4-2) indica que el momento lineal se transfiere hacia abajo por el gradiente de regiones de alta a baja velocidad. Esto es similar a la transferencia de calor de las regiones de alta a las de baja temperatura. 2.4C Viscosidad de los fluidos newtonianos Los fluidos que obedecen la ley de viscosidad de Newton, ecuaciones (2.4-l) a (2.4-3) se llaman jikidos newtonianos. En los fluidos newtonianos existe una relación lineal entre el esfuerzo cortante Q y el gradiente de velocidad dvddy (velocidad cortante). Esto significa que la velocidad p es constante e independiente de la velocidad cortante. En fluidos no newtonianos, la relación entre zyZ y dvddy no es lineal, es decir, la viscosidad p no permanece constante sino que está en función de la velocidad cortante. Algunos líquidos no obedecen esta ley simple de Newton, como pastas, lechadas, altos polímeros y emulsiones. La ciencia del flujo y deformación de los fluidos se llama reologia. No se estudiarán aquí los fluidos no newtonianos, ya que se mcluyen en la sección 3.5. La viscosidad de los gases, que son fluidos newtonianos, aumenta con la temperatura y es aproximadamente independiente de la presión hasta unos 1000 kPa. A presiones más elevadas, la viscosidad de los gases aumenta al incrementarse la presión. Por ejemplo, la viscosidad del N2 gaseoso a 298 K casi se duplica al subir de 100 kPa a 5 x lo4 kPa (Rl). En los líquidos, la viscosidad disminuye al aumentar la temperatura. Puesto que los líquidos son esencialmente incompresibles, la presión no afecta su viscosidad. TABLA 2.4-l. Viscosidades de algunos gases y líquidos a 101.32 kPa de presión. Temp. Sustancia K Gases Viscosidad (Pa s)103 0 (kg/m s) lo3 Ref Sustancia Líquidos Viscosidad Temp. (Pa s)103 0 K (kg/m s ) 103 ReJ: A i r e 2 9 3 0.01813 c o 2 2 7 3 0.01370 Rl 3 7 3 0.01828 Rl CH4 2 9 3 0.01089 Rl so2 3 7 3 Agua 293 1.0019 Sl 3 7 3 0.2821 Sl Benceno 2 7 8 0.826 Rl Glicerina Hg Aceite de oliva 2 9 3 1 0 6 9 Ll 2 9 3 1.55 R2 3 0 3 8 4 El En la tabla 2.4- 1 se incluyen datos experimentales de algunos fluidos puros típicos a 10 1.32 kPa. Las viscosidades de los gases son las más bajas y no difieren mucho entre un gas y otro, siendo de más o menos 5 x 1 Op6 a 3 x 1 Oe Pa . s. Las viscosidades de los líquidos son mucho más elevadas. El valor 56 2.5 Tipos de jlujo de fluidos y el número de Reynolds para el agua a 293 K es de 1 x 1 Ow3 y para la glicerina es de 1.069 Pa . s; por consiguiente, existen grandes diferencias entre las viscosidades de los líquidos. Se incluyen tablas de viscosidades más completas para el agua en el apéndice A.2, en el apéndice A.3 para líquidos y gases inorgánicos y orgánicos, y en el apéndice A.4 para líquidos biológicos y alimenticios. En otras referencias (P 1, Rl, Wl, Ll), pueden encontrarse datos más completos. También existen métodos (Rl) para estimar viscosidades de gases y líquidos cuando no se cuenta con datos experimentales. Estos métodos de estimación son bastante precisos para gases a presiones inferiores a 100 kPa, con un error de *5 %, pero los procedimientossimilares para líquidos son poco exactos, 2.5 TIPOS DE FLUJO DE FLUIDOS Y EL NÚMERO DE REYNOLDS 2.5A Introducción y tipos de flujo de fluidos Los principios de la estática de fluidos, estudiados en la sección 2.2 son casi una ciencia exacta. Por otra parte, los principios del movimiento de los fluidos son bastante complicados. Las relaciones básicas que describen el movimiento de un fluido están comprendidas en la ecuaciones para los balances totales de masa, energía y momento lineal, que se tratarán en las secciones siguientes. Estos balances totales (o macroscópicos) se aplicaran a un recipiente finito o volumen fijo en el espacio. Usamos el término “total” debido a que deseamos describir estos balances con respecto al exterior del recipiente. Los cambios dentro del recipiente quedan determinados en términos de las propiedades de las corrientes de entrada y salida, y de los intercambios de energía entre el recipiente y sus alrededores. Al llevar a cabo balances totales de masa, energía y momento lineal, no interesan los detalles de lo que ocurre dentro del recipiente. Por ejemplo, en un balance total se consideran velocidades de entrada y salida promedio. Sin embargo, en un balance diferencial se puede obtener la distribución de velocidades dentro del recipiente por medio de la ley de viscosidad de Newton. En esta sección estudiaremos primero los dos tipos de flujo de fluidos que se pueden verificar: flujo laminar y flujo turbulento. Además, se considerará también el número de Reynolds, que se usa para caracterizar los tipos de flujo. Después, en las secciones 2.6, 2.7 y 2.8 se describe el balance global de masa, el balance de energía y el balance de momento lineal, junto con varias aplicaciones. Por último, en la sección 2.9 se estudiarán los métodos para efectuar un balance de un elemento en el recinto para obtener la distribución de velocidades de dicho elemento y la caída de presión. 2.5B Flujo laminar y flujo turbulento El tipo de flujo que se presenta en el desplazamiento de un fluido por un canal es muy importante en los problemas de dinámica de fluidos. Cuando los fluidos se mueven por un canal cerrado de cualquier área de corte transversal, se puede presentar cualquiera de dos tipos diferentes de flujo, dependiendo de las condiciones existentes. Estos dos tipos de flujo pueden verse con frecuencia en un río o en cualquier corriente abierta. Cuando la velocidad del flujo es baja, su desplazamiento es uniforme y terso. Sin embargo, cuando la velocidad es bastante alta, se observa una corriente inestable en la que se forman remolinos o pequeños paquetes de partículas de fluido que se mueven en todas direcciones y con gran diversidad de ángulos con respecto a la dirección normal del flujo. El primer tipo de flujo avelocidades bajas, donde las capas de fluido parecen desplazarse unas sobre otras sin remolinos o turbulencias, se llarna~z@ luminar y obedece la ley de viscosidad de Newton estudiada en la sección 2.4A. El segundo tipo de flujo a velocidades más altas, donde se forman remolinos que imparten al fluido una naturaleza fluctuante, se llamaflujo turbulento. Cap. 2 Principios de transferencia de momento lineal y balances globales 51 La existencia de flujo laminar y turbulento puede visualizarse con facilidad por medio de los experimentos de Reynolds, que se muestran en la figura 2.51. Se hace fluir agua de manera uniforme a través de una tubería transparente, controlando la velocidad por medio de una válvula situada al final del tubo. Se introduce una corriente muy fina y uniforme de agua con un colorante, a través de una boquilla de inyección, para observar su flujo. Cuando la velocidad de flujo del agua es baja, la coloración es regular y forma una sola línea, esto es, una corriente similar a un cordel, tal como lo muestra la figura 2.5-la. En este caso no hay mezclado lateral del fluido y éste se desplaza en una línea recta por el tubo. Al colocar varios inyectores en otros puntos de la tubería se demuestra que no hay mezclado en ninguna parte del mismo y que el fluido fluye en líneas rectas paralelas, A este tipo de flujo se le llama laminar o viscoso. - Agua con colorante flujo del colorante (8) FIGURA 2 .5 - l . Experimento de Reynolds para diferentes tipos de flujo: a) laminar, b) turbulento Al aumentar la velocidad, se ve que al llegar a cierto límite, la línea de colorante se dispersa y su movimiento se vuelve errático, tal como lo muestra la figura 2.5lb. A este tipo de flujo se le llama turbulento. La velocidad a la que se presenta el cambio de tipo de flujo se llama velocidad critica. 2.W El número de Reynolds Con diversos estudios se ha podido demostrar que la transición del flujo laminar al turbulento en tuberías no está sólo en una función de la velocidad, sino también de la densidad y viscosidad del fluido y del diámetro del tubo. Estas variables se combinan en la expresión del numero de Reynolds, que es adimensional: donde NR~ es el número de Reynolds, D es el diámetro en m, p es la densidad del fitido en kg/m3, p es la viscosidad del fluido en Pa . s y v es la velocidad promedio del fluido en m/s (definiendo la 58 2.5 Tipos de flujo de flurdos y el número de Reynoidi velocidad promedio como la velocidad volumétrica del flujo dividida entre el área de corte transversal de la tubería). Las unidades en el sistema cgs son cm para D, g/cm3 para p, g/cm . s para p y cm/s para v. En el sistema inglés, D se da en pies, p en lb,/pie3, p en lb,/pie . s y v en piek La inestabilidad del flujo que conduce a un régimen perturbado o turbulento está determinada por la relación de las fuerzas de inercia o cinéticas y las fuerzas viscosas de la corriente fluida. Las fuerzas de inercia son proporcionales a pv2 y las viscosas a pv/D, y la relación pv2 (@D) es el número de Reynolds Dvplp. En la sección 3.11 se incluyen explicaciones y deducciones adicionales de los números adimensionales. Cuando el número de Reynolds es menor de 2100 para una tubería circular recta, el flujo siempre es laminar. Cuando el valor es superior a 4000, el flujo será turbulento excepto en algunos casos especiales. Entre estos dos valores, o región de trcznsición, el flujo puede ser viscoso o turbulento, dependiendo de los detalles del sistema, que no se pueden predecir. EJEMPLO 2.5-l. Número de Reynolds en una tubería Por una tubería con un diámetro interior (DI) de 2. 067 pulg fluye agua a 303 K con una velocidad de 10 gal/min. Calcule el número de Reynolds usando unidades del sistema inglés y SI. Solución: Con base en el apéndice A. 1,7.841 gal = 1 pie3. Lavelocidad de flujo se calcula como velocidad de flujo = ( 10.0-$-)[7.:~~~al][~) = 0.0223 pie3/s 2.067 diámetro de la tubería, D =- = 0.172 pie12 velocidad en la tubería, v = Del apéndice A.2 para agua a 303 K (30 “C), densidad, p = 0.996(62.43) lbm /pie3 Ib, / pies s cp 1 = 5.38 x lo4 Ib,/pie . s Al sustituir en la ecuación (2.5-l), bp NRe = T= (0.172 pie)(0.957 pie/s)(0.996 x 62.43 lb,/pie3) 5.38 x 10m4 Ib, /pie. s = 1.905 x 104 Cap. 2 Principios de transferencia de momento lineal y balances globales 59 Por tanto, el flujo es turbulento. Al usar unidades SI, p = (0.996)( 100 kg / m3) = 996 kg / m3 D = (2.067 pulg)( 1 pie/12 pulg)( lm/3.2808 pie) = 0.0525 m kg= 8.007 x 1O-4 ms = 8.007 x lo4 Pa. s bp NR~= -= (0.0525 m)(0.2917 m/s)(996 kg/m3) P 8.007 x lo4 kg/m. s = 1.905 x 104 2.6 BALANCE TOTAL DE MASA Y ECUACIÓN DE CONTINUIDAD 2.6A Introducción y balances de masa simples En la dinámica de fluidos se estudia el movimiento de éstos. Por lo general, se transfieren de un lugar a otro por medio de dispositivos mecánicos tales como bombas o ventiladores por carga de gravedad o por presión, y fluyen a través de sistemas de tuberías o equipo de proceso. El primer paso en la resolución de los problemas de flujo casi siempre consiste en aplicar los principios de conservación de la masa a la totalidad del sistema o a una parte del mismo. Consideraremos primero un balance elemental para una geometría simple, para deducir después la ecuación general de balance de masa. En la sección 1.5 se introdujeron los balances simples de material o de masa y se estableció que entrada = salida + acumulación (1.5-1) Puesto que en el flujo de fluidos generalmente se trabaja con velocidades de flujo y casi siempre en estado estacionario, la velocidad de acumulación es cero y se obtiene velocidad de entrada = velocidad de salida (estado estacionario) (2.6-l) En la figura 2.6-l se muestra un sistema simple de fhjo en el que el fluido entra a la sección 1 con una velocidad promedio VI m/s y una densidad p1 kg/m3. El área de corte transversal es A 1 m2. El fluido sale por la sección 2 con una velocidad promedio y. El balance de masa, ecuación (2.6-l) es, rn, = plAlv1 = p2A2v2 (2.6-2) A2 Proceso d-b v2 P 2 FIGURA 2.6-I. Balance de masa en un sistema de jlujo. 60 2.6 Balance total de masa y ecuación de continuidad donde m = kgfs. Con frecuencia, vp se expresa como G = vp, donde G es la velocidad de masa o flujo específico de masa en kgh * m2. En unidades del sistema inglés, v está en piels, p en lb,/pie3, A en pie2, m en Ib& y G en lb,/s 9 pie2. EJEMPLO 2.6-l. Flujo y balance de masa de petróleo crudo Un petróleo crudo con una densidad de 892 kg/m3 fluye a través del sistema de tuberías que se muestra en la figura 2.6-2 a una velocidad total de 1.388 x lOe3 m3/s a la entrada de la tubería 1. El flujo se divide en partes iguales entre las tres tuberías. Las tuberías son de acero de cédula 40 (véase en el apéndice A.5 las dimensiones exactas). Calcule lo siguiente usando unidades SI. a) Velocidad total del flujo de masa m en las tuberías 1 y 3. b) Velocidad promedio v en 1 y 3. c) Velocidad de masa G en 1. Solución: De acuerdo con el apéndice A.5, las dimensiones de las tuberías son las siguientes: tuberías de 2 pulg: D,(DI) = 2.067 pulg, área de corte transversal, Al = 0.02330 pie2 = 0.02330 (0.0929) = 2.165 x 1O-3 m2 tubería de l+ pulg: D3 (DI) = 1.610 pulg, área de corte transversal A3 = 0.01414 pie2 = 0.01414 (0.0929) = 1.313 x 10p3 m2 La velocidad total del flujo de masa en las tuberías 1 y 2 es igual, y ml = (1.388 x 10-3 m3/s) (892 kg/m3) = 1.238 kg/s Puesto que el flujo se divide en partes iguales en las tres tuberías, m, 1.238 m3=-= - = 0.619 kg/s2 2 Para el inciso b), usando la ecuación (2.6-2) y despejando v, m1 - 1.238 kg/ s v’ = x - (892 kg/m3)(2.165 x 10w3m2) = o’641 m’s m3 - 0.619- - - ‘ 3 - b’3A3 (892)(1.313x 10-3) = o’528 m’s de 1 1/2 pulg de 1 1/2 pulg FIGURA 2.6-2. Sistema de tuberías del ejemplo 2.6-I. Cap. 2 Principios de transferencia de momento lineal y balances globales 6 1 Para el inciso c), 1.238 2.165 x 1O-3 = 572kg s.m2 2.6B Volumen de control para balances Las leyes de conservación de la masa, la energía y el momento lineal se refieren siempre a un sistema y gobiernan la interacción de dicho sistema con sus alrededores. El sistema se define como una cierta cantidad de fluido de identidad conocida. Sin embargo, en el flujo de fluidos no es fácil identificar las partículas individuales. Como resultado, la atención se centra en un cierto espacio a través del cual fluye el fluido en vez de hacerlo en una cierta masa del fluido. El método empleado que resulta más conveniente consiste en seleccionar un volumen de controlque es una región constante en el espacio a través de la cual fluye el fluido. En la figura 2.6-3 se muestra el caso de un fluido que pasa a través de un conducto. La superficie de control que se representa como una línea punteada, es la superficie que rodea al volumen de control. En la mayoría de los problemas, parte de la superficie de control coincide con algún límite físico tal como la pared del dueto. El resto de la superficie de control es un área hipotética a través de la cual puede fluir el fluido, tal como lo muestran los puntos 1 y 2 en la figura 2.6-3. La representación del volumen de control es análoga a la del sistema abierto en termodinámica. 2.6C Ecuación global para el balance de masa Al deducir la ecuación general para el balance total de masa, la ley de la conservación de la masa puede enunciarse como sigue para un volumen de control donde no se genera masa: velocidad de salida de masa del volumen de control velocidad de entrada de masa al volumen de control + velocidad de acumulación de masa en el volumen de control = 0 (velocidad de generación de masa) (2.6-3) Considérese ahora el volumen general de control fijo en el espacio y localizado en el campo de flujo de un fluido, tal como lo muestra la figura 2.6-4. Para un elemento pequeño de área dA m2 en la superficie de control, la velocidad de efusión de masa de este elemento = (pv )(dA cos IX), donde (dA cos a) es Volumen de control 1 FIGURA 2.6-3 Volumen de control para el jlujo a través de un dueto. 62 2.6 Balance total de masa y ecuación de continuidad el área dA proyectada perpendicularmente al vector de velocidad v, a es el ángulo entre el vector de velocidad v y el vector unitario dirigido hacia afuera n, que es perpendicular a d4; y p es la densidad en kg/m3. La cantidad pv tiene unidades de kg/s * m2 y se llama velocidad o pujo especz@o de masa G. Volumen Líneas de corriente Normal a la superficie del fluido Superficie de control J FIGURA 2.64. Flujo a través de un Brea diferencial dA en una superjicie de control. Por el álgebra vectorial se sabe que (pv)(dA cos a) es el producto escalar p (v * n)dA. Integrando esta cantidad entre los límites de la totalidad de la superficie de control,4 se obtiene el flujo neto de masa a través de la superficie de control, o la efusión neta de masa en kg/s para la totalidad del volumen de control V. efusión neta de masa desde el volumen de control vp cos a dA = SS p( v. n)dA A (2.6-4) Nótese que si hay entrada de masa al volumen de control, esto es, cuando existe flujo hacia adentro a través de la superficie de control, la efusión neta de masa en la ecuación (2.6-4) es negativa, pues a > 90” y cos a es negativo. Por lo tanto, hay un aporte neto de masa. Si a < 90”, habrá una efusión neta de masa. La velocidad de acumulación de masa dentro del volumen de control Vpuede expresarse como sigue: velocidad de acumulación de masa en el volumen de control pdV = TV (2.6-5) donde M es la masa de fluido en el volumen en kg. Sustituyendo las ecuaciones (2.6-4) y (2.6-5) en la (2.6-3) se obtiene la forma general del balance total de masa: IIP(V.n)dA+&Jj/-pdV = 0 A V (2.6-6) El uso de la ecuación (2.6-6) puede ilustrarse para una situación común de un flujo unidimensional de estado estacionario, donde todo el flujo hacia adentro es normal a A 1 y el que sale es normal a AZ, tal como se muestra en la figura 2.6-3. Cuando la velocidad v2 de salida (Fig. 2.6-3) es perpendicular a AZ, el ángulo a2 entre la perpendicular a la superficie de control y la dirección de la velocidad es 0” y cos a2 = 1.0. Donde ~1 se dirige hacia el interior, al > x/2, y para el caso en la figura 2.6-3, al es 180” (cos al = -1.0). Como a2 es 0” y al es 180”, usando la ecuación (2.6-4), Cap. 2 Principios de transferencia de momento lineal y balances globales 63 II vp cos a dA = II vp cos a2 dA + II vp cosa, dA A 4 Al = ~2 ~2A2 - VI PIAI Para estado estacionario, dM7dt = 0 en la ecuación (2.6-5) y la ecuación (2.6-6) se transforma en m = PI MI = ~2~42 (2.6-2) que es la ecuación (2.6-2), deducida con anterioridad. En la figura 2.6-3 y en las ecuaciones (2.6-3) a la (2.6-7) no interesaba la composición de ninguna de las corrientes. Estas ecuaciones se pueden ampliar fácilmente para representar un balance de masa global para el componente i en un sistema de multicomponentes. Para el caso que se muestra en la figura 2.6-3 combinamos las ecuaciones (2.6-5) (2.6-6) y (2.6-7), agregamos un término de generación y obtenemos % ZR. mi2- mil + dt 1 donde mi2 es la velocidad del flujo de masa del componente i que sale del volumen de control y R, es la velocidad de generación del componente i en el volumen de control en kg por unidad de tiempo. (Aquí los flujos de difusión se desprecian o se suponen sin influencia). En algunos casos, desde luego, Ri = 0 cuando no hay generación. Muchas veces es más conveniente usar la ecuación (2.6-S) escrita en unidades molares. EJEMPLO 2.6-2. Balance global de masa en un tanque agitado Un tanque contiene inicialmente 500 kg de solución salina que tiene un 10% de sal. En el punto (1) en el volumen de control de la figura 2.6-5, entra una corriente con una velocidad de flujo constante de 10 kg/h que contiene 20% de sal. Una corriente sale por el punto (2) a una velocidad constante de 5 kg/h. El tanque se agita bien. Deduzca una ecuación que relacione la fracción de peso WA de la sal en el tanque en cualquier momento t en horas. Solución: Primero se hace un balance de masa total usando la ecuación (2.6-7) para la efusión de masa total neta a partir del volumen de control. vpcos cx a!A=m,-m, =5-lO=-5kgsolución/h (2.6-9) A De la ecuación (2.6-5), donde Mson los kilogramos totales de solución en el volumen de control en el tiempo t, Al sustituir las ecuaciones (2.6-5) y (2.6-9) en la (2.6-6), y luego integrar -5+dM=o dt (2.6-10) I M dM=5 ’ dt M= 500 It=o M= 5t + 500 (2.6-11) 64 2.6 Balance total de masa y ecuación de continuidad Volumen de kg de sal FI G U R A 2.6-5. Volumen de control para el jlujo en un tanque agitado para el ejemplo 2.6-2 La ecuación (2.6-l 1) relaciona la masa total Mque hay en el tanque en cualquier tiempo t. Ahora, haciendo un balance de sal del componente A, sea wA = fracción de peso de sal en el tanque en el tiempo t y también la concentración en la corriente m2 que sale en el tiempo t. Usando de nuevo la ecuación (2.6-7) pero para una balance de sal, II vp cos cx& = (5)~~ - 10 (0.20) = 5w, -2kg sal/h A (2.6-12) Al usar la ecuación (2.6-5) para una balance de sal, &jjj/,dV=-$(kfwA)=~ +w,ykg sal/h V Al sustituir las ecuaciones (2.6-12) y (2.6-13) en la (2.6-6) &A5wA -2+M7 +w dM=o A dt (2.6-14) Al sustituir el valor de Mde la ecuación (2.6-l 1) en la (2.6-14), separando las variables, integrando y despejando wA , 5w~ -2+(%,t,+5t)%+w, dt d(500 + 5t) = o 5w,., -2+(%0+5t)% +5wA =o W A = (2.6-15) (2.6-16) Nótese que la ecuación (2.6-8) para el componente i pudo haberse usado para el balance de sal con Ri = 0 (sin generación). Cap. 2 Principios de transferencia de momento lineal y balances globales 65 2.6D Velocidad promedio para uso en el balance global de masa Al resolver el caso de la ecuación (2.6-7) supusimos una velocidad constante vl en la sección 1 y una v2 constante en la sección 2. Si la velocidad no es constante, sino que varía en distintos puntos del área de superficie, se define una velocidad general o promedio mediante 1 vprom = 2 II VdA A para una superficie sobre la cual v es perpendicular a A y la densidad p se supone constante. EJEMPLO 2.6-3. Variación de la velocidad en diferentes puntos de la superficie de control y velocidad promedio Para el caso de un flujo incompresible @ es constante) a través de una tubería circular de radio R, el perfil de velocidad es parabólico para el flujo laminar, como sigue: v=v,g.& l- 5 2[ 01 (2.6-18) donde vmáx es la velocidad máxima en el centro donde r = 0, y v es la velocidad a una distancia radial rdel centro. Deduzca una expresión para la velocidad general o promedio vprom para usarla en la ecuación global de balance de masa. Solución: La velocidad promedio está representada en la ecuación (2.6-17). En coordenadas cartesianas d4 es a!x dy. Sin embargo, usando coordenadas polares, que son más apropiadas para una tubería, CU = r dr de, donde 0 es el ángulo en coordenadas polares. Sustituyendo la ecuación (2.6-18), aY = r dr de, y A = nR2 en la ecuación (2.6-17) e integrando vprom = --&~~‘fvrnáx[ l-($]r dr de = ~~~“~oR (R’ -r’)r dr de (2.6-19) vmáx Vprom =-2 (2.6-20) En este análisis se consideraron balances de masa totales o macroscópicos, pues se deseaba describirlos desde el exterior. En esta sección sobre balances globales de masa, algunas de las ecuaciones que se presentaron pueden parecer un tanto obvias, pero el propósito era desarrollar métodos que pudieran resultar útiles en las siguientes secciones.También se estudiarán balances generales de energía y de momento lineal. Estos balances generales no son indicativos de los detalles de lo que sucede en el interior. Sin embargo, en la sección 2.9 se tendrá un balance de momento lineal de recinto para obtener estos detalles y determinar la distribución de velocidades y la caída de presión. Para comprender mejor los detalles de los procesos que se verifican en el interior del sistema, se pueden escribir balances diferenciales en lugar de balances de recinto, tal y como se estudia en los temas de las secciones 3.6 a la 3.9 relativos a ecuaciones diferenciales de continuidad y transferencia 66 2.7 Balance global de energia , de momento lineal; en las secciones 5.6 y 5.7 sobre ecuaciones diferenciales de cambios de energía y flujo de capa límite, y en la sección 7.5B que estudia las ecuaciones diferenciales de continuidad para una mezcla binaria. 2.7 BALANCE GLOBAL DE ENERGÍA 2.7A Introducción La segunda propiedad que debe considerarse en los balances globales del volumen de control es la energía. Se aplicará el principio de conservación de la energía a un volumen de control fijo en el espacio de manera similar al caso de conservación de la masa, para obtener los balances generales de masa. La ecuación de conservación de la energía se combinará con la primera ley de la termodinámica, a fin de obtener la ecuación global final de balance de energía. La primera ley de la termodinámica puede escribirse como AE=Q-W (2.7-1) donde E es la energía total por unidad de masa de fluido, Q es el calor absorbido por unidad de masa de fluido, y W es el trabajo de cualquier clase realizado por unidad de masa de fluido sobre los alrededores. En estos cálculos, todos los términos de la ecuación deben expresarse en el mismo sistema de unidades, tales como J/kg (SI), btu/lb, o pie * lbf/lb, (sistema inglés). Puesto que la masa lleva consigo una energía que depende de su posición, movimiento o estado físico, todos estos tipos de energía aparecen en el balance de energía. Además, también puede transportarse energía a través del límite del sistema sin transferencia de masa. 2.7B Deducción de la ecuación de balance global de energía El balance para una cantidad que se conserva, como en el caso de la energía, es similar a la ecuación (2.6-3) y se expresa como sigue para un volumen de control. velocidad de salida - velocidad de entrada + velocidad de acumulación = 0 (2.7-2) La energía E presente en un sistema puede clasificarse en tres formas. 1. Energia potencial zg de una unidad de masa de fluido, que es la energía presente debido a la posición de la masa en un campo gravitacional g, donde z es la altura relativa en metros desde un plano de referencia. Las unidades de zg en el sistema SI son m * m/s2. Multiplicando y dividiendo por kg masa, las unidades pueden expresarse como (kg * m/s2) * (mikg), o Jikg. En unidades del sistema inglés, la energía potencial es zg/gC en pie . lbf/lb,. 2. Energía cinética $12 de una unidad de masa de fluido, que es la energía presente debida al movimiento de traslación o rotación de la masa, donde v es la velocidad en rn/s con respecto al límite del sistema en cierto punto. De nueva cuenta, en el sistema SI las unidades de v2/2 son J/ kg. En el sistema inglés, la energía cinética v2/2gC se da en pie * lbf/ Ib,. 3. Energía interna U de una unidad de masa de un fluido, que es toda la demás energía presente, tal como de rotación o vibración de enlaces químicos.También las unidades son J/kg o pie * lbf/lb,. Cap. 2 Principios de transferencia de momento lineal y balances globales 67 Entonces, la energía total del fluido por unidad de masa es E=U+Z+zg 2 (SI) (2.7-3) vzE=U+=+z (Unidades del sistema inglés) La velocidad de acumulación de energía en el volumen de control V de la figura 2.6-4 es velocidad de acumulación de energía en el volumen de control (2.7-4) Después se considera la velocidad de entrada y salida de energía asociada con la masa en el volumen de control. La masa añadida o extraída del sistema lleva consigo energía interna, cinética y potencial. Además, cuando la masa fluye dentro y fuera del volumen de control, se transfiere energía. También se efectúa un trabajo neto cuando el fluido fluye por el volumen de control. Este trabaj o presión-volumen por unidad de masa de fluido espV. Por lo regular se rechaza la contribución del trabajo cortante. Los términos pV y U se combinan usando la definición de entalpía, H. H=U+pV (2.7-5) Por lo tanto, la energía total transportada con una unidad de masa es (H + v2/2 + zg). Para un área pequeña d4 en la superficie de control en la figura 2.6-4, la velocidad de efusión de energía es (H + $/ 2 + zg)(pv)(& cos a), donde (d4 cos a) es el área d4 proyectada en dirección perpendicular al vector de velocidad v y a es el ángulo entre el vector de velocidad y el vector unitario perpendicular n, en dirección al exterior. Esta cantidad se integra entre los límites de la totalidad de la superficie de control y se obtiene efusión neta de energía desde el volumen de control V2 H+T+zg 1 (pv)cosa dA (2.7-6) Ya se han considerado todas las energías asociadas con lamasaen el sistema y a través de los límites del balance, ecuación (2.7-2). A continuación se considera la energía calorífica y el trabajo que se transfieren por los límites y no están éstos asociados con la masa. El término q es el calor transferido al fluido a través de los límites por unidad de tiempo, debido al gradiente de temperatura. El calor absorbido por el sistema es positivo por definición. El trabajo W, que es energía por unidad de tiempo, puede dividirse en W,, que es trabajo mecánico puro y que se identifica con un eje giratorio que atraviesa la superficie de control, y el trabajo presión- volumen, que se ha incluido en el término de entalpía Hde la ecuación (2.7-6). Por definición, el trabajo realizado por el fluido sobre los alrededores, esto es, el que sale del sistema, es positivo. Para obtener el balance general de energía se sustituyen las ecuaciones (2.7-4) y (2.7-6) en el balance (2.7-2) igualando la ecuación resultante con q - W,. V2 H+2+zg (/w) cosa dA+$ V2 U+2+zg 1 pdV = W, (2.7-7) 68 2.7 Balance global de energía 2.7C Balance global de energía para un sistema de flujo en estado estacionario Un caso especial bastante común del balance de energía global o macroscópico es el de un sistema en estado estacionario con flujo unidimensional a través de los límites, una sola entrada, una sola salida y una variación de altura z despreciable, siendo la densidad p y la entalpía H a través del área de entrada o de salida. Esto se muestra en la figura 2.7-l. Haciendo que el término de acumulación de la ecuación (2.7-7) sea igual a cero e integrando, 3 m2 v2( 1 3 ml VI H2m2 - HF1 + prcm ( 1- zv 2 v prom + gm,z, - gm,.zj = q - W, (2.7-S) 2 prom 1 prom Para el estado estacionario, ml = plvlprom Al = m2 = m. Dividiendo todo entre m de tal manera que la ecuación quede en unidades de masa, ~-~+i[~-~]+~z2-z,~=~-~ ( S I ) (2.7-9) El término (v3)prom/(2~ prom) puede remplazarse por Gprom /2 a, donde a es el factor de corrección de velocidad de la energía cinética y es igual a v3nroml (v3)nrom. El término a ha sido evaluado experimentalmente para diversos flujos y es r para flujo laminar y casi 1.0 para flujo turbulento (véase la Sec. 2.7D). Por lo tanto, la ecuación (2.7-9) se transforma en 4 - 4 + &v:,rc,, - v; prom)+g(z2 -z,>= Q-W, (SII 1 e2 - 4 + 2ag, 4 prom - V:prom( )+3z2-zl)=Q-w, (Unidades del sistema inglés)c w2 Plano de referencia - - - - - - - - - - - - - - __---- - - FIGURA 2.7-l. Sistema de jlujo en estado estacionario de un fluido. Algunos factores de conversión útiles que se incluyen en el apéndice A. 1 son: 1 btu = 778.17 pie . lbf= 1055.06 J = 1.05506 kJ Cap. 2 Principios de transferencia de momento lineal y balances globales 69 1 hp = 550 pie * lbf/s = 0.7457 kW lpie * lbf/lb, = 2.9890 J/kg 1 J = 1 N . m = 1 kg . m2/s2 2.7D Factor de corrección para la velocidad en la energía cinética 1. Introducción. Al obtener la ecuación (2.7-S) fue necesario integrar el término de la energía cinética / 2) energía cinética = JJ\ J -;2 (pv) cos a d.4 A (2.7-l 1) que apareció en la ecuación (2.7-7). Para hacerlo primero se toma p como una constante y cos a = 1 .O, multiplicando el numerador y el denominador por vprom A, donde vprom es la velocidad general o promedio, y notando que m = pvprOm A, la ecuación (2.7-11) se convierte en (2.7-12) Al dividir todo entre m de modo que la ecuación (2.7-12) se base en una unidad de masa, ( 1 1 1 ( 1V3 II< 1 V3prom 2VpromAA v3 ~=-/!i!E=~ prom donde a se define como V3proma=- ( 1 V3 prom Y ~v3),mn se define como sigue ( )v 3 prom = +j j(v’> a!4 A (2.7-13) (2.7-14) (2.7-15) La velocidad local v varía en los diferentes puntos del área de la sección transversal de una tubería. Para evalua (v3)prom Y# P or tanto, el valor de a, debemos tener una ecuación de v en función de la posición en el área de corte transversal. n 2. Flujo laminar. Para determinar el valor de a para el flujo laminar, primero combinamos las ecuaciones (2.6-18) y (2.6-20) para el flujo laminar a fm de obtener v en función de la posición r. (2.7-16) Al sustituir la ecuación (2.7-16) en la (2.7-15) considerando que A = xR2 y dA = r dr de (véase el ejemplo (2.6-3), la ecuación (2.7-15) se convierte en 70 2.7 Balance global de energía = (27~)2~v;,, R R2 -r2 3 7CR2 J’ ’ r dr =~ó~;~,,~ R 0 R6 Rsjo (R’ -r2)3r dr (2.7-17) Al integrar la ecuación (2.7-17) y reordenar ( 1V3 qhn Rpmm =-J’, (R” -3r2R4 +3r4R2 -r6)r drR8 = qhn Al sustituir la ecuación (2.7-18) en la (2.7-14), (2.7-18) 3 Vpm 3 VpKlm a=-=-= ( 1 v3 2v;mm Om50 pmm (2.7-19) Por tanto, para el flujo laminar el valor de a que se debe usar en el término de energía cinética de la ecuación (2.7-10) es 0.50. 3. Flujo turbulento. Para el flujo turbulento se necesita una relación entre v y la posición. Esto puede aproximarse mediante la siguiente expresión: R-r “’ v = Vmáx Rc-1 donde r es la distancia radial a partir del centro. Esta ecuación $2.7-20) se sustituye en la ecuación (2.7-15) y la resultante se integra para obtener el valor de (v )prom. En seguida, se sustituye 3 ecuación (2.7-20) en la ecuación (2.6-17) y esta ecuación se ‘integra para obtener vprom y (vprom) . Combinando los resultados para (v3)prom y (vpr0,.J3 en la ecuación (2.7-14), el valor a es 0.945 (véase la solución en el problema 2.7-l). El valor de a para el flujo turbulento varía entre 0.90 y 0.99. En la’mayoría de los casos (excepto para un trabajo preciso) el valor de a se toma como 1.0. 2.7E Aplicaciones de la ecuación del balance total de energía El balance total de energía en la forma expresada ecuación (2.7-10) no se suele emplear cuando ocurren cambios apreciables de entalpía o cuando la cantidad de calor sustraída (o agregada) es considerable, pues los términos de energía cinética y energía potencial son pequeños y pueden despreciarse. Como resultado, cuando se adicionan o se sustraen cantidades apreciables de calor o existen cambios de entalpía, por lo general se usan los métodos de balance de calor de la sección 1.7. Consideremos un ejemplo para ilustrar esto. EJEMPLO 2.7-1. Balance de energía en una caldera de vapor Auna caldera de vapor entra agua a 18.33 “C (65 “F) y 137.9 kPa (20 lb/pulg2 abs) a través de una tubería a una velocidad promedio de 1.52 m Is. El vapor sale a 137.9 kPa a una altura de 15.2 m sobre la entrada de líquido, a 148.9 “C y 9.14 m/s en la línea de salida. ¿Cuánto calor debe añadirse en estado estable por kg masa de vapor? El flujo en las dos tuberías es turbulento. Cap. 2 Principios de transferencia de momento lineal y balances globales 7 1 Solución: En la figura 2.7-2 se muestra el diagrama de flujo del proceso. Reordenando la ecuación (2.7-10) y estableciendo a = 1 para flujo turbulento y Ws = 0 (no hay trabajo externo), Q=(vz&+ T+(H*_.) (2.7-21) Al despejar para los términos de energía cinética, vl (152)1-=-=l.I15 J/kg 2 2 3 - (9-14)2 _ 4177 J/kg 2 -2- Al tomar la altura de referencia zt en el punto 1, z2 = 15.2 m. Entonces, zg = (15.2)(9.80665) = 149.1 J/kg De la tabla de vapor del apéndice A.2 en unidades SI, H1 a 18.33 “C = 76.97 kJ/kg, H2 para vapor sobrecalentado a 148.9 “C = 2771.4 kJ/kg, y H2 - H1 = 2771.4 - 76.97 = 2694.4 kJ/kg = 2.694 x lo6 Jlkg Al sustituir estos valores en la ecuación (2.7-21), Q = (149.1 - 0) + (41.77 - 1.115) + 2.694 x lo6 Q = 189.75 + 2.694 x lo6 = 2 6942 x lo6 Jlkg. Por consiguiente, los términos de energía cinética y de energía potencial que totalizan 189.75 J/kg son despreciables en comparación con lavariación de entalpía de 2.694 x lo6 J/kg. Este v, = 1.52 m/s 18.3 “C, 137.9 kPa FIGURA 2.7-q. Diagrama de flujo kl proceso para el ejemplo 2.7-I VaDor t vz = 9.14 mls 15.2 m 148.9 “C, 137.9 kPa L FIGURA 2.7-3. Diagrama de flujo del proceso del balance de energía para el ejemplo 2.7-2. 12 2.7 Balance global de energía valor de 189.75 J/kg elevaría la temperatura del agua líquida en 0.0453 “C, cantidad que es despreciable. EJEMPLO 2.7-2. Balance de energía en un sistema de flujo con bomba En un gran tanque aislado, a presión atmosférica, se está almacenando agua a 85 .O “C, como se muestra en la figura 2.7-3. El agua se está bombeando en estado estacionario desde este tanque en el punto 1 mediante una bomba con una velocidad de 0.567 m3/min. El motor que impulsa la bomba proporciona energía a una tasa de 7.45 kW. El agua pasa por un intercambiador de calor, donde cede 1408 kW de calor. El agua enfriada se conduce después aun gran tanque abierto en el punto 2, que está 20 m por encima del primer tanque. Calcule la temperatura final del agua que pasa al segundo tanque. Desprecie cualquier cambio de energía cinética, ya que las velocidades inicial y final en los tanques son esencialmente cero. Solución: En el apéndice A.2, tablas de vapor, se ve que H1 (85 “C) = 355.90 X lo3 J/kg, pt = 1 / 0. 0010325 = 968.5 kg/m3. Entonces, para el estado estacionario, ml = m2 = (0.567)(968.5)(+) = 9.152 kg/s Además, zl = 0 y z2 = 20 m. El trabajo realizado por el fluido es Ws, pero en este caso, el trabajo se realiza sobre el fluido y Ws es negativo. W, = - (7.45 x 103 J/s)(1/9.152 kg/s) = -0.8140 x lo3 Jikg El calor añadido al fluido también es negativo, ya que el fluido cede calor y es Q = - (1408 x lo3 J/s)(1/9.152 kg/s) = -153.8 x lo3 Jkg Si se establece que ( v: -vi)/ 2 = 0 y se sustituye en la ecuación (2.7-lo), H2 - 355.90 x lo3 + 0 + 9.80665 (20 - 0) = (-153.8 x 103) - (-0.814 x 103) Al resolver H2 = 202.71 x lo3 J/kg. En las tablas de vapor, esto corresponde a t2= 48.41 “C. Nótese que en este ejemplo Ws y g (~2 - zl) son muy pequeños comparados con Q. EJEMPLO 2.7-3. Balance de energía en un calorímetro de flujo Se esta usando un calorímetro de flujo para medir la entalpía de vapor. El calorímetro, que es una tubería horizontal aislada, consiste en un calentador eléctrico inmerso en unfluido que fluye en estado estacionario. En el punto 1 del calorímetro entra agua líquida a 0 “C a unavelocidad de 0.3964 kg/min. El líquido se vaporiza por completo por el calentador, donde se agregan 19.63 kW, y el vapor sale por el punto 2 a 250 “C y 150 kPa absolutos. Calcule la entalpía de salida H2 del vapor si la entalpía del líquido a 0 “C se establece arbitrariamente como 0. Los cambios de energía cinética son pequeños y pueden despreciarse. (Puede suponerse que la presión tiene un efecto despreciable sobre la entalpía del líquido). Solución: En este caso, Ws= 0 porque no hay trabajo de eje entre los puntos 1 y 2. Además, ($/21x -1$/201) = Oyg(z2-zl) = 0. Parael estado estacionario, ml= m2 = 0.3964/60 = 6.607 x 1c3 kg/s. Puesto que el calor se agrega al sistema, 19.63 kJ/s ’ = 6607 x 1O-3 kg/s = 2971 kJ/kg Cap. 2 Principios de transferencia de momento lineal y balances globales 73 El valor de HI = 0. La ecuación (2.7-10) se convierte en H2-H,+O+O=Q- 0 La ecuación final para el calorímetro es H2 = Q + Hl (2.7-22) Al sustituir Q = 2971 kJ/kg y HI = 0 en la ecuación (2.7-22), H2 = 2971 kJ/kg a 250 “C y 150 kPa, que se acerca al valor de la tabla de vapor de 2972.7 kJ/kg. 2.7F Balance general de energía mecánica Un tipo de balance de energía más útil para el flujo de fluidos, en especial de los líquidos, es una modificación del balance total de energía que considera la energía mecánica. Casi siempre, a los ingenieros les interesa primordialmente este tipo especial de energía, llamado energía mecánica, que incluye el término de trabajo a la energía cinética, a la energía potencial y la parte de trabajo de flujo del término de entalpía. La energía mecánica es una forma de energía que es, o bien un trabajo, o una forma que puede transformarse directamente en trabajo. Los otros términos de la ecuación de balance de energía ( 2.7-lo), los términos de calor y la energía interna, no permiten una con-versión simple a trabajo debido a la segunda ley de la termodinámica y a la eficiencia de la conversión, que depende de las temperaturas. Los términos de energía mecánica no tienen esta limitación y pueden convertirse casi en su totalidad en trabajo. La energía que se convierte en calor, o energía interna, es trabajo perdido o una pérdida de energía mecánica causada por la resistencia fricciona1 al flujo. Es conveniente escribir un balance de energía en términos de esta pérdida, u, que es la suma de todas las pérdidas por fricción por unidad de masa. Para el caso de flujo de estado estacionario, cuando una unidad de masa pasa de la entrada a la salida, el trabajo realizado por el flujo W’, se expresa como W’= j;pdV-XF (b >O) (2.7-23) Este trabajo W’ difiere de W de la ecuación (2.7-l), que también incluye los efectos de energía cinética y de energía potencial. Escribiendo la primera ley de la termodinámica para este caso, donde hE se transforma en AV, AU=Q-W’ (2.7-24) La ecuación que define la entalpía, ecuación (2.7-5) puede escribirse como ~=AU~ApV=AU+~~‘~~dV~~~Vd~ (2.7-25) Al sustituir la ecuación (2.7-23) en la (2.7-24) y combinar el resultado con la ecuación (2.7-25) se obtiene AH=Q+D+jfVdp (2.7-26) * 14 2.7 Balance global de energia Por último, se sustituye la ecuación (2.7-26) en la ( 2.7-10) y llp para V, para obtener la ecuación de balance general de energía mecánica 1 2a v2 prom - 4 prom[ ]+g(z, -z,)+jpTp+cF+K =o (2.7-27) Para unidades del sistema inglés, los términos de energía cinética y de energía potencial de la ecuación (2.7-27) se dividen entre g,. El valor de la integral en la ecuación (2.7-27) depende de la ecuación de estado del fluido y de la trayectoria del proceso. Si el fluido es un líquido incompresible, la integral se transforma en (p2 -pl)lp y la ecuación (2.7-27) toma la forma , :I 2 (2.7-28) EJEMPLO 2.7-4. Balance de energía mecánica en un sistema de bombeo A través de una tubería de diámetro uniforme fluye agua con densidad de 998 kg/m3 y auna velocidad de flujo de masa en estado estacionario. La presión de entrada del fluido es 68.9 kN/m2 abs en la tubería conectada a una bomba que suministra 155.4 J/kg del fluido de la tubería. (La tubería de salida de la bomba es del mismo diámetro que la entrada.) La sección de salida de la tubería está 3.05 más arriba que la entrada y la presión de salida es 137.8 kN/m2 abs. El número de Reynolds de la tubería es superiora 4000 para el sistema. Calcule la pérdida por fricción u en el sistema de tuberías. Solución: Primero se dibuja un diagrama de flujo del sistema (Fig. 2.7-4), con una adición de energía mecánica al fluido de 155.4 J/kg. Por lo tanto, Ws = -155.4, pues el trabajo efectuado por el fluido es positivo. Estableciendo la altura de referencia, z1 = 0, z2 = 3.05. Como la tubería es de diámetro constante, VI = ~2. Además, para un flujo turbulento, M. = 1.0 y -$-p -v:)=o z2g = (3.05 m)(9.806 mIs*) = 29.9 J/kg Vl PI = 68 .9 kN/m2 Pz-= 137.8 kN/m’ FIGURA 2.7-4 Diagrama de jlujo del proceso del ejemplo 2.7-4. Cap. 2 Principios de transferencia de momento lineal y balances globales 75 Puesto que se considera que el líquido es incompresible, se aplica la ecuación (2.7-28) pr 68.9 x 1000_ - - = P 998 69.0 J/kg &_‘137*8x1000 =1380 J/kg P- 998 41 usar la ecuación (2.7-28) y despejar D, las pérdidas por fricción: Sustituyendo los valores conocidos y calculando las pérdidas por fricción: u = - (-155.4) + 0 - 29.9 + 69.0 - 138.0 = 56.5 J/kg (18.9 pie . lbf/lb,) EJEMPLO 2.7-5. Potencia de un motwparir üti ’,Tdeflrrio Una bomba que ope~~‘esq un régimen de 69.1 gal/mm extra una solución líquida con !“’ densidad t114.8 Ib, /pie3 de hn tanque de alma-0 que tiene una sección transversal considerable, por rJle$iodeqva de succión de 3.068 pulg de DI. La bomba descarga a través de una linea de 2.067 pulg’de DI a un tanque elevado abierto. El extremo final de la línea de descarga e&a5@pié~por encima del nivel del líquido en el tanque de alimentación. Las pérdidas por fricción en el sistema de tuberías son xF= 10.0 Ib-pie fuerzaAb masa. ¿Qué presión debe desarrollar la bomba y cuál deberá ser su potencia con una eficiencia del 65% (q = 0.65)? El flujo es turbulento. Solución: Primero se traza un diagrama de flujo del proceso (Fig. 2.7-5). Se usará la ecuación (2.7-28). El término Ws en la ecuación (2.7-28) se convierte en * w, = - q wp (2.7-30) donde - Ws= energía mecánica que la bomba suministra al fluido, esto es, trabajo mecánico neto, q = eficiencia fraccionaria y Wp = energía o trabajo axial suministrado a la bomba. .4 FIGURA 2.7-5. Diagrama de @jo del proceso para el ejemplo 2.7-5. 76 2.7 Balance global de energía Con los datos del apéndice A.5 se sabe que el área de sección transversal de la tubería de 3.068 pulg mide 0.05134 pie2 y la correspondiente a la de 2.067 pulg, 0.0233 pie2. La velocidad de flujo es velocidad de flujo = (69.1 $)(g)( 7~~~gal] = 0.1539 pie3/s v2 = (0.1539 @$)(,.023i pie2) = 6.61 pies/s Puesto que el tanque es muy grande, vt = 0. Por lo tanto, v:/2g, = 0. La presión pr = 1 atm y p2 = 1 atm. Además, a = 1 .O ya que el flujo es turbulento. Por consiguiente: p12&0 P P vi (6.61)2 _ o 678 pie. % 2g, - 2(32.174) - * Lbm Al usar el dato de referencia de zl = 0 se obtiene, z2 g = (50.0)=& = 50.0 9 c m Al aplicar la ecuación (2.4-28), despejando W, y sustituyendo los valores conocidos: = 0 - 50.0 + 0 - 0.678 + 0 - 1 0 pie. lbr = -60.678 r m Al usar la ecuación (2.7-30) y despejando Wp 60.678 pie. h _ g3.3pie. Ib, velocidad de flujo de masa = potencia de la bomba = = 3.00 hp Para calcular la presión a la que debe operar la bomba, la ecuación (2.7-28) se adapta con respecto a la propia bomba entre los puntos 3 y 4 como lo muestra el diagrama, v3 = (,,,,, $)[o.051~4 pie2 1 = 3.00 pies/s* v4 = v2 = 6.61 pie& Cap. 2 Principios de transferencia de momento lineal y balances globales Puesto que la diferencia de nivel entre z3 y z4 de la propia bomba es despreciable, puede rechazarse.Reescribiendo la ecuación (2.7-28) entre los puntos 3 y 4 y sustituyendo los valores conocidos (EF = 0 puesto que se trata del sistema de bombeo), p ie Ib, = 0 - 0 + 0.140 - 0.678 + 60.678 = 60.14 --jjy- (2.7-31) = 48.0 Ib fuerza/pulg2 (presión en lb/pulg2 abs desarrollada por la bomba) (331 k Pa) 2.76 Ecuación de Bernoulli para el balance de energía mecánica En el caso especial en que no se añade energía mecánica (W, = 0) y no hay fricción (% = 0), la ecuación (2.7-28) se convierte en la ecuación de Bernoulli, ecuación (2.7-32), para flujo turbulento, cuya importancia requiere explicaciones adicionales, zg+3+O=Z*g+!L+B 1 2 P 2 P (2.7-32) Esta ecuación cubre muchas situaciones de importancia práctica y se usa con frecuencia junto con la ecuación de balance de masa (2.6-2) para estado estacionario. m = h4v = ~24~~ Se considerarán varios ejemplos de su uso. EJEMPLO 2.7-6. Velocidad de flujo a partir de mediciones de presión Un líquido con densidad constante de,p kg/m3 fluye a velocidad desconocida vl m/s a través de una tubería horizontal cuya área de corte transversal es Al m2 y a presión pl N/m2, para después pasar a una sección de la tubería en la que el área se reduce gradualmente a A2 m2 y la presión es p2. Suponiendo que no hay pérdidas por fricción, calcule las velocidades vl y y con base en la medición de la diferencia de presión (pl-~2). Solución: En la figura 2.7-6 se muestra el diagrama de flujo con tomas de presión para medir las presiones p1 y p2 . Con base en la ecuación de continuidad de balance de masa (2.6-2) para una p constante, donde p1 = p2 = p. VI 4v2 =- A2 (2.7-33) 78 2.7 Balance global de energía F I G U R A 2 . 7 - 6 . Diagrama de j7ujo del proceso para el ejemplo 2.7-6 Para el caso de la ecuación de Bernoulli (2.7-32) y una tubería horizontal, 21 =q = 0 Entonces, la ecuación (2.7-32) se transforma, al sustituir v2 por la ecuación (2.7-33), 2 o+$+g=o+ 2 v:A;/A; +pz P (2.7-34) Al reordenar, PV:[(4A2)2 -11 PI -P2 = 2 (2.7-35) vl = P1- P2 d p [(AI,:>’ -11 (SI) (2.7-36) d PI - P2 %cv1= ~p [(4Ad2 -11 (Unidades del sistema inglés) Según la misma deducción pero en términos de 9, v2 = PI -p2 d 2 p 1-(A,IAd2 (2.7-37) EJEMPLO 2.7-7. Velocidad de flujo en la tobera de un tanque Una tobera de sección transversal A2 descarga a la atmósfera y está localizada en el costado de un tanque grande en el que la superficie expuesta del líquido está Hm por arriba de la línea central de la tobera. Calcule la velocidad 19 en la tobera y la tasa volumétrica de descarga, suponiendo que no hay pérdidas por fricción. Solución: En la figura 2.7-7 se muestra el flujo del proceso, con el punto 1 situado en el líquido a la entrada de la tobera y el punto 2 a la salida de la misma. Cap. 2 Principios de transferencia de momento lineal y balances globales 19 Puesto que A 1 es muy grande comparada con AZ, vt E 0. La presión pt es superior a 1 atm (101.3 kN/m2) y la diferencia es la carga de fluido de H m. La presión p2 a la salida de la tobera es de 1 atm. Usando el punto 2 como referencia, 22 = 0 y zl = 0 m; reordenando la ecuación (2.7-32), Al sustituir los valores conocidos, o+o+yLo+$ Al despejar y, i 2(P* - P2) v2, = P (2.7-38) (2.7-39) m/s (2.7-40) FIGURA 2.7-7. Diagrama de flujo de la tobera en el ejemplo 2.7-7. Puesto que p1 - p3 = Hpg y p3 = p2 (ambas a 1 atm), Hz PI-P2 Pg m (2.7-41) 4 donde H es la carga de líquido con densidad p. Entonces, la ecuación (2.4-40) se transforma en y = m (2.7-42) La velocidad de flujo volumétrico es velocidad de flujo = y A2 m3Js (2.7-43) Para ilustrar el hecho de que pueden usarse diferentes puntos en el balance, utilizaremos ahora los puntos 3 y 2. Escribiendo la ecuación (2.7-32), z2gi2 :P2pP3- ’ 2 z3g+- (2.7-44) 80 2.8 Balance general de momento lineal Puesto que p2 = p3 = 1 atm, v3 = 0 y 22 = 0, v2=&=.&F (2.7-45) 2.8 BALANCE GENERAL DE MOMENTO LINEAL 2.8A Derivación de la ecuación general Se puede escribir un balance de momento lineal para el volumen de control que se muestra en la figura 2.6-3, que es similar a la ecuación general de balance de masa. El momento lineal, en contraste con la masa y la energía, es una cantidad vectorial. El vector lineal total de momento lineal P de la masa total M de un fluido en movimiento con una velocidad v es P=Mv (2.8-l) El término Mv es el momento lineal de esta masa, Men movimiento, incluida en un instante dado dentro del volumen de control de la figura 2.6-4. Las unidades de Mv son kg * m/s en el sistema SI. A partir de la segunda ley de Newton, deduciremos la ecuación integral del balance de momento para un momento lineal. El momento angular no se va a considerar en esta parte, y la ley de Newton puede expresarse como: la velocidad de cambio de momento lineal de un sistema es igual a la suma de todas las fuerzas que actúan sobre dicho sistema y tiene lugar en la dirección de la fuerza neta resultante: (2.8-2) donde F es la fuerza. En el sistema SI, F se mide en newtons (N) y 1 N = 1 kg * m/s2. Nótese que en el sistema SI, g, no es necesario, aunque sí lo es en el sistema inglés. La ecuación para la conservación de momento lineal con respecto a un volumen de control puede escribirse como: suma de fuerzas actuando ) ( velocidad del momento lineal a la = _ sobre el volumen de control salida del volumen de control c (2.8-3) velocidad del momento lineal a la entrada del volumen de control velocidad de acumulación de momento lineal en el volumen de control Ésta es la misma forma de la ecuación general de balance de masa (2.6-3) con la suma de las fuerzas como término de rapidez de generación. .Por lo tanto, el momento lineal no se conserva ya que es generado por fuerzas externas al sistema. Si no existen fuerzas externas, sí hay conservación del momento lineal. Al usar el volumen de control general de la figura 2.6-4, se pueden evaluar los diversos términos de la ecuación (2.8-3) usando métodos muy similares al desarrollo del balance general de masa. Para un elemento pequeño de área dA en la superficie de control: velocidad de efusión de momento lineal = v(pv)(dA cos a) (2.8-4). Nótese que la velocidad de efusión de masa es (pv)(dA cos a). Obsérvese además que (dA cos a) es el área dA proyectada en dirección perpendicular al vector de velocidad v y que a es el ángulo Principios de transferencia de momento lineal y balances globales 8 1 entre dicho vector de velocidad y el vector perpendicular n en dirección al exterior. Con base en el álgebra vectorial, el producto de la ecuación (2.8-4) se convierte en v@v)(dA cos a) = pv(v * n)dA Al integrar entre los límites de la totalidad de la superficie de control A, (2.8-5) efusión neta de momento lineal desde el volumen de control v(pv)cosa dA=jJpv(v.n) dA A (2.8-6) La efusión neta representa los primeros dos términos del lado derecho de la ecuación (2.8-3). En forma análoga a la ecuación (2.6-5), lavelocidad de acumulación del momento lineal dentro del volumen de control V es velocidad de acumulación de momento lineal en el volumen de control pv dV (2.8-7) Al sustituir las ecuaciones (2.8-2), (2.8-6) y (2.8-7) en la (2.8-3), el balance global de momento lineal para un volumen de control resulta ser (2.843) Adviértase que, en general, CF puede tener un componente en cualquier dirección y F es la fuerza que los alrededores desarrollan sobre el fluido del volumen de control. Puesto que la ecuación (2.8-8) es una ecuación vectorial, podemos escribir las ecuaciones escalares componentes para las direcciones x, y y z. a v,pv cos a dA + Z PVX dV A V (SI) . (2.8-9) &T,= jjv,f-vcoscxdA+;jjjf v, dV (Unidades del sistema inglés) ZFy= ji c c avypv cos CY. dA + -G$ III Py dV cF,= ji V a vzpv coscxdA+Z IIIPz dV A V (2.8-10) (2.8-l 1) El término de fuerza CFX en 1 a ecuación (2.8-9) está constituido por la suma de varias fuerzas. Éstas se determinan como se indica a continuación: 1. Fuerza del cuerpo. La fuerza del cuerpo Fxg, quees la fuerza en la dirección x causada por la acción de la gravedad sobre la masa total M del volumen de control. Esta fuerza Fxg, es Mg,. Cuando la dirección x es horizontal, esa fuerza equivale a cero. 2. Fuerza de la presión. La fuerza Fxp es la fuerza en dirección x causada por las presiones que actúan sobre la superficie del sistema fluido. Cuando la superficie de control pasa a través del fluido, se considera que la presión se dirige hacia adentro y perpendicularmente a la superficie. 82 2.8 Balance general de momento lineal En algunos casos, parte de la superficie de control puede ser un sólido, y esta pared se incluye entonces dentro de la superficie de control. También existe una contribución a Fxp de la presión en el exterior de esa pared, que es comúnmente la presión atmosférica. Si se emplea presión manométrica, la integrd de la presión externa que es constante entre los límites de la totalidad de la superficie, puede despreciarse de manera automática. 3. Fuerza defiicción. Durante el flujo del fluido está presente una fuerza de fricción o cortante F,, en la dirección x, que desarrolla sobre el fluido una pared sólida cuando la superficie de control atraviesa el sistema entre el fluido y la pared sólida. En algunos casos, esta fuerza de fricción puede ser despreciable en comparación con las demás y no se toma en cuenta. 4. Fuerza de la superficie sólida. En los casos en que la superficie de control pasa por un sólido, esta presente una fuerza R,, que es el componente x de la resultante de las fuerzas que están actuando sobre el volumen de control en dichos puntos. Esto se presenta en casos típicos donde el volumen de control incluye una sección de una tubería, así como el fluido que transporta. Ésta es la fuerza ejercida por la superficie sólida sobre el fluido. Los términos de fuerza de la ecuación (2.8-9) pueden representarse como ZFx = Fxg + FxP -t F,, + R, (2.8-12) Pueden escribirse ecuaciones similares para las direcciones y y z. Entonces, la ecuación (2.8-9) se convierte, para la dirección x, en II a= v,pvcosadA+~ III PVX dV A V (2.8-13) 2.8B Balance global de momento lineal en un sistema de flujo en una dirección Un aplicación bastante común de la ecuación para el balance general de momento lineal es el caso de la sección de un dueto con, su eje en la dirección x. Se supone que el fluido fluye en estado estacionario dentro del volumen de control que se muestra en las figuras 2.6-3 y 2.8-l. Puesto que v = v,, la dirección x de la ecuación (2.8-13) se transforma en EFx = Fxg + FxP 1- F,, + R, = II v, pvx cos a dA (2.8-14) A Al integrar entre cos a = kl.0 y pA = mlvprom, 2( 1 2vx2 prom ( 1VXl ~~~ + FxP + F,, + R, = m - m prom Vx 2 pronI VXI pmm donde, si la velocidad no es constante y varía a lo largo del área superficial, (2.8-15) (2.8-16) Principios de transferencia de momento lineal y balances globales 83 FIGURA 2.8-I. Flujo a travb de una tobera horizontal en dirección x solamente. La relación v,’( 1 /Vg,, se reemplaza por vxprom /p, donde /3, que es el factor de corrección de velocidad de mo&!r%o lineal, tiene un valor entre 0.95 y 0.99 para flujo turbulento y a paraflujo laminar. Para la mayoría de las aplicaciones de flujo turbulento (vx )&,m/~,prom se remplaza por v, prom, esto es, la velocidad promedio volumétrica. Nótese que el subíndice x en v, y en F, puede omitirse porque v, = v y F, = F para un flujo unidireccional. El término Fxp, que es la fuerza desarrollada por las presiones que actúan sobre la superficie del volumen de control, es FXP =PIAI-P~A~ (2.8-17) En la ecuación (2.8-15) puede despreciarse la fuerza de fricción, de modo que Fxs = 0. La fuerza del cuerpo es Fxg = 0, puesto que la gravedad sólo está actuando en la dirección y. Sustituyendo Fxp de la ecuación (2.8-17) en la (2.8-15), remplazando (\x )prom /v, prom por v//3 (donde v, prom = v) haciendo p = 1 .O y despejando R, en la ecuación (2.8-15), R, = my- mvl +p2A2 -PIA, (2.8-18) donde R, es la fuerza ejercida por el sólido sobre el fluido. La fuerza del fluido sobre el sólido (fuerza de reacción) es el negativo de la primera, o -R,. EJEMPLO 2.8-1. Factor de corrección B de la velocidad de momento lineal para flujo laminar El factor de corrección pde la velocidad de momento lineal se define de la siguiente manera para el flujo unidireccional donde se ha omitido el subíndice x. ( 1V2 prom vprom-=- vprom P ( 1 2 VpPXTl p=- ( 1 V2 pmm (2.8-19) (2.8-20) Determine /3 para el flujo laminar en un tubo. 84 2.8 Balance general de momento lineal Soúcciórr: Al usar la ecuación (2%16), 2 1 CV &xll = 2 II v2 ci4 A (2.8-21) Al sustituir la ecuación (2.7- 16) para el flujo laminar en la ecuación (2.8-2 1) y notando que A = nR2 y dA = Y dr de se obtiene (véase ejemplo 2.6-3) = (27~)2~v;,, ,.R (R2 -r2)’ r dr lCR2 0 R4 Al integrar la ecuación (2.8-22) y reordenando, ( 1 v2 prom =E,+ pg+$ ‘+;room ‘ ( 1 ( 2 . 8 - 2 2 ) ( 2 . 8 - 2 3 ) Al sustituir la ecuación (2.8-23) en la (2.8-20), p = $. EJEMPLO 2.8-2. Balance de momento linealpara una tobera horizontal Por la tobera horizontal que se muestra en la figura 2.8-l fluye agua a una velocidad de flujo de 0.03 154 m3/s, que descarga en la atmósfera en el punto 2. La tobera está conectada al punto 1 por la entrada y se considera que las pérdidas por fricción son despreciables. El DI de la conexión ancha es 0.0635 y el DI de la salida es 0.0286 m. Calcule la fuerza resultante en la tobera. La densidad del agua es 1000 kg/m3. Solución: Primero se calculan las velocidades de flujo de masa y volumétrica o promedio en los puntos 1 y 2. El área en el punto 1 es Al = (rr /4) (0.0635)2 = 3.167 x 10p3 m2 y A2 = (rr /4) (0.0286)2 = 6.424 x lOa m2. Entonces, ml = m2 = m = (0.03154)(1000) = 31.54 kg/s La velocidad en el punto 1 es vl = 0.03154/(3.167 x 10m3) = 9.96 m/s y v2 = 0.031541 (6.424 x lOA) = 49.1 m/s. Para evaluar la presión p1 a la entrada se usa la ecuación ( 2.7-28 ) del balance de energía mecánica, suponiendo que no hay pérdidas por fricción y que el flujo es turbulento. (Esto puede comprobarse calculando el numero de Reynolds.) Entonces, para a = 1.0, esta ecuación se transforma en v: 2 P2T+A=JL+- P P ( 2 . 8 - 2 4 ) Principios de transferencia de momento lineal y balances globales 85 Al establecer que p2 = 0 presión manométrica, p = 1000 kg,/m3, vl = 9.96 mIs, v2 = 49.1 m/s, y despejandopl, (1000)(49.1’ - 9.962) Pl = 2 = 1.156 x lo6 N/m2 (presión manométrica) Para la dirección x se usa la ecuación del balance de momento lineal (2.8-l 8). Al sustituir los valores conocidos y despejando R,, R,= 31.54 (49.10 - 9.96) + 0 - (1.156 x 106)(3.167 x 10-3) = -2427 N(-546 lbf) Como la fuerza es negativa, está actuando en la direcciónxnegativa o hacia la izquierda. Ésta es la fuerza de la boquilla sobre el fluido. La fuerza del fluido sobre el sólido es -R, o +2427 N. 2.8C Balance global de momento lineal en dos direcciones En la figura 2.8-2 se muestra otra aplicación del balance global de momento lineal para un sistema de flujo con un fluido que entra en un conducto en el punto 1, que está inclinado a un ángulo al respecto a la dirección x horizontal y que sale por un conducto en el punto 2 a un ángulo ~2. Se considera que el fluido fluye en estado estacionario y se desprecia la fuerza de fricción F,,. Entonces, la ecuación (2.8-13) para la dirección x se convierte en la siguiente, cuando no hay acumulación: Fxg + Fxp + R, = II v,pv cos a dA A Al integrar la integral (de área) superficial, ( 14 ‘*Om ( 14 Fxg + Fxp + R, = m cos a2 - m prom cos CC, v2 prom Vl prom (2.8-25) (2.8-26) FIGURA 2 .8-2 . Balance global de momento lineal para el sistema de flujo con un fluido que entra en el punto 1 y sale en el punto 2. 8 6 2.8 Balance general de momento lineal Él término (G),,,, /vprom puede remplazarse otra vez por vpromlP, donde /3 se establece como 1.0. A partir de la figura 2.8-2, el término FxP es FxP = p1 Al cosal - p2A2 cos a2 (2.8-27) Entonces la ecuación (2.8-26) después de despejar R,, se convierte en R, = mv2 cos a2 - mvl cos al + pzA2 cos a2 - p1 Al cos cI1 (2.8-28) El término Fxg = 0 en este caso. Para R,, la fuerza del cuerpo Fyg está en la dirección y negativa y Fyg = -m,g, donde mt es la masa total de fluido en el volumen de control. Remplazando cos a por sen a, la ecuación para la dirección y se convierte en Ry = mv2 sen a2 - mq sen al’ + p2A2 sen a2 - p1 Al sen al + mtg (2.8-29) EJEMPLO 2.8-3. Balance de momento lineal en un codo de tubería A través de un codo de tubería con reducción fluye un fluido en estado estacionario tal como se muestra en la figura 2.8-3. (Se supondrá flujo turbulento con pérdidas por fricción despreciables.) El gasto volumétrico de líquido y la presión p2 en el punto 2 son valores conocidos, lo mismo que los diámetros de los extremos. Suponga que la densidad p es constante y deduzca las ecuaciones para calcular las fuerzas que actúan sobre el codo. Sohción: Las velocidades vl y v2 pueden obtenerse a partir del gasto volumétrico y de las áreas. Además, m = plvl Al = p2v2 AL. Como en el ejemplo 2.8-2, se usa la ecuación del balance de energía mecánica (2.8-24) para obtener la presión de entrada, ~1. Para la dirección x se usa la ecuación (2.8-28) para el balance de momento lineal. Como al = O", cos al = 1.0. La ecuación (2.8-28) se transforma en R,=F v2cosa2-7 vl+p2A2cosa2-p,lAl (Unidades de sistema inglés) c c Vl. Pl FIGURA 2.8-3 Flujo a través de un codo con reducción en el ejemplo 2.8-3 Principios de transferencia de momento lineal y balances globales 87 Para la dirección y, la ecuación (2.8-29) de balance de momento lineal se usa donde sen CLI = 0. RY = my sen a2 + p2 A2 sen a2 + mrg (SI) (2.8-31) donde mt es el fluido de masa total en el codo de la tubería. Las presiones en los puntos 1 y 2 son presiones manométricas, ya que las presiones atmosféricas que actúan sobre todas las superficies se cancelan. La magnitud de la fuerza resultante del codo que actúa sobre el fluido de volumen de control es IRI = dm (2.8-32) El ángulo que ésta hace con la vertical es 8 = arctan (R,/R,). A menudo la fuerza de gravedad Fyg es pequeña en comparación con los otros términos de la ecuación (2.8-31) y se desprecia. EJEMPLO 2.8-4. Pérdidas depresión en un ensanchamiento repentino Cuando un fluido fluye pasando de una tubería pequeña a una más grande a través de un ensanchamiento abrupto tal como se muestra en el figura 2.8-4, se presenta una pérdida de energía mecánica. Use el balance de momento lineal y el balance de energía mecánica para obtener la expresión de las pérdidas en un líquido. (Sugerencia: Suponga quepo =pl y que vg = VI. Proceda a un balance de energía mecánica entre los puntos 0 y 2 y a un balance de momento lineal entre los puntos 1 y 2. Se supone quepl yp2 son uniformes en la totalidad del área de corte transversal.) m FI G U R A 2 .8-4 . Pérdidas en un flujo expansivo. Solución: El volumen de control se selecciona de tal forma que no incluya la pared de la tubería, por lo que se elimina R,. Los límites seleccionados son los puntos 1 y 2. El flujo a través del plano 1 sólo se verifica a través de un área Ao. Se desprecia la fuerza de fricción de arrastre, suponiéndose que toda la pérdida proviene de remolinos en este volumen. Llevando a cabo un balance de momento lineal entre los puntos 1 y 2 y observando que PO = ~1, vl = vo Y Al = -42, plA2 -p2A2 = mv2 - mvl (2.8-33) 8 8 2.8 Balance general de momento lineal El gasto másico es m = vo@o y y = (Ao /AZ) VO. Sustituyendo estos términos en la ecuación (2.8-33) y reordenando, .,zp 2 Al aplicar el balance de energía mecánica, ecuación (2.7-28), a los puntos 1 y 2, Por último, al combinar las ecuaciones (2.8-34) y (2.8-35) (2.834) (2.8-36) 2.8D Balance global de momento lineal para un chorro libre que golpea un aspa fija Cuando un chorro libre golpea sobre un aspa fija como en la figura 2.8-5, puede aplicarse el balance global de momento lineal para determinar la fuerza sobre el aspa lisa. Como no hay cambios de elevación o de presión ni antes ni después del impacto, tampoco hay pérdida de energía, y la aplicación de la ecuación de Bernoulli muestra que la magnitud de la velocidad permanece sin cambio. Las pérdidas debidas al impacto se desprecian. La resistencia fricciona1 entre el chorro y el aspa lisa también es despreciable. Se supone que la velocidad es uniforme en todo el chorro. Como éste está abierto a la atmósfera, la presión es igual en todos los extremos del aspa. Al realizar un balance de momento lineal para el volumen de control que se muestra para el aspa curva de la figura 2.8-5a, la ecuación (2.8-28) se escribe como sigue para el estado estacionario, donde los términos de presión son cero, vt = y, Al = AZ y m = vl Al p1 = y A2 p2: R, = my cos CQ - mvl + 0 = mvl (cos CQ - 1) (2.8-37) Al usar la ecuación (2.8-29) para la dirección y y despreciando la fuerza del cuerpo, RY = my sen a2 - 0 = mV1 sen CX~ (2.8-38) Por lo tanto, R, y R,, son las componentes de fuerza del aspa sobre el fluido de volumen de control. Las componentes de fuerza sobre el aspa son -R, y -RY EJEMPLO 2.84. Fuerza de un chorro libre sobre un aspa curvajlja Un chorro de agua que tiene una velocidad de 30.5 m 1s y un diámetro de 2.54 x 1 Op2 m es desviado por un aspa curva y lisa como la que se muestra en la figura 2.8-5a, donde CX~ = 60”. ¿Cuál es la fuerza del chorro sobre el aspa? Suponga que p = 1000 kg /m3. Principios de transferencia de momento lineal y balances globales 89 (a) o>) FIGURA 2.84. Chorro libre que golpea un aspa fìia: o) aspo curva lisa. b) ospn plana lisa. Solución: El área de corte transversal del chorro es Al = x (2.54 x 10-2)2/4 = 5.067 x lOA m2. Entonces, m = VI Al p1 = 30.5 x 5.067 x lo4 x 1000 = 15.45 kg/s. Sustituyendo en las ecuaciones (2.8-37) y (2.8-38), R, = 15.45 x 30.5 (cos 60” - 1) = -235.6 N(-52.97 lbf) Ry = 15.45 x 30.5 sen 60” = 408.1 N(91.74 lbf) La fuerza sobre el aspa es -R, = + 235.6 N y -Ry =-408.1 N. La fuerza resultante se calcula usando la ecuación 2.8-32. En la figura 2.8-5b, un chorro libre con velocidad VI golpea una placa plana y lisa, inclinada, y el flujo se divide en dos corrientes separadas cuyas velocidades son iguales (~1 = v2 = vg), puesto que no hay pérdida de energía. Es conveniente hacer un balance de momento lineal en la direcciónp paralela a la placa. La placa plana no ejerce fuerza sobre el fluido en esta dirección, es decir, no hay fuerza tangencial. Así, la componente del momento inicial en la direcciónp debe ser igual a la componente del momento lineal final en esta dirección. Esto significa que c Fp = 0. Escribiendo una ecuación semejante a la (2.8-26), donde ml son los kgls que entran en 1 y m2 los que salen de 2 y m3 de 3, CFp = 0 = m2y - mlvl cos a2 - m3v3 0 = m2vl - mlvl cos a2 - m3v1 (2.8-39) Por la ecuación de continuidad, ml= m2 + m3 (2.8-40) Al combinar y resolver, m2 = T(l+cos a,), m3 = >(l- cos a2) (2.8-41) 90 2.9 Balance de momento lineal en el recinto y per@ de velocidades en jlujo laminar La fuerza resultante ejercida por la placa sobre el fluido debe ser normal a él. Esto significa que la fuerza resultante es simplemente rnlvl sen a2. De manera alterna, la fuerza resultante sobre el fluido puede calcularse determinando R, y Ry a partir de las ecuaciones (2.8-28) y (2.8-29), y usando la ecuación (2.8-32). La fuerza sobre el codo es opuesta a ésta. 2.9 BALANCE DE MOMENTO LINEAL EN EL RECINTO Y PERFIL DE VELOCIDADES EN FLUJO LAMINAR 2.9A Introducción En la sección 2.8 se analizan los balances de momento lineal utilizando un volumen de control global macroscópico. A partir de éste obtuvimos los cambios totales o globales de momento lineal que cruzaban la superficie de control. El balance general de momento lineal que se analizó en dicha sección no proporciona los detalles de lo que sucede dentro del volumen de control. También en esta secciónse estudiará un volumen de control pequeño reduciéndose después este volumen de control a tamaño diferencial. Al hacerse esto, realizamos un balance de momento lineal del recinto y después, mediante la ecuación de definición de la viscosidad, se obtendrá una expresión para la distribución de velocidades dentro de los límites del recinto, así como para la caída de presión. Las ecuaciones se deducen para sistemas de flujo de geometría simple en flujo laminar y en estado estacionario. En muchos problemas de ingeniería no se necesita conocer el perfil de velocidad completo, pero sí es necesario conocer la velocidad máxima, la velocidad promedio o el esfuerzo cortante sobre una superficie. En esta sección mostramos cómo obtener estas cantidades a partir de los perfiles de velocidad. 2.9B Balance de momento lineal en el recinto de una tubería Los ingenieros suelen tener que estudiar el flujo de fluidos de un dueto o tubería circular. En la figura 2.9-l se muestra la sección horizontal de una tubería por la que fluye un líquido newtoniano incompresible, con flujo laminar de estado estacionario monodimensional. El flujo es totalmente desarrollado, esto es, no está influido por los efectos de entrada y el perfil de velocidades no varía a lo largo del eje del flujo en la dirección x. El volumen de control cilíndrico es un recinto con radio interior r, un espesor Ar y longitud Ax. En estado estacionario, la conservación de momento lineal (2.8-3) expresa lo siguiente: suma de fuerzas actuando sobre el volumen de control = velocidad de salida del momento lineal - velocidad de entrada del momento lineal, ambas con respecto al volumen de control. Con base en la ecuación (2.8-17) las fuerzas de presión son: fuerza de presión = $1, - $1, + b = ~(27~ AY& - p(2xr Ar)(, + b (2.9-l) - A r r f9x FIGURA 2.9-I. Volumen de control para el balance de momento lineal en el recinto de un fluido que fluye en un tubo circular. Principios de transferencia de momento lineal y balances globales 9 1 La fuerza cortante o fuerza de arrastre que actúa sobre la superficie cilíndrica en el radio Y, es el esfuerzo cortante z,, multiplicado por el área 2xr Ax. Sin embargo, esto también puede considerarse como la velocidad de flujo de momento lineal de entrada a la superficie cilíndrica del recinto, tal como lo describe la ecuación (2.4-9). Por lo tanto, la velocidad neta de efusión de momento lineal es la velocidad de salida de momento lineal menos la velocidad de entrada de momento lineal igual a efusión neta = (T, 27cr Ax&. + ~~ - (7, 2Xr Ax)l, (2.9-2) El flujo convectivo neto de momento lineal a lo largo de la superficie anular enx y x + Ax es cero, puesto que el flujo está totalmente desarrollado y los términos son independientes de x. Esto es cierto, puesto que v, en x es igual a v, en x + Ax. Al igualar las ecuaciones (2.9-l) y (2.9-2) y reordenar (2.9-3) En un flujo totalmente desarrollado, el gradiente de presión (AJJ lAx ) es constante y se transforma en (AplL) donde Ap es la caída de presión para una tubería de longitud L. Suponiendo que Ar tiende a cero se obtiene (2.9-4) , Al separar variables e integrar, (2.9-5) Cuando r = 0, la constante de integración CI debe ser cero si el flujo de momento lineal no es infinito. Por consiguiente, 7r.x = A P( j2L -Po-Pr.,2L (2.9-6) Esto significa que el flujo de momento lineal varíalinealmente con el radio, tal como lo muestra la figura 2.9-2 y el valor máximo se presenta a Y = R en la pared. Al sustituir la ley de la viscosidad de Newton, en la ecuación (2.9-6), se obtiene la siguiente ecuación diferencial para la velocidad: dv,- dr _-por 2& (2.9-8) 92 2.9 Balance de momento lineal en el recinto y perfil de velocidades en jlujo laminar Perfil parabólico de Perfil de flujo específico (flux) de momento lineal F I G U R A 2 . 9 - 2 . Perfil de velocidad y de flujo de momento lineal para un jlujo laminar en una tuberia. Al integrar con la condición límite de que en la pared, v, = 0, cuando r = R, se obtiene la ecuación para la distribución de velocidades: 2 vx = p0R2 l- f4u [ 01 (2.9-9) Este resultado indica que la distribución de velocidades es de tipo parabólico, tal como muestra la figura 2.9-2. La velocidad promedio v, prom para una sección transversal se determina sumando todas las velocidades en dicha sección y dividiendo entre el área de la misma como en la ecuación (2.6-17). Siguiendo el procedimiento del ejemplo 2.6-3, donde dA = r dr de y A = nR2, 1 1 R vx prom = 2 v,rd;de=- J v,2nr dr (2.9-10) A ?GR~ 0 Al combinar las ecuaciones (2.9-9) y (2.9-10) e integrando 3 prom = (po-pr.)R2 _ (PO- PL)D' 8cLL - 32M (2.9-l 1) donde el diámetro D = 2R. Por consiguiente, la ecuación (2.9-ll), que es la ecuación de Hagen- Poiseuille, relaciona la caída de presión y la velocidad promedio para flujos laminares en una tubería horizontal. La velocidad máxima para una tubería se obtiene de la ecuación (2.9-g), y se presenta cuando r = 0. Al combinar las ecuaciones (2.9-l 1) y (2.9-12) se encuentra que (2.9-12) V xmáx vx prom = -2 (2.9-13) Principios de transferencia de momento lineal y balances globales 93 Entra momento linea por transporte - molecular x C- r” A7 -6- -- Entra momento lineal I r por convección I-l@ Perfil de flujoL específico (flux) -- - de momento lineal Y-Sale momento lineal por convección (4 r + FIGURA 2.9-3. Flujo laminar vertical de una película líquida: a) balance de momento lineal en un recinto para un volumen de control de grosor Ax; b) perfiles de jlujo especijko (flux) de momento lineal de velocidad 2.9C Balance de momento lineal en el recinto para una película descendente Se va a usar un enfoque semejante al que se usó para un flujo laminar en una tubería para el flujo de un fluido en una película de flujo laminar hacia abajo sobre una superficie vertical. Las películas descendentes se han usado para estudiar varios fenómenos relacionados con transferencia de masa, recubrimiento de superficies, etc. El volumen de control para la película descendente se muestra en la figura 2.9-3a, donde la capa de fluido que se considera tiene un grosor de Ax y una longitud de L en dirección z vertical. Esta región está lo suficientemente lejos de las regiones de entrada y salida como para que el flujo no se vea afectado por estas regiones. Esto significa que la velocidad v, (x) no depende de la posición z. Para empezar se establece un balance de momento lineal en la dirección z sobre un sistema con un grosor de Ax, limi&do en la dirección z por los planos z = 0 y z = L, y que se extiende una distancia W en la dirección y. Primero consideramos el flujo específico (flux) de momento lineal debido al transporte molecular. La velocidad de salida de momento lineal es el flujo específico de momento lineal en el punto x + kr menos el de x por el área L W. efusión neta = L W (z,)I, + h ,-- L W(.txz)lx El flujo específico de momento lineal convectivo neto es la velocidad de momento lineal que entra en el área AX W en z = L menos la que sale en z = 0. Esta efusión neta es igual a 0, ya que v, en z = 0 es igual a ~2, en z = L para cada valor de x. efusión neta = AxWv,@v,)~, = L - AxWv,(pv,)l, = 0 = 0 (2.9-15) 94 2.9 Balance de momento lineal en el recinto y perfil de velocidades en jlujo laminar La fuerza de gravedad que actúa sobre el fluido es fuerza de gravedad = A.xWL(pg) (2.9-16) Luego, al usar la ecuación (2.8-3) para la conservación de momento lineal en estado estacionario, Al reordenar la ecuación (2.9-17) y haciendo que Ax + 0, d zTtxz = Pis (2.9-18) (2.9-19) Si se integra usando las condiciones de frontera en x = 0, z,, = 0 en la superficie de líquido libre y en x = x, Txz = Txz, zXZ=p&y ( 2 . 9 - 2 0 ) Esto significa que el perfil de flujo específico de momento lineal es lineal, como se muestra en la figura 2.9-3b y el valor máximo está en la pared. Para un fluido newtoniano, usando la ley de Newton de la viscosidad, (2.9-21) Al combinar las ecuaciones (2.9-20) y (2.9-21)se obtiene la siguiente ecuación diferencial para la velocidad: ( 2 . 9 - 2 2 ) Al separar variables y al integrarlas se obtiene ( 2 . 9 - 2 3 ) Al usar la condición de frontera de que v, = 0 en x = 6, CI = (pg/2y) S2. Por lo ttnto, la ecuación de distribución de la velocidad se transforma en ( 2 . 9 - 2 4 ) Esto significa que el perfil de velocidad es parabólico, como se muestra en la figura 2.9-3 b. La velocidad máxima ocurre en x = 0 en la ecuación (2.9-24) y es V Pd2- z máx w ( 2 . 9 - 2 5 ) Principios de transferencia de momento lineal y balances globales 95 La velocidad promedio puede encontrarse usando la ecuación (2.6-17). 1 1 w 6 vza54=- II w 8 Vz prom = 1 m 0 ‘0 vzci!x&=- v,dx Iw60 A Al sustituir la ecuación (2.9-24) en la (2.9-26) e integrando, (2.9-26) Al combinar las ecuaciones (2.9-25) y (2.9-27) se obtiene v, prom = (2/3)v, mh. El gasto volumétrico q se obtiene multiplicando la velocidad promedio v, prom por el área de corte transversal 6W. (2.9-28) Con frecuencia en las películas descendentes, el gasto de masa por unidad de grosor de pared f en kg/s + m se define como JY = p6vz prom y el número de Reynolds se define como 4r wk prom NRe=F= P (2.9-29) El flujo es laminar para NR~ < 1200. El flujo laminar con ondas se presenta cuando el NR~ excede de 25. EJEMPLO 2.9-I. Velocidad y grosor de la película descendente Cierta cantidad de aceite fluye hacia abajo por una pared vertical como una película de 1.7 mm de espesor. La densidad del aceite es de 820 kg/m3 y la viscosidad es de 0.20 Pa. s. Calcule el gasto másico f que se necesita por unidad de grosor en la pared y el número de Reynolds. Calcule también la velocidad promedio. Solución: El grosor de la película es de 6 = 0.0017 m. Al sustituir la ecuación (2.9-27) en la definición de f, r == P6vz prom = @M2 p2a3g 3fi =-3p (2.9-30) (820)* (1.7 x 10-3)3(9.806) = 3 x 0.20 = 0.05399 kgls . m Al utilizar la ecuación (2.9-29), 4l- NR~=F= 4P.05399) = 1080 0.20 . 9 6 2.10 Ecuaciones de diseño para jlujo laminar y turbulento en tuberías En consecuencia, la película tiene en flujo laminar. Usando la ecuación (2.9-27), pg62 vzpmm= -= 820(9.806)( 1.7 x 10-3)2 3P 3( 0.20) = 0.03873 mls 2.10 ECUACIONES DE DISEÑO PARA FLUJO LAMINAR Y TURBULENTO EN TUBERÍAS 2.10A Perfiles de velocidad en tuberías Una de las aplicaciones más importantes del flujo de fluidos es el flujo en conductos circulares, tuberías y caños. En el apéndice AS se incluyen los tamaños de las tuberías de acero comerciales. La tubería de cédula 40 en diferentes tamaños es la norma usual. La de cédula 80 tiene una pared más gruesa y soporta casi el doble de presión que la de cédula 40. Ambas tienen el mismo diámetro _exterior, por lo que se pueden conectar a los mismos accesorios. Las tuberías de otros metales tienen el mismo diámetro externo que las de acero, para permitir el intercambio de secciones en un sistema. Los tamaños de las tuberías se especifican por medio del diámetro exterior y el espesor de pared. Perry y Creen (Pl) incluyen tablas detalladas de diversos tipos de tubos y duetos. Cuando el fluido fluye en una tubería circular, al medir las velocidades a diferentes distancias de la pared al centro se demuestra que, tanto en el flujo laminar como en el turbulento, el fluido que está en el centro del tubo se desplaza con mayor rapidez que el que está cercano a las paredes. Estas mediciones se efectúan a una distancia razonable de la entrada a la tubería. La figura 2. lo- 1 contiene una gráfica de la distancia relativa desde el centro de la misma, en función de la fracción de velocidad máxima v’/vmax, donde v’ es la velocidad local en la posición considerada y vmáx es la velocidad máxima en el centro de la tubería. Para un flujo laminar o viscoso, el perfil de velocidades es una parábola real, tal como se dedujo en la ecuación (2.9-9). La velocidad en la pared es cero. En muchas aplicaciones de ingeniería resulta útil la relación entre la velocidad promedio vprom en una tubería y la velocidad máxima v,á,, ya que en algunos casos sólo se mide la vmáx en el punto central del tubo. Así, a partir de una sola medición puntual, se puede usar esta relación entre vmhx y vprom para determinar vprom. En la figura 2.10-2 se grafican valores medidos experimentalmente de vprom lvmáx en función de los números de Reynolds DvprOr,, p/p y Dv,~, plp La velocidad promedio en todo el corte transversal de la tubería es precisamente 0.5 veces la velo- cidad máxima en el centro, como lo expresa el balance de momento lineal en el recinto de la ecuación (2.9-13) para flujo laminar. Por otra parte, y para flujo turbulento, la curva resulta algo aplanada en el centro(Fig. 2.10-1)~ lavelocidadpromedio es aproximadamente 0.8veceslamáxima. Estevalorde0.8 veces varía un poco, dependiendo del numero de Reynolds, como se muestra en la correlación de la figura 2. lo- 2. (Nota: véase el problema 2.6-3 en el que se deduce un valor de 0.817, usando la ley de potencia 117.) 2.10B Caida de presión y pérdidas por fricción en un flujo laminar 1. Caída y pérdida de presión debido a la fricción. Cuando un fluido fluye por una tubería con flujo laminar en estado estacionario, la ecuación (2.4-2) expresa el esfuerzo cortante para un fluido newtoniano, y esta ecuación puede reescribirse para variaciones de radio dr, en vez de la distancia dy, como sigue: dvz zrz = -?F (2.10-l) Principios de transferencia de momento lineal y balances globales 97 0 0.2 0.4 0.6 0.8 1.0 Fracción de velocidad máxima (v’lv,& F I G U R A 2 .10- l . Distribución de velotidades de un jluido a lo largo de una tubería. Dvprom PM lo4 lo5 lo6 0.8 0.6 lo3 lo4 Dvmáx PIP 1O5 lo6 FIGURA 2.10-2. Razón v~~~,,,/v,,,~~ en función del número de Reynolds para tuberías. Con esta expresión y llevando a cabo un balance de momento lineal en el recinto del fluido en un recinto cilíndrico, se obtiene la ecuación de Hagen-Poiseuille, ecuación (2.9-l l), para el flujo laminar de un líquido en tubos circulares. En la sección 3.6 se incluye también una deducción usando el balance diferencial de momento lineal. Esta expresión es (2.10-2) donde p1 es la presión corriente arriba en el punto 1, N/m2; p2 es la presión en el punto 2; v es la velocidad promedio en el tubo, m/s; D es el diámetro interno, m; y (L2 - Ll) o M es la longitud de tubo recto, m. Para unidades del sistema inglés, el lado derecho de la ecuación (2.10-2) se divide entre g,. La cantidad ($1 -p$ o L\pf es la pérdida de presión debida a la fricción superficial. Entonces, para p constante, la pérdida por fricción Ff es F = (PI-Pz)~ -N.m J f P -kgO-\.qj (SI) (2.10-3) F = pie+ f lhn (Unidades del sistema inglés) 9 8 2.10 Ecuaciones de diseño para jlujo laminar y turbulento en tuberías Ésta es la pérdida de ener ía mecánica debida a la fricción superficial en la tubería en N * m/kg del fluido y es parte del término E F de pérdidas por fricción en la ecuación (2.7-28) del balance de energía mecánica. Este término (p 1 -p $de fricción superficial, es diferente del término (JI t -p 2), causado por cambios de carga de velocidad o de carga potencial de la ecuación (2.7-28). En las secciones 2.10B y 2.1OC se analiza la porción de XF que se origina en fricciones dentro del propio dueto por flujo laminar o turbulento. En la sección 2.10F se estudia la porción de pérdida por fricción debido a accesorios (válvulas, codos, etc.), ángulos y otras variaciones que muchas veces constituyen factores importantes de la fricción. Nótese que al aplicar la ecuación (2.7-28) aun flujo estable en un tubo recto horizontal, se obtiene la expresión (JI, t - p 2)lp = c F. Con la ecuación (2.10-2) puede obtenerse la medición experimental de la viscosidad de un fluido * por medio de la determinación de la caída de presión y del gasto volumétrico a través de un tubo de longitud y diámetro conocidos. En la práctica casi siempre es necesario incluir pequeñas correcciones por efectos de energía cinética y de entrada.Además, la ecuación (2.10-2) también se emplea para la medición de flujos pequeños de líquidos. EJEMPLO 2.10-L Medición de flujos pequeños de líquidos Para medir en forma continua la velocidad de flujo de un líquido con densidad de 875 kg 1 m3 y p = 1.13 x 10p3 Pa . s se usa un pequeño capilar con diámetro interior de 2.22 x 1 OV3 m y longitud igual a 0.3 17 m. La lectura de la caída de presión a través del capilar durante el flujo es 0.0655 m de agua (densidad 996 kg/m3). iCuál es la velocidad de flujo en m3/ s sin tomar en cuenta los efectos de los extremos del tubo? Solución: Se usará la ecuación (2.10-2) suponiendo que el flujo es laminar. Primero se convierte la altura h de 0.0655 m de agua a una caída de presión por medio de la ecuación (2.2-4) Apf= hpg = (0.0655 m) 996( 3)( 9.80665:) =640kg*m/s2 * m2 = 640 N/m2 Al sustituir los siguientes valores en la ecuación (2.10-2), p = 1.13 x lOe3 Pa . s, L2 - Ll = 0.317 m, D = 2.22 x 10m3 m, y Apf= 640 N/m2, y despejando v, .’ APA.= 32&, - 4) D2 (2.10-2) 640 = 32( 1.13 x 10-3)(v)(0.3 17) (2.22 x 10-3)2 v = 0.275 m/s Entonces, el gasto volumétrico es 02 gasto volumétrico = m 4 = 0.275@)(2.22 x lo-3)2 4 = 1.066 x lOA m3/s Principios de transferencia de momento lineal y balances globales 99 Puesto que se supuso un flujo laminar, se calcula el número de Reynolds para comprobarlo. fip NR”=T= (2.22 x 10-3)(0.275)(875) 1.13 x 1o-3 = 473 Por lo tanto, el flujo es laminar como se supuso. 2. Uso del factor de fricción para las pérdidas porpicción en flujo laminar. Un parámetro muy común en el flujo laminar, y en especial en el turbulento, es el factor de fricción de Fanning, J; que se define como la fuerza de arrastre por unidad de área mojada (esfuerzo cortante z, en la superficie) dividida entre el producto de la densidad por la carga de velocidad o altura dinámica, o + p$. La fuerza es L\pfmultiplicada por el área de sección transversal xR2 y el área de superficj.e mojada es 2xR AL. Por consiguiente, la relación entre la caída de presión debida a la fricción y afes la siguiente para flujo laminar y turbulento. f= .-LL= bf m2 pv2 PV2 12 l-~~RLU 2 Al reordenar se convierte en AL v2 Lipf = ~.AP 02 (SI) Apf= 4f~ g& . (Unidades del sistema inglés) @f Ff =-=P 4& @U 2 F’ =4&k 1 (Unidades del sistema inglés) Para flujo laminar, combinando las ecuaciones (2.10-2) y (2.10-5), f+L-& Re (2.10-4) (2.10-5) (2.10-6) (2.10-7) Las ecuaciones (2.10-2), (2.10-5), (2.10-6) y (2.10-7) para flujo laminar son válidas hasta un número Reynolds de 2100. Después de esto, cuando NR~ pasa de 2100, las ecuaciones (2.10-2) y (210-7) no son aplicables a flujo turbulento. Sin embargo, las ecuaciones (2.10-5) y (2.10-6) se usan con mucha frecuencia para flujo turbulento, junto con métodos empíricos para pronosticar el factor de fricción f, como se describe en la siguiente sección. EJEMPLO 2.10-2. Uso del faetor de_fiicción en flujo laminar Suponga las mismas condiciones conocidas del ejemplo 2. lo- 1 excepto que se conoce la velocidad, 0.275 m Is y se desea pronosticar la caída de presión A.pf Use el método del factor de fricción de Fanning. 1 0 0 2.10 Ecuaciones de diseño para jlujo laminar y turbulento en tuberías Solución: Como antes, el número de Reynolds es hp NRe= T= (2.22 x 10V3 m)(0.275m/s)(875 kg/m3) 1.13 x 10p3 kg/m. s Con base en la ecuación (2.10-7) se obtiene el factor de fricción f f= ;;= $&= 0.0338 (adimensional) Al usar la ecuación (2.10-5) con AL = 0.3 17 m, v = 0.275 m/s, D = 2.22 Wm3, = 473 x lO@m,p=875 4(0.0338)(875)(0.317)(0.275)2 = 640 N,m2 (2.22 x 10-3)(2) Resulta obvio que este resultado comprueba el valor del ejemplo 2. lo- 1. Cuando el fluido es un gas y no un líquido, la ecuación de Hagen-Poiseuille, ecuación (2.10-2) puede escribirse como sigue para flujo laminar, . nll4 qp: - Pi) m = l28(2RT)p(L, - 15,) nD4¿% M( P: - Pi) m = l28(2RT)p(L, -LI) (SI) (2 .10-S) (Unidades del sistema inglés) donde m = kgls, M = peso molecular en kg/kg mol, T= temperatura absoluta en K y R = 83 14.3 N . m/kg mol . K. En unidades del sistema inglés, R = 1545.3 pies . lbf/lb mol . “R. 2.1OC Caída de presión y factor de fricción en flujo turbulento En el flujo turbulento, como en el laminar, el factor de fricción también depende del número de Reynolds. Sin embargo, no es posible pronosticar en teoría el factor de fricción de Famingfpara flujo turbulento, como se hizo con el flujo laminar. El factor de fricción debe determinarse de manera empírica (experimental) y no depende sólo del número de Reynolds sino también de la rugosidad de la superficie de la tubería. En el flujo laminar, la rugosidad casi no produce efecto alguno. Por otra parte, un análisis dimensional demostraría la interdependencia del factor de fricción y estos factores. En las secciones 3.11 y 4.14 se estudian métodos para obtener los números adimensionales y su importancia. Se han obtenido y correlacionado muchos datos experimentales de factores de fricción para tuberías de superficie tersa, así como para diversos grados de rugosidad equivalente. Con fines de diseño, se puede usar la gráfica de factor de fricción de la figura 2.10-3 para pronosticar el factor de fricción f y, por tanto, la caída de presión fricciona1 en una tubería circular. Esta gráfica representa en coordenadas log-log la variación defen función de NR~. Después, el factor de fricciónfse incluye en las ecuaciones (2.10-5) y (2.10-6) para pronosticar la pérdida de fricción Apfo Ff Principios de transferencia de momento lineal y balances globales 1 0 1 2 Apf= 4fp $$ AL v2 &y= 4fP -p2g, (SI) (Unidades del sistema inglés) (2.10-5) Ff = -=4/ggAPf P (SI) Ff =4f$$$ (2.10-6) (Unidades del sistema inglés) Para la región con número de Reynolds inferior a 2100, la línea es idéntica a la de la ecuación (2.10-7). Para un número de Reynolds superior a 4000 y flujo turbulento, la línea más baja de la figura 2.10-3 representa la línea del factor de fricción para tuberías y duetos tersos, tales como los de vidrio, cobre extruido y latón. Las otras líneas para factores de fricción más altos corresponden a diferentes factores de rugosidad, EID, donde es el diámetro interior de la tubería en m, y E es el parámetro de rugosidad, que representa la altura promedio en m de las proyecciones de rugosidad de la pared (Ml). En la figura 2.10-3 se incluyen valores de rugosidad equivalente para tuberías nuevas (Ml). La tubería más común, el acero comercial, tiene una rugosidad de E = 4.6 x 1 O-5 m (1.5 x 1 OA pie). El lector debe quedar advertido en cuanto al uso de factores de fricción f de otras referencias. En este texto usamos el factor de fricción de Fanning f de la ecuación (2.10-6). Otros textos usan un factor que puede ser cuatro veces mayor. EJEMPLO 2.1 O-3. Uso del factor de fricción en jlujo turbulento Un líquido fluye por una tubería horizontal recta de acero comercial a 4.57 m 1s. El diámetro interno de la tubería es de 2.067 pulg. La viscosidad del líquido es de 4.46 cp y su densidad de 801 kg/m3. Calcule la pérdida por fricción de energía mecánica Ff en J/kg para una sección de tubería de 36.6 m. Solución: Se conocen los siguientes datos: del apéndice A.5, D = 0.0525 m, v = 4.57 m/s, p = 801 kg/m3, AL = 36.6 m y, p = (4.46 cp)(l x 10-3) = 4.46 x lOe3 kg/m * s El cálculo del número de Reynolds es DVP NRe= T= 0.0525(4.57@01) =431ox1 o4 4.46 x 1O-3 ’ Por consiguiente, el flujo es turbulento. La rugosidad equivalente para tubo de acero comercial, similar a la que se encuentra en la tabla de la figura 2.10-3, es 4.6 x lOe5 m. E 4.6 x 10F5m-= D 0.0525 m = 0.00088 Para un NR~ de 4.310 x 104, el factor de fricción según la figura 2.10-3 es f = 0.0060. Sustituyendo en la ecuación (2.10-6) obtenemos la pérdida por fricción M v2 Ff =4f 02= 4(0.0060)(36.6)(4.57)2 (0.0525)(2> = 174.8 k(58.5 e) s 8 6 Material de construcción Rugosidad equivalente para tuberías nuevas,c Im\ Tubería estirada Acero comercial Hierro forjadoHierro colado asfalt Hierro galvanizado Hierro colado Duelas de madera Concreto Acero remachado c \U’, 1.5 x 10 -6 4.6 x 10 -5 4.6 x 10 -5 ado 1.2 x lo-41.5 x 10 -4 2.6 x 10 -4 1.8 x 10 -4 a 9 x10e4 3 x 10 -4a3 x lOe3 9 x 10 -4 a9 x lOe3 0 .01 8 0.005 4 ; Número de Reynolds, NR~ = q FIGURA 2.10-3. Factores de fricción para jlurdos en tubería. [Basados en L. F. Moody, Trans. A.S.M.E., 66, 671 (1944); Mech. Eng., 69, 1005 (1947). Con permiso de los editores.] Principios de transferencia de momento lineal y balances globales 1 0 3 En problemas que involucran pérdida por fricción Ff en tuberías, Ff suele ser la incógnita y, por lo general, se conocen los valores del diámetro 0, la velocidad v y la longitud de la tubería, ti. En estos casos es posible una solución directa, como en el ejemplo 2.10-3. Si embargo, en ciertas ocasiones se conoce ya la pérdida por fricción Ff que dicta la carga del líquido. Entonces, conocido el gasto volumétrico y la longitud de tubería, es el diámetro lo que debe calcularse. Esta resolución se obtiene por aproximaciones sucesivas, pues la velocidad v aparece tanto en NR~ como enf; que son valores desconocidos. En otros casos, con el valor de Ff ya determinado, deben especificarse el diámetro y la longitud de la tubería. Se aplica también un método de aproximaciones sucesivas para calcular la velocidad. El ejemplo 2.1 O-4 muestra el método a usar para calcular el diámetro de la tubería cuando se establece Ff. Algunas referencias (M2) proporcionan gráficas prácticas para este tipo de cálculos. EJEMPLO 2.104 Resolución por aproximaciones sucesivas del diámetro de una tubería Se va a hacer fluir agua a 4.4 “C a través de una tubería horizontal de acero comercial con una longitud de 305 m a una velocidad de 150 gal /min. Se dispone de una carga de agua de 6.1 m para contrarrestar la pérdida por fricción Ff Calcule el diámetro de la tubería. Solución: Con el apéndice A.2 se determina que la densidad p = 1000 kg/m3 y la viscosidad p es p = (1.55 cp)(l x 10-3) = 1.55 x 1O-3 kg/m . s pérdida por fricción, Ff = (6.1 m)g = (6.1)(9.80665) = 59.82 J/kg velocidad de flujo = ( 150&)( 7.~~~g,l)( s) (0.0283 17 m3/pie3) = 9.46 x 1O-3 m3/s área de la tubería = 7CD2Tm2 (se desconoce D) velocidad v = (9.46 x lOe3 m3/s) 0.01204=Fnqs La resolución se obtiene por prueba y error, pues v aparece en Nue y J: Suponga que D = 0.089 m para la primera aproximación, NRe = F = (0.089) o’ol~(looo) (0.089) (1.55 x 10-3) = 8.730 x lo4 Para tubería de acero comercial y usando la figura 2.10-3. Entonces, & 4.6 x lOe5 m -= 0.089 mD = 0.00052 De la figura 2.10-3 para NR~ = 8.730 x 104 y EID = 0.00052, f = 0.0051. Sustituyendo en la ecuación (2.10-6), AL v* Ff= 59.82 = 4f -jy~= 4(0.0051)(305) (0.01204)* D(2) D4 1 0 4 2.10 Ecuaciones de diseño para jlujo laminar y turbulento en tuberias 1 Al despejar D, D = 0.0945 m. Esto difiere del valor supuesto de 0.089 m. Para la segunda aproximación, se supone que D es 0.0945 m. NRe = (0.0945) 0.01204. 1000 (o.0945)2 = 1.55 x 1o-3 = 8.220 x lo4 E 4.6 x 1O-5-= =D 0.0945 0.00049 Delafigura2.10-3, f=O.OOSL. Noteque fcambiamuypoco conelvalordeNR,enlaregión turbulenta. Ff = 59.82 = 4(0.0052)(305) (0.01204)2 D(2) D4 Al resolver, D = 0.0954 m o 3.75 pulg. Esta solución sí concuerda con el valor supuesto de D. 2.10D Caída de presión y factor de fricción en el flujo de gases Las ecuaciones y métodos estudiados en esta sección para flujo turbulento en tuberías son válidos para líquidos incompresibles. También pueden aplicarse a un gas si la densidad (o la presión) cambia en menos del 10%. En este caso, se debe usar una densidad promedio &,m en kg/m3 y los errores introducidos serán menores que los límites de incertidumbre del factor de fricciónf: Para el caso de gases, la ecuación (2.10-5) puede reescribirse como (Pl - p2)j.= 4;2yG2 pronI (2.10-9) l donde p ro,,., es la densidad a pprom = (PI + p2)/2. Además, el NR~ usado es DGlj.& donde G está en kglm !i . s y es una constante independiente de la variación de densidad y velocidad del gas. -La ecuación (2.10-5) también puede escribirse como PSP2” = 4 f ALG2RT D M (SI) (2.10-10) PCP2 = 4f ALG’RT g,DM (Unidades del sistema inglés) donde R es 8314.3 Jlkg mol 9 K o 1545.3 pie * lbf/lb mol * OR y Mes el peso molecular. La deducción de las ecuaciones (2.10-9) y (2.10-10) se aplica sólo a los casos de gases en los que el cambio de presión relativa es bastante pequefio como para que no ocurran grandes cambios en la velocidad. Si la velocidad de salida se vuelve grande, el término de la energía cinética, que se había omitido, adquiere importancia. Para cambios de presión superiores a un lo%, está ocurriendo un flujo compresible, y recomendamos al lector que consulte la sección 2.11. En el flujo adiabático en una tubería uniforme, la velocidad en la tubería no debe exceder a la velocidad del sonido. Principios de transferencia de momento lineal y balances globales 1 0 5 e EJEMPLO 2.104. Flujo de gas en línea y caída de presión En un tubo liso que tiene un diámetro interior de 0.010 m está fluyendo nitrógeno gaseoso a 25 “C a una velocidad de 9.0 kg/s * m2. El tubo mide 200 m de largo y el flujo puede suponerse isotérmico. La presión a la entrada del tubo es de 2.0265 x lo5 Pa. Calcule la presión de salida. Solución: La viscosidad del gas, según el apéndice A.3 es p = 1.77 x lOe5 Pa * s a T = 298.15 K. La presión del gas de entrada pl = 2.0265 x lo5 Pa, G = 9.0 kg/s . m2, D = 0.010 m, M= 28.02 kglkg mol, AL = 200 m, y R = 83 14.3 J/kg mol . K. Suponiendo que la ecuación (2.10-10) es válida para este caso y que la caída de presión es menor del lo%, el número de Reynolds es DG 0.010(9.0) zvRe=-= l77x1o-5 =5085 P . Por consiguiente, el flujo es turbulento. Usando la figura 2.10-3,f = 0.0090 para un tubo liso. Al sustituir en la ecuación (2.10-lo), 4fALG2RT d-d = DM (2.0265 x 105)2 -pi = 4(0.0090)(200)(9.0)‘(8314.3)(298.15) O.OlO(28.02) 4.1067 x 1O’O -p; = 0.5160 x 1O’O Al despejar, p2 = 1.895 x lo5 Pa. Por tanto, puede usarse la ecuación (2.10-10) dado que la caída de presión es menor del 10%. 2.10E Efecto de la transferencia de calor en el factor de fricción El factor de fricciónfen la figura 2.10-3 se emplea para flujo isotérmico, esto es, sin transferencia de calor. Cuando un líquido se calienta o se enfría, el gradiente de temperatura causa un cambio en las propiedades físicas de dicho fluido, en especial en lo que refiere a la viscosidad. Para cálculos de ingeniería se puede usar el siguiente método de Sieder y Tate (Pl, S3) para pronosticar el factor de fricción de líquidos y gases con flujo no isotérmico. 1. Se calcula la temperatura total media ta como el promedio de las temperaturas volumétricas del fluido de entrada y de salida. 2. Se calcula && usando la viscosidad pa a ta y se usa la figura 2.10-3 para obtener J: 3. Mediante la temperatura de la pared del tubo t,,,, se determina uy a t,,,. 4. Se calcula vpara cualquiera que sea el caso entre los siguientes: (calentamiento) NRe > 2 100 (2.10-11) (enfriamiento) &e > 2100 (2.10-12) 0.38 ( ca lentamiento ) NRe < 2100 (2.10-13) 106 2.10 Ecuaciones de diseño para flujo laminar y turbulento en tuberías 0.23 (enfriamiento) &e < 2100 (2.10-14) 5. El factor de fricción final se obtiene dividiendo el valor de f de la etapa 2 entre el valor de v de la etapa 4. Por tanto, cuando el líquido se está calentando, t,ues mayor de 1.0 y elf final disminuye. Al enfriar el líquido ocurre lo contrario. 2.10F Pérdidas por fricción en expansiones, reducciones y otros accesorios de tubería Las pérdidas por fricción superficial en los flujos por tuberías rectas se calculan usando el factor de fricción de Fanning. Sin embargo, si la velocidad del fluido cambia de dirección o de magnitud, se producen pérdidas por fricción adicionales. Esto se debe a la turbulencia adicional que se desarrolla por causa de remolinos y otros factores. A continuación se analizan los métodos paraestimar estas pérdidas. 1. Pérdidmpor ensanchamiento repentino. Si el corte transversal de una tubería aumenta de manera muy gradual, son pocas o ninguna las pérdidas adicionales que se producen. Si el cambio es repentino, se producen pérdidas adicionales debidas a los remolinos formados por la corriente que se expande en la sección ensanchada. Esta pérdida por fricción puede calcularse como sigue para flujo turbulento en ambas secciones. La ecuación (2.8-36) se dedujo en el ejemplo 2.8-4. h = (v,-v~)~ _ e x 2a - (2.10-15) donde he, es la pérdida por fricción en Jlkg, K,, es el coeficiente de pérdida por expansión = (1 - A 1 /Az)~, vr es la velocidad corriente arriba en el área más pequeña en m/s, v2 es la velocidad corriente abajo en el ensanche, y a = 1.0. Si el flujo es laminar en ambas secciones, el factor a en la ecuación es t. Para unidades del sistema inglés, el la80 derecho de la ecuación (2. lo- 15) se divide entre g,. Además, h = pie . lbf/lb,. 2. Pérdidas por reducción repentina. Cuando el corte transversal de la tubería se reduce bruscamen- te, la corriente no puede fluir en forma normal en las esquinas de la contracción y los remolinos causados provocan pérdidas por fricción adicionales. Para flujo turbulento, esta pérdida es (2.10-16) donde h, es la pérdida por fricción, a = 1.0 para flujo turbulento, v2 es la velocidad promedio en la sección más pequeña o corriente abajo, y K, es el coeficiente de pérdidas por contracción (PI), aproximadamente igual a 0.55 (1 - A2 /Al). Para flujo laminar se puede usar la misma ecuación con a = 3 (S2). Para unidades del sistema inglés, el lado derecho se divide entre g,. Principios de transferencia de momento lineal y balances globales 1 0 7 3. Pérdidas por accesorios y válvulas. Los accesorios de tuberías y las válvulas también perturban el flujo normal en una tubería y causan pérdidas por fricción adicionales. En una tubería corta con muchos accesorios, la pérdida por fricción en dichos accesorios puede ser mayor que en la tubería recta. La pérdida por fricción en accesorios y tuberías está dada por la siguiente ecuación: (2.10-17) donde Kfes el factor de pérdida para el accesorio o válvula y vt es la velocidad promedio en la tubería que conduce al accesorio. En la tabla 2.10-l se incluyen valores experimentales de KY para flujo turbulento (Pl) y en la tabla 2.W2 para flujo laminar. TABLA 2.10-l. Pérdidas por fricción para flujo turbulento causadas por válvulas y accesorios Pérdida por fricción, Pérdida por fricción, Tipo de accesorio o válvula número de cargas longitud equivalente de tuberia de velocidad Kf recta en diámetros de tubería L,/D Codo, 45” 0 . 3 5 1 7 Codo, 90” 0 . 7 5 3 5 Te 1 5 0 Retorno en U 1.5 7 5 Manguitos de acoplamiento 0 . 0 4 2 Manguitos de unión 0 . 0 4 2 Válvulas de compuerta Abiertas 0 . 1 7 9 Semiabiertas 4 . 5 2 2 5 Válvulas de globo Abiertas 6 . 0 3 0 0 Semiabiertas 9.5 4 7 5 Válvulas de ángulo, abiertas 2 . 0 1 0 0 Válvula de retención . 4 *De bola 7 0 . 0 3500 De bisagra 2 . 0 1 0 0 Medidor de discoagua, 7 . 0 3 5 0 Fuente: R. H. Perry y C. H. Chilton, Chemical Engineer’s Handbook, 5a. ed., Nueva York, Mc. Graw-Hill, Ix., 1973. Reproducido con permiso. Como método alterno, algunos textos y referencias (B 1) incluyen datos para pérdidas en accesorios en forma de longitud equivalente de tubería, expresados en diámetros de tubería. Estos datos, que también se incluyen en la tabla 2. lo- 1 se expresan en forma de Le /II, donde Le es la longitud equivalente de tubería recta en m (que tiene la misma pérdida por fricción que el accesorio), y D es el diámetro interno de la tubería en m. Los valores de Ken las ecuaciones (2.10-l 5) y (2. IO- 16) pueden convertirse a valores de L, /D multiplicando K por 50 (P 1). Los valores de L, para los accesorios simplemente se suman a la longitud de la tubería recta para obtener el total de longitud de tubería recta equivalente que se usa en la ecuación (2.10-16). 108 2.10 Ecuaciones de diseño para flujo laminar y turbulento en tuberías 4. Pérdidas por fricción en la ecuación de balance de energía mecánica. Las pérdidas por fricción en la tubería recta (fricción de Fanning), pérdidas por ensanchamiento, pérdidas por reducción y pérdidas por accesorios y válvulas, se incorporan en el término CF de la ecuación (2.7-28) para el balance de energía mecánica, de manera que (2.10-18) Si todas las velocidades v, vl y 19 son iguales, entonces la factorización de la ecuación (2.10-18) para este caso especial es xF= 4f++K,,+KC+Kf (2.10-19) El uso de la ecuación (2.7-28) de balance de energía mecánica junto con la ecuación (2.10-18) se ilustra con el siguiente ejemplo. TABLA 2.10-2. Pérdida por fricción para el flujo laminar a través de válvulas y accesorios (Kl) Pérdida por fricción, Número de cargas de velocidad,Kf Tipo de accesorio o válvula Número de Reynolds 5 0 1 0 0 2 0 0 4 0 0 1 0 0 0 Turbulento Codo 9o” 1 7 7 2.5 1.2 0.85 0.75 T e 9 4.8 3.0 2.0 1.4 1.0 Válvula de globo 2 8 2 2 17 14 10 6.0 Válvula de un solo sentido 55 17 9 5.8 3.2 2.0 EJEMPLO 2.104. Pérdidas por fricción y balance de energía mecánica Un tanque de almacenamiento elevado contiene agua a 82.2 “C, tal como se muestra en la figura 2.10-4. Se desea tener una velocidad de descarga de 0.223 pie 3/s en el punto 2. ¿Cuál deberá ser la altura Hen pies de la superficie del agua en el tanque con respecto al punto de descarga? Se usa tubería de acero comercial, de cédula 40 y se incluyen las longitudes de las porciones rectas de la tubería. t-l l t;’ h ,$-Tubería de 4 Puk iso pies+ H pie 1 =2 k 125 pies-4 de 2 pulg FIGURA 2.10-4. Diagrama de jlujo del proceso para el ejemplo 2.1 O-6. Principios de transferencia de momento lineal y balances globales 1 0 9 Solución: Se escribe la ecuación (2.7-28) del balance de energía mecánica para los puntos 1 y 2. -ws=z2~+-“’ +xF gc 2agc (2.10-20) Del apéndice A.2 para el agua, p = 0.970 (62.43) = 60.52 lb,/pie3 y p = 0.347 cp = 0.347 (6.7197 x lOA) = 2.33 x 1 0 II lb,/pie . s. Los diámetros de la tubería son Para tubería de 4 pulg: 4 = 4.026 - = 0.3353 pie;12 A3 = 0.0884 pie2 Para tubería de 2 pulg: D4 = 2 . 0 6 7 12 = 0.1722 pie; A4 = 0.02330 pie2 Las velocidades en las tuberías de 2 y 4 pulg son: 0.223 pie3 /s ” = 0.0884 pie2 = 2.523 pieh (tubería de 4 pulg) 0.223 ” = 0.02330 ~ = 9.57 piels (tubería de 2 pulg) El término x Fpara las pérdidas por fricción en el sistema incluye lo siguiente: 1) pérdida por reducción a la salida del tanque, 2) pérdida por fricción en la tubería recta de 4 pulg, 3) fricción en el codo de 4 pulg, 4) pérdida por reducción al pasar de tubería de 4 pulg a tubería de 2 pulg, 5) fricción en la tubería recta de 2 pulg, y 6) fricción en los dos codos de 2 pulg. Los cálculos para estos seis puntos son como sigue: 1 . Pérdida por reducción a la salida del tanque. Con base en la ecuación (2.10-16) y para la contracción de Al a A3, puesto que Al, el corte transversal del tanque, es muy grande en comparación con A3, K, = 0.55 l-2 ( 1 = 0.55(1 - 0) = 0.55 h,=K *=0.55 WY _ c 2i% 2(32174) - 0.054 pie . lbf/lb, 2 . Fricción en la tubería de 4 pulg. El número de Reynolds es 4~3~ _ o.33~3(2.~23)(60.~2) = 2.193 x 1o5- - NRe = p 2.33 x 1O-4 Por consiguiente, el flujo es turbulento. De la figura 2.10-3, E = 4.6 x 10p5 m (1.5 x 10” pie). & 0.00015 -=m = 0.000448 4 1 1 0 2.10 Ecuacrones de diseño para jlujo laminar y turbulento en tuberías Entonces, para NRe = 219300, el factor de fricción de Fanningf= 0.0047. Sustituyendo en la ecuación (2.10-6) para bL = 20.0 pies de tubería de 4 pulg. 3. Fricción en el codo de 4pulg. De la tabla 2.10-1, Kf = 0.75. Entonces, sustituyendo en la ecuación (2.10-17), V2 WY -oo74 pie. 14 hf = Kf2g, = o.752(3~74) - ’ Ib, 4. Pérdida por contracción de la tubería de 4 pulg a la de 2 pulg. Usando nuevamente la ecuación (2-10-16) para la contracción del área de corte transversal A3 al área A4, K, = 0.55(1-$)=0.55(1-E) = 0.405 4 hc= K”2g, = o’405 = 0575 “ie& lbf m 5. Fricción en la tubería de 2 pulg. El número de Reynolds es D,V,P NR~=T= o*ww@~52) = 4 280 x 1o5 2.33 x 1OA ’ E - = D K=0.00087 . De acuerdo con la figura 2.10-3, el factor de fricción de Fanning es f = 0.0048. La longitud total AL = 125 + 10 + 50 = 185 pies. Sustituyendo en la ecuación (2.10-6), F’= 4f %&-=4(0.0048) 185(9.57)* = 2g4 pie% c (0.1722)(2)(32.174) ’ lb, 6. Fricción en los dos codos de 2 pulg. Para un valor de Kf = 0.75 y dos codos, 2 2(0.75)(9.57)2 = 2 136 pie. Ib, hf = 2Kf& = 2(32.174) ’ Ib, La pérdida total por fricción z F es la suma de (1) a (6). EF = 0.054 + 0.111 + 0.074 + 0.575 + 29.4 + 2.136 = 32.35 pies . lbf/lb, Principios de transferencia de momento lineal y balances globales 1 1 1 Al usar como referencia 22, zl = H pie, z2 = 0. Puesto que se trata de flujo turbulento, a = 1.0. También, vl = 0 y v2 = v4 = 9.57 pies/s. Dado quept yp2 están a 1 atm abs de presión y p1 = p2, Y puesto que no se usa bomba, Ws = 0. Sustituyendo estos valores en la ecuación (2.10-20), 1(9.57)2 H~+O+0-0=02~32.174~ +32.35 Al resolver, H(g/g,) = 33.77pies. lbr/lb, (100.9 J/kg) y Hes 33.77 pies (10.3 m) de altura del nivel de agua por encima del punto de descarga. EJEMPLO 2.10-7. Pérdidas de fricción con una bomba en el balance de energía mecánica Se está bombeando agua a 20 “C desde un tanque hasta otro más elevado a un gasto de 50 x lOe3 m3/s. Toda la tubería de la figura 2.10-5 es de tubo de cédula 40 de 4 pulg. La bomba tiene una eficiencia del 65%. Calcule la potencia en kW que se necesita para la bomba. Solución: Como está escrita la ecuación de balance de energía mecánica (2.7-28), es válida entre los puntos 1 y 2, y el punto 1 es el plano de referencia. (2.7-28) Según el apéndice A.2, para el agua, p = 998.2 kg /m3, p = 1.005 x 10p3 Pa * s. Para una tubería de 4 pulg, de acuerdo con el apéndice A.5, D = 0.1023 m y A = 8.219 X 10p3 m2. La’velocidad en la tubería es v = 5.0 x 10F3/(8.219 x 10p3 ) = 0.6083 rn/s. El número de Reynolds es NRe= Dvp 0.1023(0.6083)(998.2)7= = 1.005 x 1o-3 6 . 181 x 1o4 Por tanto, el flujo es turbulento. 15 m FI G U R A 2 .1 O-5 Diagrama de jlujo del proceso para el ejemplo 2.10-7. 1 1 2 2.10 Ecuaciones de diseño para jlujo laminar y turbulento en tuberías El término z F para pérdidas por fricción incluye lo siguiente: 1) pérdida por reducción a la salida del tanque, 2) fricción en la tubería recta, 3) fricción en los dos codos y 4) pérdidas por expansión en la entrada del tanque. 1. Pérdida por reducción a la salida del tanque. A partir de la ecuación (2.10-16) para una contracción de una Al grande a una A2 pequefia, h, = K, 6 = (0.55) (0.6083)2 2( 1.0) = 0.102 Jlkg 2. Fricción en la tubería recta. De la figura 2.10-3, E = 4.6 x lOe5 m y EID = 4.6 X 10-5/0.1023 = 0.00045. Entonces, para ?,$e = 6.181 x 104, = 0.0051.f Sustituyendo en la ecuación (2.10-6) para ti = 5 + 50 + 15 + 100 = 170 m, Ff = 4f +$; = 4(0.0051)&(o.623)2 = 6.272 Jlkg 3. Fricción en los dos codos. A partir de la tabla 2.10-1, K’= 0.75. Después, sustituyendo en la ecuación (2.10-7) para dos codos, V2 hf= 2KY 2 = 2(0.75) (0.6083)2 2 = 0.278 Jlkg 4. Pérdida por expansión en la entrada del tanque. Usando la ecuación (2.10-l 5), ‘= (1 - o)2 = 1.0 h, = Kex ; = 1.0 ( 0.6083)2 2 = 0.185 J/kg La pérdida total por fricción es XF. XF = 0.102 + 6.272 + 0.278 + 0.185 = 6.837 J/kg Al sustituir en la ecuación (2.7-28), donde (vf -vi) = 0 y (p2 - ~1) = 0, 0 + 9.806(15.0 - 0) + 0 + 6.837 + W, = 0 Al resolver, WS = 153.93 J/kg. El gasto másico es m = 5.0 x 10m3(998.2) = 4.991 kg/s. Usando la ecuación (2.7-30), ws = -qwp -153.93 = -0.65 Wp Principios de transferencia de momento lineal y balances globales 1 1 3 Al resolver, Wp = 236.8 J/kg. La potencia en kW de la bomba es bomba kW = mWp = 4.99(236.8) 1000 = 1.182 kW 2.106 Pérdidas por fricción en duetos no circulares Las pérdidas por fricción en canales o duetos rectos largos de sección transversal no circular, pueden estimarse usando las mismas ecuaciones empleadas para tubos circulares cuando el diámetro en el número de Reynolds y en la ecuación (2.10-6) del factor de fricción se considera como el diámetro equivalente. El diámetro equivalente D se define como el cuádruple del radio hidráulico r,. El radio hidráulico se define como la razón del área de la sección transversal del canal al perímetro mojado del canal sólo para el flujo turbulento. Por tanto, D = 4rH = 4 área de la sección transversal del canal perímetro mojado del canal (2.10-21) Por ejemplo, para un tubo circular, Para un espacio anular con un diámetro externo DI e interno D2, D = 4(7@/4-nD;/4) nD, + nD2 =D1-D2 Para un dueto rectangular con lados de a y b pies, +4 __2ab D=2a=a+b (2.10-22) (2.10-23) Para canales abiertos y duetos parcialmente llenos con flujo turbulento, se usa también el diámetro equivalente y la ecuación (2.10-6) (Pl). Para un rectángulo con profundidad de líquido y y anchura b, (2.10-24) Para corriente ancha y poco profunda, de profundidad y, D = 4y (2.10-25) En las referencias (Pl) se pueden encontrar las ecuaciones para flujo laminar en duetos abiertos de diversas formas de corte transversal no circular. 1 1 4 2.10 Ecuaciones de diseño para flujo laminar y turbulento en tuberías 2.10H Sección de entrada de una tubería . Si el perfil de velocidad en la región de entrada de un tubo es plano, se necesita cierta longitud del tubo para que el perfil de velocidad se establezca por completo. Esta longitud para que se establezca un flujo completamente desarrollado se llama longitud de transición o longitud de entrada. Ésta se muestra en la figura 2.10-6 para el flujo laminar. En la entrada, el perfil de velocidad es plano, es decir, la velocidad es igual en todas las posiciones. Conforme el fluido avanza por el tubo, el grosor de la capa límite aumenta hasta que al fm se encuentran en el centro de la tubería y el perfil de velocidad parabólico se establece del todo. La longitud de entrada aproximada Le de una tubería que tiene un diámetro D para que se forme un perfil de velocidad completamente desarrollado de flujo laminar es (L2) L e = 0.0575 NR~D (2.10-26) Perfil de velocidades> Capa límite F I G U R A 2.10-6. Perfil de velocidad cerca de la entrada de una tubería para el flujo laminar. Para el flujo turbulento no se tiene a la mano una relación para pronosticar cuál debe ser la longitud de entrada para que se forme un perfil de velocidad turbulento completamente desarrollado. Como una aproximación, la longitud de entrada es casi independiente del número de Reynolds y está completa- mente desarrollada después de 50 diámetros corriente abajo. EJEMPLO 2.104% Longitud de entrada para un fluido en una tubería Por un tubo con diámetro de 0.010 m fluye agua a 20 “C a una velocidad de 0.10 m/s. a) Calcule la longitud de entrada. b) Calcule la longitud de entrada para el flujo turbulento. Solución: Para el inciso a), a partir del apéndice A.2, p = 998.2 kg/m3, p = 1.005 X 10p3 Pa . s. El número de Reynolds es ~vp NRe= I*= 0.010(0.10)(998.2) = 993 2 1.005 x 1o-3 . Al usar la ecuación (2.10-26) para un flujo laminar, L $=& = 0.0575(993.2)= 57.1 Principios de transferencia de momento lineal y balances globales 1 1 5 Por tanto, Le = 0.571 m. Para el flujo turbulento del inciso b), Le = 50(0.01) = 0.50 m. La caída de presión o factor de fricción en la longitud de entrada es más grande que en el flujo completamente desarrollado. Para el flujo laminar, el factor de fricción es más alto en la entrada (L2) y luego decrece gradualmente hasta el valor del flujo completamente desarrollado. Para el flujq, turbulento habrá cierta porción de la entrada en la cual la capa límite sea laminar y el perfil del factor de fricción sea difícil de expresar. Como una aproximación, el factor de fricción para la longitud de entrada puede considerarse como dos a tres veces el valor del factor de fricción en el flujo completamentedesarrollado. 2.10-I Selección de tamaños de tubería En los sistemas de tubería grandes y complicados, el tamaño óptimo de tubería que debe usarse para una determinada situación depende de los costos relativos de inversión de capital, energía, mante- nimiento y otros. Existen tablas y gráficas (Pl) para la determinación de estos tamaños óptimos. Sin embargo, cuando se trata de instalaciones pequeñas, las aproximaciones del cálculo suelen tener suficiente precisión. En la tabla 2.10-3 se incluye una lista de valores representativos de intervalos de velocidades en tuberías. I TABLA 2.10-3 Intervalos representativos de velocidades en tuberías de acero Velocidad Tipo de Flu.ido Tipo de jlujo pies /s m/s Líquido no viscoso Idquido viscoso GaS Vapor Entrada a bomba 2 - 3 0.6 - 0.9 Línea de proceso o descarga de bomba 5 - 8 1.5 - 2.5 Entrada a bomba 0.2 - 0.8 0.06 - 0.25 Línea de proceso o descarga de bomba 0.5 - 2 0.15 - 0.6 30 - 120 9 - 36 30 - 75 9 - 23 2.11 FLUJO COMPRESIBLE DE GASES 2.11A Introducción y ecuación básica para el flujo en tuberías Cuando en los gases ocurren cambios de presión mayores del lo%, las ecuaciones de pérdida de fricción (2.10-9) y (2.10-10) pueden resultar inapropiadas porque se trata de un flujo compresible. Entonces la resolución del balance de energía resulta más complicada debido a la variación de la densidad o volumen específico con los cambios de presión. El campo del flujo compresible es muy amplio y cubre una enorme gama de variaciones de geometría, presión, velocidad y temperatura. En esta sección restringimos nuestro análisis al flujo isotérmico y adiabático en tuberías uniformes y rectas, y no tratamos el flujo en boquillas, que se describe con cierto detalle en otras referencias (M2, Pl). 1 1 6 2.11 Flujo compresible de gases La ecuación general de balance de energía mecánica (2.7-27) puede usarse como punto de partida. Si suponemos un flujo turbulento, de modo que a = 1.0; que no haya trabajo de eje, de modo que Ws = 0; y escribiendo la ecuación para una longitud diferencial dL, la ecuación (2.7-27) se convierte en vdv+gdz+dF=O (2.11-1) Para un dueto horizontal, & = 0. Usando sólo el término fricciona1 de corte de pared para dF y escribiendo la ecuación (2.10-6) en forma diferencial, 4fi2dL vdv+Vdp+T=O (2.11-2) donde V =l/p. Suponiendo un flujo en estado estacionario y un diámetro de tubería uniforme, G es constante y G=,,p=$ (2.11-3) dv = G dV (2.11-4) Al sustituir las ecuaciones (2.11-3) y (2.1 l-4) en la (2.1 l-2) y reordenando, dV dp 2f G2 G2 v+r+ - d L = OD (2.11-5) Ésta es la ecuación diferencial básica que debe integrarse. Para hacerlo, es necesario conocer la relación entre Vyp a fin de evaluar la integral de dp/V. Esta integral depende de la naturaleza del flujo, y dos importantes condiciones que se usan son el flujo isotérmico y el adiabático en tuberías. 2.11B Flujo compresible isotérmico Para integrar la ecuación (2.1 l-5) para flujo isotérmico, se supondrá un gas ideal donde Al despejar Ven la ecuación (2.11-6) y sustituyéndola en la ecuación (2.1 l-5), e integrando con la suposición de que f es constante, G2~,2$+;~12pdp+2f%fdL = 0 v, M G21nF+ 2RT --(pi -p:)+Zf~AL = 0 Sustituyendo V,lV, por p1 lp2 y reordenando, P?-P2= 4fALG2RT + 2G2RT Ina D M M ~2 (2.11-7) (2.11-8) (2.11-9) Principios de transferencia de momento lineal y balances globales 1 1 7 donde M= peso molecular en kg masa ikg mol, R = 83 14.34 N * m / kg mol . K y T = temperatura K. La cantidad RT/M = pt,rom/p,,rom, donde pprom = (pt + p2)/2 y pprom, es la densidad promedio a Typ,,,. En unidades del sistema inglés, R = 1545.3 pies . lbf/lb mol * OR y los términos del lado derecho se dividen entre g,. De esta manera, la ecuación (2.11-g) se transforma en 4fALG2 + G2 (Pl - Pz)j= 2Dp - ln~ p*om Pprom P2 (2.11-10) El primer término de la derecha en las ecuaciones (2.1 l-9) y (2.1 l-10) representa la pérdida por fricción tal como está dada por las ecuaciones (2.10-g) y (2.10-10). El último término en ambas igualdades suele ser despreciable en duetos de longitud considerable, a menos que la caída de presión sea muy alta. EJEMPLO 2.11-I. Flujo compresible de un gas en una linea de tubería Se está bombeando gas natural, que es esencialmente metano, a través de una tubería de 1.016 m DI por una distancia de 1.609 x lo5 m (Dl) a una velocidad de 2.077 kg mol/s. Puede suponerse que la línea es isotérmica a 288.8 K. La presión p2 en el extremo de descarga de la linea es 170.3 x lo3 Pa y es absoluta. Calcule la presión p1 en la admisión de la línea. La viscosidad del metano a 288.8 K es de 1.04 x 10m5 Pa . s. Solución: D = 1.016 m, A = nD2/4 = ~(1.016)~/4 = 0.8107 m2. Entonces, G =(2.077?)( 16.0*)( o.8lo7 m2) = 41.00% DG - 1*016(41*oo) = 4 oo x 1o(j NRe = p 1.04 x 1o-5 . De la figura 2.10-3, E = 4.6 x lo5 m. E 4.6 x 1O-5-= D 1.016 = 0.0000453 El factor de fricción esf= 0.0027. Para despejar p1 en la ecuación (2.1 l-9), se debe usar el método de aproximaciones sucesivas. Estimando pt en 620.5 x lo3 Pa, R = 8314.34 N * rn/kg mol . K y U = 1.609 P x lo5 m. Sustituyendo en la ecuación (2.11-g), Pf-P2= 4(0.0027)(1.609 x 10’)(41.00)2(8314.34)(288.8) 1.016(16.0) + + 2(41.00)‘(8314.34)(288.8) ln 620.5 x lo3 (16.0) 170.3 x lo3 = 4.375 x lOt* + 0.00652 x 10” = 4.382 x 10” (Pa)2 118 2. ll Flujo compresible de gases Ahora, P2 = 170.3 x lo3 Pa. Sustituyendo esto en la anterior y despejandopl, p1 = 683.5 x lo3 Pa. Sustituyendo este nuevo valor de p, en la ecuación (2.11-g) y despejando ~1, el resultado final es p1 = 683.5 x lo3 Pa. Nótese que en este caso el último término de la ecuación (2.1 l-9) es casi despreciable. Cuando la presión corriente arriba pl permanece constante, el gasto másico G cambia conforme varía la presión corriente abajo p2. Según la ecuación (2.1 l-9), cuando p1 = p2, G = 0 y cuando p2 = 0, G = 0. Esto indica que en algún valor intermedio dep2, el flujo G debe ser un máximo. Esto significa que el flujo es máximo cuando dG/dpz = 0. Desarrollando esta difeienciación en la ecuación (2.11-g) para pl yfconstantes, y despejando G, Al usar las ecuaciones (2.1 l-3) y (2.1 l-6), Vm& = ll-s=m (2.11-11) (2.11-12) Ésta es la ecuación para la velocidad del sonido en el fluido en las condiciones del flujo isotérmico. Así, para el flujo isotérmico compresible existe un flujo máximo para una determinadapl corriente arriba, y una reducción adicional dep2 no provocará ningún incremento adicional en el flujo. Mayores detalles, como la longitud de la tubería y la presión en condiciones de flujo máximo se analizan en otros libros (Dl, M2, Pl). EJEMPLO 2.11-2. Flujo máximo para el flujo compresible de un gas Para las condiciones del ejemplo 2.1 l- 1, calcule la velocidad máxima que puede obtenerse y la velocidad del sonido en esas condiciones. Compare los resultados con los del ejemplo 2.11-1. Solución: Al usar la ecuación (2.1 l- 12) y las condiciones del ejemplo 2.1 l- 1, Ésta es la velocidad máxima que puede obtenerse si se reduce ~2. Ésta es también la velocidad del sonido en el fluido en las condiciones del flujo isotérmico. Para comparar esto con el ejemplo 2.1 l-1, la velocidad real a la presión de salida p2 se obtiene combinando las ecuaciones (2.1 l-3) y (2.11-6) para obtener (2.11-13) = 8314.34(288.8)(41.00) = 3; 13 m,s (170.3 x 10’)16.0 ’ Principios de transferencia de momento lineal y balances globales 119 2.11C Flujo adiabático compresible Cuando la transferencia de calor a través de la pared de una tubería es despreciable, el flujo de gas en flujo compresible en una tubería recta de sección transversal constante es adiabático. La ecuación (2.1 l-5) se ha integrado para flujo adiabático y los detalles se muestran en otras obras (Dl, Ml, Pl). También se dispone de diagramas útiles para resolver este caso (Pl). Los resultados para el flujo adiabático suelen desviarse muy poco de los del flujo isotérmico, especialmente en las tuberías largas. Para tuberías muy cortas y caídas de presiónrelativamente grandes, la velocidad de flujo adiabático es mayor que la del isotérmico, pero la diferencia máxima posible es de cerca del 20% (Dl). Para tuberías cuya longitud es de cerca de 1000 diámetros o más, la diferencia generalmente es de menos del 5%. La ecuación (2.11-8) también puede usarse cuando el cambio de temperatura en los conductos es pequeño, utilizando una temperatura promedio aritmética. Al emplear los mismos procedimientos para encontrar un flujo máximo a los que se usaron en el caso isotérmico, el flujo máximo ocurre cuando lavelocidad en el extremo corriente abajo de las tuberías es la velocidad sónica para el flujo adiabático. Esto es, vmáx =JX_iM (2.11-14) donde y = cp lc,, es la razón de capacidades caloríficas. Para el aire, y = 1.4. Por consiguiente, la velocidad máxima para flujo adiabático es de alrededor del 20% más grande que para el flujo isotérmico. La tasa de flujo no puede estar limitada, en la práctica, por las condiciones de flujo en la tubería, sino por el desarrollo de una velocidad sónica en un accesorio o válvula de la tubería. Por eso deben seleccionarse con sumo cuidado los accesorios para las tuberías destinadas al flujo compresible. En otras obras, (Dl, M2, Pl) se dan mayores detalles, como la longitud de la tubería y la presión en condiciones de flujo máximo. Un parámetro conveniente que suele usarse en las ecuaciones de flujo compresible es el número de Mach, NM~, que se define como la razón de v, la velocidad del fluido en el conducto, a vmáX la velocidad del sonido en el fluido en las condiciones de flujo reales. V N - -Ma - VdX Con un número de Mach de 1.0, el flujo es sónico. A valores menores de 1.0, el flujo es subsónico, y es supersónico si el número es mayor de 1.0. PROBLEMAS 2.2-l. Presión en un tanque esférico. Calcule la presión en lb/pulg2 abs y en kN/m2 en el fondo de un tanque esférico que contiene petróleo y cuyo diámetro mide 8.0 pies. La parte superior del tanque está abierta a la atmósfera con una presión de 14.72 lb/pulg2 abs. La densidad del petróleo es 0.922 g/cm2, Respuesta: 17.92 lbf/ pulg2 (psia), 123.5 kN/m2 2.2-2. Presión con dos líquidos: Hg y agua. En el fondo de un tubo de ensayo abierto a 293 K se colocan 12.1 cm de Hg y encima 5.6 cm de agua. Calcule la presión en el fondo del tubo cuando la atmósfera es de 756 mm de Hg. Use la densidad de 13.55 g/cm3 para el agua. Proporcione la respuesta en términos de dina/cm 2, lb/pulgz abs y kNlm2. Vea los factores de conversión en el apéndice A. 1. Respuesta: 1.175 x lo6 dina/cm2, 17.0 lb/pulg2 abs, 2.3 lb/pulg2 man 117 kN/m2 1 2 0 Problemas 2.2-3. Carga y presión de un fluido combustible. La presión en la parte superior de un tanque de combustible es de 180.6 kN/m2. La profundidad del líquido en el tanque es de 6.4 m y la densidad del combustible de 825 kg/m3. Calcule la carga del líquido en m correspondiente a la presión absoluta en el fondo del tanque. 2.2-4. Medición depresión. Un manómetro abierto en forma de U parecido al de la figura 2.2-4a, se usa para medir la presión absoluta pa en un recipiente con aire. La presión pb es la presión atmosférica, 754 mm Hg. El líquido en el manómetro es agua, que tiene una densidad de 1000 kg/m3. Suponga que la densidad Po es de 1.30 kg/m3 y que es muy pequeña la distancia z. La lectura de R es de 0.415 m. Calcule pa en psia y en kPa. Respuesta: pa = 15.17 psia, 104.6 kPa. 2.2-5. Medición depequeñas diferencias depresión. El manómetro en forma de U de dos fluidos se usa para medir la diferencia de la presión en dos puntos en una línea que contiene aire a una presión de 1 atm abs. El valor de Ro = 0 para presiones iguales. El fluido más ligero es un hidrocarburo con una densidad de 8 12 kg /m3 y el agua más pesada tiene una densidad de 998 kg /m3. Los diámetros internos del tubo en forma de U y del recipiente son de 3.2 mm y de 54.2 mm, respectivamente. La lectura R del manómetro es de 117.2 mm. Calcule la diferencia de presión en mm Hg y en pascales. 2.2-6. Presión en un laboratorio marino. Se va a diseñar un laboratorio marino de 5.0 m de alto para que resista la inmersión a 150 m, medidos desde el nivel del mar hasta la parte superior del laboratorio. Calcule la presión en la parte superior del laboratorio marino y también la variación de presión en un costado del cuarto, medidas como la distancia x en m desde la parte superior del laboratorio hacia abajo. La densidad del agua de mar es 1020 kg /m3. Respuesta: p = 10.00(150 + X) kN/m2 2.2-7. Medida de la diferencia depresidn en recipientes. En la figura 2.2-5b se usa el manómetro diferencial para medir la diferencia de presión entre dos recipientes. Deduzca la ecuación de la diferencia de presiónpA -PB en términos de la altura y la densidad de los líquidos. 2.2-8. Diseño de un asentador y separadorpara líquidos inmiscibles. Se va a diseñar un asentador- separador cilíndrico vertical para separar una mezcla que fluye a 20.0 m3/h y que contiene vohímenes iguales de petróleo ligero líquido (PB = 875 kg/m3) y una solución diluida de agua de lavado (Po = 1050 kg /m3). Los experimentos de laboratorio indican que se requiere un tiempo de asentamiento de 15 mm para que se separen adecuadamente las dos fases. Para propósitos ‘del diseño, utilice un tiempo de asentamiento de 25 mm y calcule el tamaño de los recipientes que se necesitan; calcule también los niveles que deben tener los líquidos ligero y pesado en el recipiente y la altura hA2 del rebosamiento del líquido pesado. Suponga que los extremos del recipiente son casi planos, que el diámetro del recipiente es igual que su altura y que un tercio del volumen es espacio para el vapor, abierto a la atmósfera. Emplee la nomenclatura dada en la figura 2.2-6. Respuesta: hA2 = 1.537 m 2.3-1. Transporte molecular de una propiedad con difrcsividad variable. Se está transportando una propiedad a través de un fluido en estado estacionario por un área de corte transversal constante. En el punto 1 la concentración rt es 2.78 x 10w2 en cantidad de propiedad/m3 y 1.50 x lOe2 en el punto 2 estando ambos puntos a una distancia de 2.0 m entre sí. La difusividad depende de la concentración r, como sigue: 6=A +BI-=0.150 + 1.65I- a) Deduzca la ecuación integrada para el flujo en términos de rl y l-2. Después, calcule el flujo. b) Calcule r en z = 1.0 m y grafique r en función de z para los tres puntos. Respuesta: a) vZ = [A Cr1 - r2) + (Biz)(r: -rZ)]/(z2 - zd Principios de transferencia de momento lineal y balances globales 1 2 1 2.3-2. Integración de la ecuación general de propiedad para el estado estacionario. Integre la ecuación general de propiedad (2.3-l 1) para estado estacionario y sin generación entre los puntos rl en zl y I’z en 22. La ecuación final deberá relacionar I con z. Respuesta: l? = (r2 - Tl)@ - z1)/(z2 - z,) + r, 2.4-l. Esfuerzo cortante en aceite de soya. Con referencia a la figura 2.4-1, la diferencia entre las dos placas paralelas es 0.00914 m y la placa inferior se desplaza a una velocidad relativa 0.366 m/s mayor que la superior. El fluido usado es aceite de soya con viscosidad de 4 x lOe2 Pa. s a 303 K (Apéndice A.4). a) Calcule el esfuerzo cortante z y la velocidad cortante en unidades de l,b fuerza, pie y s. b) Repita en unidades SI. c) Si se usa glicerina a 293 K, con viscosidad de 1.069 kg/m * s en lugar de aceite de soya, ¿qué velocidad relativa se necesitará con la misma distancia entre las placas para obtener el mismo esfuerzo cortante en el inciso a)? Además, ¿cuál será la nueva velocidad cortante? Respuesta: a) Esfuerzo cortante = 3.34 x 10p2 lbf/pie2, velocidad cortante = 40 s-t; b) 1.60 N/m2; c) velocidad relativa = 0.01369 m/a, velocidad cortante = 1.50 s-t. 2.4-2. Esfuerzo cortantey velocidad cortante enfluidos. En la figura 2.4-l se está empujando la placa inferior a una velocidad relativa 0.40 m/s mayor que la placa superior. El fluido que se usa es agua a 24 “C. a) ¿Qué tan separadas deben colocarse las placas para que el esfuerzocortante z sea 0.30 N/m2? Calcule también la velocidad cortante. b) Si en vez de agua se usa aceite con una viscosidad de 2.0 x 10p2 Pa. s con la misma separación entre las placas y la misma velocidad que en el inciso a), jcuáles son el esfuerzo cortante y la velocidad cortante? 2.5-l. Número de Reynoldsparaflujo de leche. Un flujo de leche entera a 293 K con densidad de 1030 kg/m3 y viscosidad de 2.12 cp, pasa a velocidad de 0.605 kg/s por una tubería de vidrio de 63.5 mm de diámetro. a) Calcule el número de Reynolds. LES turbulento el flujo? b) Calcule la velocidad del flujo en m3/s necesaria para un número de Reynolds de 2100 y la velocidad en m 1s. Respuesta: a3 JVR~ = 5723 flujo turbulento 2.5-2. Diámetro de la tuberíay número de Reynolds. Se está bombeando aceite dentro de una tubería de 10.0 mm de diámetro con número de Reynolds de 2100. La densidad del aceite es de 855 kg/m3 y su viscosidad es de 2.1 x 10m2 Pa . s. a) ¿Cuál es la velocidad en la tubería? b) Se desea conservar el mismo numero de Reynolds de 2100 y la misma velocidad que en el inciso a) usando un segundo fluido con una densidad de 925 kg/m3 1.5 x 10p2 Pa . s. ¿Cuál debe ser el diámetro de la tubería que se use? y una viscosidad de 2.6-l. Velocidadpromediopara el balance de masa en elflujo que escurrepor unaplaca vertical. Para una capa de líquido que fluye con flujo laminar en la dirección z hacia abajo de una placa o superficie vertical, el perfil de velocidad es Pgs2 2 v=T-Z [ 01l- $ donde 6 es el grosor de la capa, x es la distancia desde la superficie del líquido hacia la placa, y v, es la velocidad a una distancia x desde la superficie libre. a) ¿Cuál es la máxima velocidad v, mh? b) Deduzca la expresión para la velocidad promedio v, prom y relaciónela con v, mk. Respuesta: a) v, máx = pg@/2& b) v, pr,,m = f v, mh 122 Problemas 2.6-2. Flujo de líquido en una tuberíay balance de masa. Un hidrocarburo líquido entra en el sistema de flujo simple que se muestra en la figura 2.6-l con una velocidad promedio de 1.282 m/s, donde At = 4.33 x 10P3 m2 y pt = 902 kg /m3. El líquido se calienta en el proceso y la densidad de salida es de 875 kg/m3. El área de corte transversal en el punto 2 es de 5.26 x 10m3 m2. El proceso ocurre en estado estacionario. a) Calcule el flujo másico m a la entrada y a la salida. b) Calcule la velocidad promedio v en 2 y la velocidad de masa G en 1. Respuesta: a) mt = m2 = 5.007 kgls, b) G1 = 1156 kgls . m2 2.6-3. Velocidadprgmediopara el balance de masa enflujo turbulento. El perfil de velocidades para un flujo turbulento en un tubo circular liso, con radio R, varía de acuerdo con la siguiente expresión cuando el número de Reynolds es aproximadamente 1 Os: R-,. ‘17 v = Vmáx c-1R donde Y es la distancia radial desde el centro y vmh es lavelocidad máxima en el centro. Deduzca la ecuación para relacionar la velocidad promedio (velocidad volumétrica) vprom con vmáx para un flujo incomprimible. (Sugerencia: La integración puede simplificarse sustituyendo z por R - r.) Respuesta: vprom = = 0.817vmá, 2.6-4. Velocidad volumétrica para elflujo entre placas paralelas. Un fluido que fluye con flujo laminar en la dirección x entre dos placas paralelas tiene un pertil de velocidad dado por la siguiente expresión: vx máx i 2 v, = l- Y ( 11Y o donde 2yc es la distancia entre las placas, y es la distancia a la línea central y v, es la velocidad en la dirección x en,la posición y. Deduzca una ecuación que relacione vprom (veloci- dad volumétrica o promedio) con v, ,,,k. 2.6-5. Balance global de masa para procesos de dilución. Un recipiente de almacenamiento bien agitado, contiene 10000 kg de solución de una solución de metano1 diluido (WA = 0.05 h-acción masa de alcohol). De pronto, se introduce en el tanque un flujo constante de 500 kg/min de agua pura y se empieza a extraer la disolución auna tasa constante de 500 kg/min. Estos dos flujos son continuos y permanecen constantes. Suponiendo que las densidades de las soluciones son iguales y que el contenido total del tanque permanece igual a 10000 kg de solución, calcule el tiempo para que el contenido de alcohol descienda hasta el 1 .O% en peso. Respuesta: 32.2 mm 2.6-6. Balanceglobal de masaparaprocesos de estado no estacionario. Un recipiente de almacena- miento, bien agitado, contiene 500 kg de solución total con una concentración del 5.0% de sal. De pronto se introduce en el tanque un flujo constante de 900 kg /h de una solución salina que contiene 16.67% de sal, y también se da inicio a una extracción constante a razón de 600 kg/h. En adelante estos dos flujos permanecen constantes. Deduzca una ecuación que relacione la concentración decreciente en la salida en función del tiempo. Calcule también la concentración después de 2.0 h. 2.6-7. Balance de masapara elfrujo de una solución de sacarosa. Una solución de sacarosa (azúcar) al 20% en peso y con densidad de 1074 kg/m3 fluye por el mismo sistema de tuberías del ejemplo 2.6-l(Fig. 2.6-2). El gasto de entrada a la tubería 1 es 1.892 m3/h. El flujo se divide en partes iguales en las tuberías 3. Calcule lo siguiente. Principios de transferencia de momento lineal y balances globales 1 2 3 a) Velocidad en m/s en las tuberias 2 y 3. b) La velocidad de masa G en kg/m2 . s en las tuberias 2 y 3 2.7-l. Factor de corrección para la velocidad en la energía cinéticapara flujo turbulento. Deduzca la ecuación que determine el valor de a, el factor de corrección de la velocidad de la energía cinética, para flujo turbulento. Use la ecuación (2.7-20) para aproximar el perfil de velocidad y sustitúyalo en la ecuación (2.7-15) para obtener (v~),,~~~. Después, utilice las ecuaciones (2.7- 20), (2.6-17) y (2.7-14) para obtener a. Respuesta: CL = 0.9448 2.7-2. Flujo entreplacasparalelas yfactor de corrección de la energía cinética. En el problema 2.6- 4 se da la ecuación para el perfil de velocidad para un fluido que corre con flujo laminar entre dos placas paralelas. Deduzca la ecuación para determinar el valor del factor de corrección de la velocidad de la energía cinética, CL. [Sugerencia: Primero deduzca una ecuación que correlacione v con vprom. Luego deduzca la ecuación para (v~&,~ y, por último, correlacione estos resultados con ~1.1 2.7-3. Caída de temperatura en una válvula de estrangulación y balance de energía. Por una válvula de estrangulación adiabática (no hay pérdida de calor o trabajo externo) fluye una corriente de vapor. El vapor entra al punto 1 corriente arriba de la válvula, a 689 kPa abs y 171.1”C y sale de la válvula (punto 2) a 359 kPa. Calcule la temperatura t2 a la salida. [Sugerencia: Use la ecuación (2.7-21) para el balance de energía y desprecie los términos de energía cinética y energía potencial, tal como se hizo en el ejemplo 2.7-l. Obtenga la entalpía H1 de las tablas de vapor del apéndice 2. En el caso de Hz, se tendrá que llevar a cabo una interpolación lineal de los valores de la tabla para obtener t2.1 Use unidades SI. Respuesta: t2 = 160.6 “C 2.7-4. Balance de energía en un intercambiador de calor y una bomba. Se está bombeando agua a 93.3 “C desde un gran tanque de almacenamiento a 1 atm abs, a velocidad de 0.189 m3/min por medio de una bomba. El motor que impulsa a la bomba suministra energía a la velocidad de 1.49 kW. El agua se bombea a través de un intercambiador de calor, donde cede 704 kW de calor y después se vierte a un tanque de almacenamiento abierto situado a una elevación de 15.24 m con respecto al primer tanque. ¿Cuál es la temperatura final del agua que llega al segundo tanque? Además, ¿cuál es la ganancia de entalpía del agua debida a la adición de trabajo? (Sugerencia: Asegúrese de usar las tablas de vapor para la entalpía del agua. Desprecie los cambios de energía cinética pero incluya los de energía potencial.) Respuesta: t2 = 38.2 “C, ganancia de trabajo añadido = 0.491 kJ/kg 2.7-5. Caldera de vapory balanceglobal de energía. Cierta cantidad de agua líquida a presión de 150 kPaentra a una caldera a 24 “C por una tubería a una velocidad promedio de 3.5 m/s con flujo turbulento. El vapor sale a un altura de 25 m sobre la entrada del líquido a 150 “C y a 150 kPa absolutos, y la velocidad en la línea de salida es de 12.5 rn/s con flujo turbulento. El proceso ocurre en estado estacionario. ¿Cuánto calor debe agregarse por kg de vapor? 2.7-6. Balance de energía en un sistema deflujo con una bomba y un intercambiador de calor. El agua almacenada en un gran tanque de almacenamiento, bien aislado, a 2 1 .O “C y a presión atmosférica, se está bombeando en estado estacionario desde ese tanque por medio de una bomba a razón de 40 m3/h. El motor que impulsa la bomba proporciona energía a razón de 8.5 kW. El agua se usa como medio refrigerante y pasa por un intercambiador de calor donde se le agregan 255 kW de calor. Después el agua calentada fluye hacia un segundo tanque grande abierto, que está ubicado 2.5 m más arriba que el primero. Determine la temperatura final del agua que pasa al segundo tanque. 2.7-7. Balance de energía mecánica en el bombeo de aceite de soya. Se está bombeando aceite de soya a través de un tubo de diámetro constante y con una velocidad de flujo en estado estacionario. Una bomba suministra un flujo de 209.2 J/ kg masa de fluido. La presión absoluta de entrada de la tubería a la bomba es 103.4 kN/m2. La sección de salida de la tubería corriente 124 Problemas abajo de la bomba está 3.35 m por arriba de la entrada y la presión de salida es 172.4 kN/m*. Las tuberías de entrada y salida tienen el mismo diámetro. El flujo es turbulento. Calcule la pérdida por fricción en el sistema. Véase en el apéndice A.4 las propiedades del aceite de soya. La temperatura es de 303 K. Respuesta: CF = 101.3 J/kg 2.7-8. Potencia de una bomba para un sistema de salmuera. Una bomba suministra 0.200 pies3/s de salmuera con densidad de 1.15 g/cm3 a un tanque abierto con un área extensa de corte transversal. La línea de aspiración tienen un diámetro interior de 3.548 pulg y el diámetro de la línea de descarga de la bomba mide 2.067 pulg. El flujo de descarga pasa a un tanque abierto y el extremo abierto de esta línea está 75 pies por encima del nivel del líquido en el tanque de alimentación. Si las pérdidas por fricción en el sistema de tuberías son 18.0 pies * lbf/lb,, ¿qué presión deberá desarrollar la bomba y cuál es la potencia de la bomba si la eficiencia es de 70%? El flujo es turbulento. 2.7-9. Mediciones de presión en flujos. Un flujo de agua, cuya densidad mide 998 kg/m3, tiene velocidad de 1.676 rn/s en una tubería horizontal de 3.068 pulg de diámetro, a presión p1 de 68.9 kPa abs. Después pasa a otra tubería con diámetro interior de 2.067 pulg. a) Calcule la nueva presiónpz en la tubería de 2.067 pulg. Suponga que no hay pérdida por fricción. b) Si la tubería es vertical y el flujo va hacia arriba, calcule la misma presiónp2:La presiónpz se mide a 0.457 m por encima de ~1. Respuesta: a) p2 = 63.5 kPa; b) p2 = 59.1 kPa 2.7-10. Drenaje de un tanque de aceite de semilla de algodón. Un tanque cilíndrico de 1.52 m de diámetro y 7.62 m de altura contiene aceite de semilla de algodón con densidad de 917 kg/m3. El tanque está abierto a la atmósfera. Cerca del fondo del tanque hay una tobera de descarga de diámetro interior igual a 15.8 mm y con área de corte transversal AZ. La superficie del líquido está a H = 6.1 m por encima de la línea central de la tobera. Se abre la tobera de descarga y se drena el líquido desde H = 6.1 m hasta H = 4.57 m. Calcule el tiempo en segundos necesario para efectuar esta operación. [Sugerencia: La velocidad en la superficie del depósito es pequeña y se puede despreciar. Se puede calcular la velocidad v2 m/s en la tobera para cualquier valor de H, aplicando la ecuación (2.7-36). Sin embargo, H y, por lo tanto, v2 son variables. Establezca un balance de masa en estado no estacionario como sigue. El gasto volumétrico en el tanque es (4, dH )/dt, donde A, es la sección transversal del tanque en m* y At dH son los m3 del líquido que fluyen en dt s. Esta velocidad debe ser igual al negativo del gasto volumétrico en la tobera, -A2v2 m3/s. La presencia del signo negativo se debe a que dH es el valor negativo de y. Reordene esta ecuación e integre entre H = 6.1 a t = 0 y H = 4.57 m a t = ti.] Respuesta: t,~ = 1380 s 2.7-11. Pérdidaporfricción en un sistema deenergia eléctrica con turbinas de agua. Hay agua almacenada en un depósito elevado. Para generar electricidad, el agua fluye desde el depósito hacia abajo por un conducto grande hasta una tubería y después por otro conducto de tamaño similar. En un punto del conducto que esta 89.5 m arriba de la tubería, la presión es de 172.4 kPa, y aun nivel 5 m debajo de la turbina, la presión es de 89.6 kPa. La tasa del flujo del agua es de 0.800 m3/s. La salida del eje de la turbina es de 658 kW y la densidad del agua es de 1000 kg/ m3. Si la eficiencia de la turbina para convertir la energía mecánica proporcionada por el fluido al eje de la turbina es de 89%(ní = 0.89), calcule la pérdida de fricción en la turbina en J/kg. Advierta que en la ecuación de balance de la energía mecánica, el Ws es igual a la salida del eje de la turbina por encima de nt Respuesta: CF = 85.3 J/kg 2.7-12. Bombeo de petróleo por una tubería. Una tubería instalada para atravesar una gran distancia conduce petróleo a velocidad de 795 m3/día. La presión del petróleo alcanza 1793 kPa man al salir de la estación de bombeo 1 .A la entrada de la estación 2, la presión es de 862 kPa man. La segunda estación está 17.4 m más alta que la primera. Calcule la pérdida de trabajo (pérdida por fricciónCF’) en J/kg masa de petróelo. La densidad del aceite es de 769 kg/m3. Principios de transferencia de momento lineal y balances globales 1 2 5 2.7-13. Prueba deunh bomba centrlfugay balance de energía mecánica. Se está probando una bomba centrífuga para determinar su rendimiento durante la prueba, la lectura de la presión en la línea de succión de 0.305 m de diámetro, adyacente a la cubierta de la bomba, es de -20.7 kPa (vacío por debajo de la presión atmosférica). En la línea de descarga, con un diámetro de 0.254 m en un punto que se encuentra 2.53 m arriba de Ia línea de succión, la presión manométrica es de 289.6 kPa. El flujo de agua desde la bomba se mide en 0.1133 m3/s. (La densidad puede suponerse de 1000 kg/m3. Calcule la salida en kW de la bomba. Respuesta: 38.llkW 2.7-14. Pérdida por fricción en una bomba y sistema de flujo. Cierta cantidad de agua a 20 “C se bombea desde el fondo de un gran tanque de almacenamiento, donde la presión manométrica es de 3 10.3 kPa, hasta una boquilla que se encuentra 15.25 m por arriba del fondo del tanque y se descarga a la atmósfera con una velocidad en la boquilla de 19.8 1 m /s. La tasa de flujo del agua es de 45.4 kg/s. La eficiencia de la bomba es del 80% y al eje de la bomba se le aportan 7.5 kW. Calcule lo siguiente: a) La pérdida por fricción en la bomba. b) La pérdida por fricción en el resto del proceso. 2.7-15. Potenciapara bombeo en un sistema deflujo. Se está bombeando agua desde un depósito de agua abierto a razón de 2.0 kg/s a 10 OC hasta un tanque de almacenamiento abierto que se encuentra a 1500 m de distancia. La tubería es de cédula 40, de 3 112 pulg, y las pérdidas por fricción del sistema son de 625 J/kg. La superficie del depósito de agua está 20 m por encima del nivel del tanque de almacenamiento. La bomba tiene una eficiencia del 75%. a) ¿Cuál es la potencia en kW que requiere la bomba? b) Si no estuviera la bomba en el sistema, Lhabría flujo? Respuesta: a) 1.143 kW 2.8-l. Balance de momento lineal en un codo reductor. Por el codo reductor de la figura 2.8-3 fluye agua en estado estacionario. El ángulo a2 = 90” (un codo de ángulo recto). La presión en el punto 2 es 1 .O atm abs, la velocidad de flujo es 0.020 m3/s y los diámetros en los puntos 1 y 2 miden 0.050 m y 0.030 m, respectivamente. Desprecie las fuerzas de friccióny gravitacional. Calcule las fuerzas resultantes en el codo en newtons y Ib fuerza. Utilice p = 1000 kgIm3. Respuesta: -R, = +450.0 N, -RY = 565.8 N 2.8-2. Fuerzas en un codo reductor. En un codo reductor como el de la figura 2.8-3, con un ángulo de 60” (a2 = 60”), fluye agua en estado estacionario y 363 K a velocidad de 0.056 m3/s. El diámetro de la tubería de entrada mide 0.10 16 m y el de salida, 0.0762 m. Se estima que la pérdida por fricción en el codo vale vi/5. Desprecie la fuerza de gravedad. La presión de salida p2 = 111.5 kN/m man. Calcule las fuerzas en el codo en newtons.2 Respuesta: -R, = +1344 N, -Ry = -1026 N 2.8-3. Fuerza de una corriente de agua sobre una pared. Una tobera descarga agua a 298 K horizontalmente sobre una pared vertical, plana. Después de chocar, el agua cae al suelo. La tobera tiene un diámetro de 12 mm y el agua sale por ella con un perfil de velocidad plano y a velocidad de 6.0 m /s. Desprecie la resistencia fricciona1 del aire sobre el chorro de aguay calcule la fuerza sobre la pared en newtons. Respuesta: -R, = 4.059 N 2.8-4. Flujo por un codo con expansión. Una corriente de agua en estado estacionario a velocidad de 0.050 m3/s fluye a través de un codo con expansión para cambiar su dirección en 120 “C. El diámetro corriente arriba mide 0.0762 m y el diámetro corriente abajo 0.02112 m. La presión corriente arriba es de 68.94 kPa man. Desprecie las pérdidas de energía en el codo y calcule la presión corriente abajo en 298 K. También calcule R, y Rv. 2.8-5. Fuerza de una corriente sobre una pared. Repita el problema 2.8-3 para las mismas condiciones, excepto que la pared tiene una inclinación de 45” con respecto a la vertical. El flujo 126 Problemns es sin fricción y suponga que no hay pérdidas de energía. La cantidad de fluido que se divide en cada dirección por la placa puede determinarse mediante la ecuación de continuidad y un balance de momento lineal. Calcule esta división del flujo y la fuerza sobre la pared. Respuesta: m2 = 0.5774 kgls, m3 = 0.09907 kgls, -R, = 2.030 N, -RY = -2.030 N (fuerza sobre la pared) 2.8-6. Balance de momento lineal para un chorro libre sobre un aspa curvafija. Un chorro libre que tiene una velocidad de 30.5 m/s y un diámetro de 5.08 x lOe2 es desviado por un aspa curva tija, como se ve en la figura 2.8-5a. Sin embargo, la curva del aspa es hacia abajo, con un ángulo de 60”, en vez de hacia arriba. Calcule la tuerza del chorro sobre el aspa. La densidad es de 1000 kg/m3. Respuesta: -R, = 942.8 N, -RY = 1633 N 2.8-7. Balance de momento linealpara un chorro libre sobre un aspaflja de tipo U. Un chorro libre que tiene una velocidad de 30.5 m/s y un diámetro de 1.0~ lOe2 m es desviado por un aspa lisa fija, como en la figura 2.8-5a. Pero el aspa tiene forma de U, de modo que el chorro de salida viaja en una dirección exactamente opuesta a la del chorro de entrada. Calcule la fuerza del chorro sobre el aspa. Use p = 1000 kg/m3. Respuesta: -R, =146.1 N, -Rr = 0 2.8-8. Balance de momento lineal sobre un codo reductorypérdidasporfricción. Fluye agua a 20 “C por un codo reductor, donde a2 (véase Fig. 2.8-3) es de 120”. El diámetro de la tubería de entrada es de 1.829 m, el de la salida es de 1.2 19 m, y la tasa de flujo es de 8.50 m3/s. El punto de salida z2 está 3.05 m por arriba del de entrada, y la presión manométrica de entrada es de 276 kPa. Las pérdidas por fricción se estiman en 0.5vi/2 y la masa de agua en el codo es de 8500 2.8-9. kg. Calcule las fuerzas R, y R, y la fuerza resultante sobre el fluido del volumen de control. Factor de corrección /3de la velocidad de momento lineal para elflujo turbulento. Determine el factor de corrección p de la velocidad de momento lineal para el flujo turbulento en un tubo. Use la ecuación (2.7-20) para la relación entre v y la posición. 2.9-l. Película de agua sobre una torre de pared mojada. Agua pura a 20 “C fluye hacia abajo por una columna vertical de pared mojada a una tasa de 0.124 kg/s . m. Calcule el grosor de la película y la velocidad promedio. Respuesta: 6 = 3.370 x lOA m, v, prom = 0.3687 m/s 2.9-2. Balance de momento lineal en el recinto para el flujo entre placas paralelas. Un fluido de densidad constante está fluyendo en flujo laminar a estado estacionario en la dirección x horizontal entre dos placas planas y paralelas. La distancia entre las dos placas en la dirección y vertical es 2~0. Usando el balance de momento lineal en el recinto, deduzca la ecuación para el perfil de velocidad dentro de este fluido y la velocidad máxima para una distancia L m en la dirección X. [Sugerencia: Véase el método usado en la Sec. 2.9B para deducir la Ec. (2.9-9). Una de las condiciones límite que se usaron fue dv,ldy = 0 en y = 0.1 Respuesta: v, 2.9-3. Per@ de velocidades para un fluido no newtoniano. La velocidad de esfuerzo cortante para un fluido no newtoniano es Trx =K -% ( 1 n donde K y II son constantes. Determine la relación entre la velocidad y la posición radial r para este fluido incomprimible en estado estacionario. [Sugerencia: Combine esta ecuación con la Ec. (2.9-6). Después eleve ambos lados de la ecuación resultante a la potencia lln e integre.] Principios de transferencia de momento lineal y balances globales 127 2.9-4. Balance de momento lineal de recinto para un flujo hacia abajo en un plano inclinado. Considere el caso de un fluido newtoniano con flujo laminar de estado estacionario, que fluye hacia abajo por un plano inclinado cuyo ángulo con la horizontal es 8. Mediante un balance de momento lineal de recinto, determine la ecuación para el perfil de velocidad dentro de una capa líquida de espesor L , así como la velocidad máxima de la superficie libre. (Sugerencia: Los términos convectivos del momento lineal se cancelan para un flujo completamente desarrollado y los términos de presión-fuerza también se cancelan, debido a la presencia de una superficie libre. Note que hay una fuerza de gravedad sobre el fluido.) Respuesta: v, max = pgL* sen 812~ 2.10-l. Medición de Za viscosidad de un liquido. Una de las aplicaciones de la expresión de Hagen- Poiseuille, ecuación (2.1 O-2) consiste en determinar la viscosidad de un líquido por la medición de las caídas de presión y de velocidad de un tubo capilar de dimensiones conocidas. El líquido usado tiene densidad de 9 12 kg/m3, y el diámetro del tubo capilar es de 2.222 mm y su longitud 0.1585 m. La velocidad de flujo es de 5.33 x 10p7 m3/s de líquido y se obtiene una caída de presión de 13 1 mm de agua (densidad 996 kg/m3). Despreciando los efectos de los extremos, calcule la viscosidad del líquido en Pa * s. Respuesta: p = 9.06 x 1O-3 Pa . s 2.10-2. Caída fricciona1 depresión en unflujo de aceite de oliva. Calcule la misma caída de presión por efectos de la fricción, expresada en pascales, para un aceite de olivo a 293 K que fluye por una tubería comercial de diámetro interno igual a 0.0525 m y longitud de 76.2 m. La velocidad del fluido es de 1.22 m/s. Utilice el método ‘del factor de fricción. LES el flujo laminar o turbulento? Consulte los datos físicos del apéndice A-4. 2.10-3. Pérdidas por fricción en una tubería recta y efecto del tipo de tubería. Un líquido con densi- dad de 801 kg/m3 y viscosidad de 1.49 x 10d3 Pa * s fluye por una tubería horizontal recta a velocidad de 4.57 m/s. El tubo de acero comercial es de tamaño nominal de 1.5 pulg, cédula 40. Proceda a lo siguiente para un tubo de 61 m de largo: a) Calcule la pérdida por fricción Ff b) Calcule la pérdida por fricción de una tubería lisa del mismo diámetro interior. ¿Cuál es el porcentaje de reducción de Ffpara una tubería lisa? Respuesta: a) 348.9 J/kg; b) 274.2 J/kg (91.7 pies * lbf/lb,), 21.4% de reducción 2.104. Resolución por aproximaciones sucesivas en un drenaje. En un proyecto hidráulico se diagrama una tubería de hierro colado de 0.156 m de diámetro interior y 305 m de longitud, para drenar aguas negras a 293 K. La carga disponible es de 4.57 m de agua. Despreciandolas pérdidas en los accesorios y conexiones de la tubería, calcule la velocidad de flujo en m3/s. (Sugerencia: Suponga las propiedades del agua pura. La solución se logra por prueba y error pues NR~, que es necesario para calcular el factor de fricción que depende de la velocidad. Como primera aproximación, suponga que v = 1.7 mis.) 2.10-5. Balance de energía mecánica ypérdidasporfricción. Se está descargando agua caliente de un tanque de almacenamiento, a velocidad de 0.223 pie3/s. El diagrama de flujo del proceso y las condiciones son iguales a las del ejemplo 2.10-6, excepto por los tamaños nominales de cédula 40 que se detallan a continuación. El tubo de 20 pies de largo que sale del tanque de almacenamiento mide 1.5 pulg en lugar de 4 pulg. El otro tubo, que era de 2 pulg, es ahora de 2.5 pulg. Advierta que en este caso hay un ensanchamiento repentino después del codo al pasar de 1.5 pulg a 2.5 pulg. 2.104. Pérdidas por fricción y potencia de una bomba. El agua caliente de un tanque de almacena- miento abierto, que está a 82.2 “C, se bombea a velocidad de 0.379 m3/min. La línea del tanque de almacenamiento a la aspiración de la bomba es de acero, de 6.1 m de longitud y 2 pulg de cédula 40 y contiene tres codos. La línea de descarga de la bomba tiene 61 m de tubería de 2 pulg y contiene 2 codos. El agua se descarga a la atmósfera a una altura de 6.1 m por encima del nivel en el tanque de almacenamiento. 128 Problemas a) Calcule todas las pérdidas por fricción CF. b) Obtenga un balance de energía mecánica y determine el valor de W, para la bomba en J/kg. c) ¿Cuál es la potencia de la bomba en kW cuando su eficiencia alcanza el 75%? Respuesta: a) CF = 122.8 J/kg. b) W, = -186.9 Jikg, c) 1.527 kW 2.10-7. Caída de presión de un gas que fluye. Fluye nitrógeno gaseoso por una tubería de acero comercial cédula 40, de 4 pulg, a 298 K. La tasa de flujo total es de 7.40 x 10p2 kg/s y el flujo puede considerarse isotérmico. La tubería mide 3000 m de largo y la presión de entrada es de 200 kPa. Calcule la presión de salida. Respuesta: p2 = 188.5 kPa 2.10-8. Longitud de entrada para el flujo en una tubería. Dentro de un tubo cuyo diámetro es de 0.012 m fluye aire a 10 “C, con una presión absoluta de 1.0 atm y a una velocidad de 2.0 rn/s. a) Calcule la longitud de entrada. b) Calcule la longitud de entrada para agua a 10 “C y con la misma velocidad. 2.109. Pérdida de fricción al bombear aceite hacia un tanque con sobrepresión. Un aceite que tiene densidad de 833 kg/m3 y viscosidad de 3.3 x lOe3 Pa . s se bombea desde un tanque abierto hacia un tanque con sobrepresión que se mantiene a 345 kPa manométricos. El aceite es bombeado desde una entrada en un lado del tanque abierto, a través de una línea de tubería de acero comercial que tiene un diámetro interior de 0.07792 m, a una tasa de 3.494 x 10p3 m3/s. La longitud de la tubería recta es de 122 m y la tubería contiene dos codos (90”) y una válvula de globo abierta ala mitad. El nivel de líquido en el tanque abierto es de 20 mpor encima del nivel del líquido en el tanque con sobrepresión. La eficiencia de la bomba es del 65%. Calcule la potencia en kW de la bomba. 2.1010. Flujo en un anillo y caída depresión. Fluye agua en el anillo de un intercambiador de calor de tubería concéntrica horizontal, y se calienta de 40 “C a 50 “C en el intercambiador, que tiene una longitud de 30 m del equivalente en tubería recta. El gasto de agua es de 2.90 x 1Cr3 m3/s. La tubería interior es de cédula 40 de 1 pulg y la exterior es de cédula 40 de 2 pulg. ¿Cuál es la caída de presión? Utilice una temperatura promedio de 45 “C para las propiedades físicas generales. Suponga que la temperatura de la pared es, en promedio, 4 “C mayor que la temperatura general promedio, de modo que debe hacerse una corrección para el efecto de la transferencia de calor sobre el factor de fricción. 2.114. Deducción de la velocidad mkximapara elflujo isotérmico compresible. Empezando con la ecuación (2.1 l-9) deduzca las ecuaciones (2.11-l 1) y (2.11- 12) para la velocidad máxima en el flujo isotérmico compresible. 2.11-2. Caída de presión con flujo compresible. Se está bombeando metano gaseoso a través de 305 m de una tubería de acero de 52.5 mm de diámetro interior, a velocidad de 41.0 kg/m2 . s. La presión de entrada es p1 = 345 kPa abs. Suponga un flujo isotérmico a 288.8 K. a) Calcule la presión p2 al final de la tubería. La viscosidad es 1.04 x lOe5 Pa . s b) Calcule la velocidad máxima que se puede alcanzar en esas condiciones y compárela con la velocidad del inciso a). Respuesta: a)p2 = 298.4 k Pa, b) vmáx = 387.4 m/s v2 = 20.62 nds 2.11-3. Caída depresión en elpujo isotérmico compresible. Entra aire a 288 K y 275 kPa absolutos en una tubería y fluye en flujo isotérmico compresible por una tubería comercial que tiene un DI de 0.080 m. La longitud de la tubería es de 60 m. La velocidad de masa ala entrada de la tubería es de 165.5 kg/m2 . s. Considere que el peso molecular del aire es 29. Calcule la presión en la salida, así como la velocidad máxima permisible que puede alcanzarse, y compárela con la real. Principios de transferencia de momento lineal y balances globales 129 @ll Pl) (El) w > (Ll) W) (MU 042) (Nll . W) @ll W) (Sl) W) (S3) W) RETEXENCIAS BENNETT, C.O. y Myers, J. E. Momentum, Heat, and Mass Transfer, 3a. ed. Nueva York, Mc. Graw-Hill, Inc., 1982. DODGE, B. F., Chemical Engineering T%ermodynamics, Nueva York, Mc. Graw-Hill, Inc., 1944. EARLE, R. Il United Operations in Food Processing, Oxford, Pergamon Press, Inc., 1966. KITTRIDGE, C. P. y ROWLEY, D. S. Trans. A.S.ME., 79, 1759 (1957). LANGE, N. A. Handbook of Chemistry, loa. ed., Nueva York, Mc. Graw-Hill, Inc., 1967. LANGHAAR , H. L. Trans. A.S.ME., 64, A-55 (1942) MOODY, L. F. Trans. A.S.M.E., 66, 671 (1944), Mech, Eng., 69, 1005 (1947). Mc. CABE, W. L., y Smith, J. C. Unit Operations of Chemical Engineering, 4a. ed., Nueva York, Mc. Graw-Hill, Inc., 1985. National Bureau of Standars, “Tables of Thermal Properties of Gases”, Circular 464 (1955). PERRY, R. H. y Green, D. Perry ‘s Chemical Engineers’Handbook, 6a. ed. Nueva York: Mc Graw Hill Book Company, 1984. REID, R. C. y Sherwood, T. K. The Properties of Gases and Liquids, 3a. ed., Nueva York, Mc. Graw-Hill, Inc., 1977. Reactor Hadbook, Vol. 2, AECD-33646. Washington, D.C., Atomic Energy Commission, mayo, 1955. SWINDELLS, J. F., Coe, J. R. Jr., y Godfrey, T. B., J Res. Nat. Bur. Standars, 48, 1 (1952). SKELLAND A. H. P., Non- Newtonian Flow andHeat Transfer, NuevaYork, John Wiley & Sons, Inc., 1967. SIEDER, E. N., y Tate G. E., Ind. Eng. Chem., 28, 1429 (1936). WEAST, R. C., Handbookof Chemistry and Physics, 48a. ed., Cleveland, Chemical Rubber Co, Inc., 1967-1968. C A P Í T U L O 3 Principios de la transferencia de momento lineal y aplicaciones 3.1 FLUJO ALREDEDOR DE OBJETOS INMERSOS Y LECHOS EMPACADOS Y FLUIDIZADOS 3.1A Definición del coeficiente de arrastre para el flujo alrededor de objetos inmersos 1. Introducción y tipos de arrastre. En el capítulo 2 hubo un interés especial por la transferencia de momento lineal y las pérdidas por fricción para el flujo de fluidos en el interior de conductos o tuberías. En esta sección se considera con cierto detalle el flujo de fluidos alrededor de objetos sólidos inmersos. El flujo de fluidos en torno, a cuerpos inmersos aparece en muchas aplicaciones de ingeniería química y en otras aplicaciones de procesamiento. Estas aplicaciones se presentan, por ejemplo, en el flujo a través de esferas empacadas en secado y filtración, en el flujo alrededor de tubos en los intercambiadores de calor, etc. En estas diversas aplicaciones es conveniente poder predecir las pérdidas por fricción y la fuerza ejercida sobre los objetos sumergidos. En los ejemplos que se presentan en el capítulo 2 sobre fricción de fluidos dentro de conductos, la transferencia de momento lineal perpendicular a la superficie produjo un esfuerzo cortante o arrastre tangencial sobre la superficielisa paralela a la dirección del flujo. Esta fuerza ejercida por el fluido sobre el sólido en la dirección del flujo se llama arrastre desuperficie o depared. La fricción superficial existirá para cualquier superficie que esté en contacto con un fluido en movimiento. Además de esta fricción superficial, si el fluido no está fluyendo en forma paralela a la superficie, sino que debe cambiar de dirección para pasar alrededor de un cuerpo sólido como una esfera, ocurrirán significativas pérdidas adicionales por fricción; a este procedimiento se llama arrastre de forma. En la figura 3.1- 1 a el flujo de fluidos es paralelo ala superficie lisa de la placa plana sólida, y la fuerza F en newtons de un elemento de área dA m* de la placa es el esfuerzo cortante de pared z, por el área dA o z, dA. La fuerza total es la suma de las integrales de esas cantidades evaluadas sobre el área completa de la placa. Aquí la transferencia de momento lineal a la superficie produce un esfuerzo tangencial 0 arrastre superficial. Sin embargo, en muehos casos el cuerpo inmerso es un sólido de forma irregular que presenta varios ángulos a la dirección de flujo del fluido. Como se muestra en la figura 3.1- 1 b, la velocidad de la corriente libre es v. y es uniforme alrededor del cuerpo de forma irregular suspendido en un conducto muy largo. Las líneas llamadas lineas deflujo representan la trayectoria de los elementos del fluido Cap. 3 Principios de la transferencia de momento lineal y aplicaciones 1 3 1 “0 - * -. c - c - c dA J/ (a) punto de estancamiento-’ punto de separac :ión (c> FIGURA 3 .1 -1 . Flujo alrededor de objetos inmersos: a) placa plana, b) esfera, c) objeto aerodinámico. alrededor del cuerpo suspendido. La fina capa límite adyacente a la superficie sólida se muestra como una línea punteada, y en el borde de esta capa, la velocidad es esencialmente igual ala velocidad del flujo general adyacente a él. En el centro de la cara frontal del cuerpo, llamado punto de estancamiento, la velocidad del fluido será cero; en este punto empieza el crecimiento de la capa límite y continúa sobre la superficie hasta que la capa se separa. El esfuerzo tangencial sobre el cuerpo debido al gradiente de velocidad en la capa límite es la fricción superficial. Por fuera de la capa límite, el fluido cambia de dirección para pasar alrededor del sólido; se acelera cerca del frente y luego se desacelera. A causa de estos efectos, el fluido ejerce una fuerza adicional sobre el cuerpo. Este fenómeno, llamado arrastre de forma, se agrega al arrastre superficial en la capa límite. En la figura 3.1-lb ocurre la separación de la capa límite, como se muestra, y cuando se forman grandes remolinos que contribuyen a crear el arrastre se produce una estela, que cubre toda la parte posterior del objeto. El punto de separación depende de la forma de la partícula, del número de Reynolds y de otros factores, y se analiza con detalle en otras obras (S3). El arrastre de forma para cuerpos escarpados puede minimizarse haciendo aerodinámico el cuerpo (figura 3.1 -Ic), lo que fuerza al punto de separación hacia la parte posterior del cuerpo y reduce en gran medida el tamaño del remolino. En la sección 3.10 se analizan mas a fondo la turbulencia y las capas límite. 2. Coeficiente de arrastre. A juzgar por los análisis anteriores, es evidente. que la geometría del sólido inmerso es un factor fundamental para determinar la cantidad de la fuerza de arrastre total ejercida sobre el cuerpo. Las correlaciones de la geometría y las características del flujo para los objetos sólidos suspendidos o mantenidos en una corriente libre (objetos inmersos) son semejantes en concepto y forma a la correlación del factor de fricción y el número de Reynolds dada para el flujo dentro de conductos. En el flujo a través de conductos, el factor de fricción se definió como la razón entre la fuerza de arrastre por área unitaria (esfuerzo cortante) y el producto de la densidad por la carga de velocidad, como se da en la ecuación (2.10-4). 1 3 2 3 . 1 Flujo alrededor de objetos inmersos y lechos empacados y fluidizados De la misma manera, para el flujo alrededor de objetos inmersos el coeficiente de arrastre CD se define como la razón entre la fuerza de arrastre total por área unitaria y pvi/ 2. c D = FD/A~ P d 12 (SI) (3.1-1) c = FdA~ D PYY%c (Unidades del sistema inglés) donde Fo es la fuerza de arrastre o resistencia al flujo total en N, A, es un área en m2, CD no tien; dimensiones, v. es la velocidad de la corriente libre en m/s y p es la densidad del fluido en kgrn . En unidades del sistema inglés, Fo está en lbf , v. está en pie/s, p está en lb,/pie3 y Ap en pie . El área A,, que se usa es el área obtenida al proyectar el cuerpo en un plano perpendicular a la línea de flujo. Para una esfera, Ap = 10; /4, donde Dp es el diámetro de la esfera; para un cilindro cuyo eje es perpendicular a la dirección de flujo, Ap = LDp , donde L = longitud del cilindro. Despejando en la ecuación (3.1-1) la fuerza de arrastre total, El número de Reynolds para un determinado sólido inmerso en un líquido que fluye es N _ Dpvo P D,Go Re--=- P P (3.1-3) donde G. = vop. 3.1B Flujo alrededor de una esfera, de un cilindro largo y de un disco Para cualquier forma particular del objeto y cualquier orientación del objeto con respecto a la dirección del flujo, existe una relación diferente de CD en función de NRe. Las correlaciones del coeficiente de arrastre en función del número de Reynolds se muestran en la figura 3.1-2 para esferas, cilindros largos y discos. La cara del disco y el eje del cilindro son perpendiculares a la dirección del flujo. Estas curvas se determinaron experimentalmente, pero en la región laminar para números de Reynolds pequeños, de menos de aproximadamente 1 .O, la fuerza de arrastre experimen- tal (resistencia) para una esfera es igual que la ecuación teórica de la ley de Stokes, como sigue: Fo = 3quDpvo (3.1-4) Al combinar las ecuaciones (3.1-2) y (3.1-4) y despejando CD , el coeficiente de resistencia predicho por la ley de Stokes es CD = 2 4 2 4 =- D,vo PI P NRe (3.1-5) Cap. 3 Principios de la transferencia de momento lineal y aplicaciones 1 3 3 La variación de Co con respecto a NRe (figura 3.1-2) es bastante complicada debido a la interacción de los factores que controlan el arrastre superficial y el arrastre de forma. Para una esfera, conforme el número de Reynolds aumenta más allá del intervalo de la ley de Stokes, va ocurriendo una separación y se forma una estela. Mayores incrementos de NRe ocasionan desplazamientos del punto de separación. A aproximadamente NRe = 3 x 105, la súbita caída de C, es resultado de que la capa límite se vuelve completamente turbulenta y el punto de separación se mueve corriente abajo. En la región de NRe de alrededor de 1 x lo3 a 2 x 105, el coeficiente de arrastre es prácticamente constante para cada forma y CD = 0.44 para una esfera. Por encima de un NRe de cerca de 5 x 105, el coeficiente de arrastre otra vez es aproximadamente constante, y CD para una esfera es de 0.13, para un cilindro es de 0.33 y para un disco es de 1.12. En la sección 3.9E se estudia más a fondo el flujo alrededor de esferas. Para deducir la teoría y analizar con detalle la fuerza de arrastre para el flujo paralelo a una placa plana, consúltese la sección 3.10 sobre flujo de capa límite y turbulencia. El flujo de fluidos normal a bancos de cilindros o tubos se presenta en los intercambiadores de calor y en otras aplicaciones de procesos. Los bancos de tubos pueden disponerse en varias geometrías diferentes. Dado que hay muchos espaciamientos y configuraciones posibles de tubos geométricos, no se puede tener una correlación única entre los datos sobre caída de presión y los factores de fricción. Algunos detalles sobre muchas de las correlaciones disponibles se encuentran en la bibliografía (Pl). EJEMPLO 3.1-1 Fuerza sobre una esfera sumergida Alrededor de una esfera que tiene un diámetrode 42 mm pasa aire a 37.8 “C y con 101.3 kPa de presión absoluta, a una velocidad de 23 m/s. ¿Cuáles son el coeficiente de arrastre C, y la fuerza ejercida sobre la esfera? Solución : Del Apéndice A.3 para el aire a 37.8 “C, p = 1.137 kg/m3, p = 1.90 x lOe5 Pa l s. Además, Dp = 0.042m y v. = 23.0 rn/s. Usando la ecuación (3.1-3), A partir de la figura 3.1-2 para una esfera, Co = 0.47. Sustituyendo en la ecuación (3.1-2), 1 0 1 Dpvo P Número de Reynolds, NR~ = - P Coefìcientes de arrastre para el flujo alrededor de esferas, cilindros largos y discos inmersos. (Repro- ducido con autorización de C. E. Lapple y C. B. Shepherd. Ind. Eng. Chem., 32, 606 (1940). Derechos reservados por la Ameritan Chemical Society.) 1 3 4 3 . 1 Flujo alrededor de objetos inmersos y lechos empacados y fluidizados donde A, = nDf, /4 para una esfera, Fo = C, $- pAP = (0.47)q(l.l37)(n) co’o~)2 = 0.1958 N EJEMPLO 3.1-2. Fuerza sobre un cilindro en un túnel Alrededor de un cilindro largo fluye agua a 24 “C auna velocidad de 1 .O mls en un largo túnel. I El eje del cilindro es perpendicular a la dirección del flujo. El diámetro del cilindro es de 0.090 m. ¿Cuál es la fuerza por metro de longitud sobre el cilindro? Solución : Del Apéndice A.2 para el agua a 24 “C, p = 997.2 kg/m3, p = 0.9142 x 10m3 Pa * s. Ademas, DP = 0.090 m, L = 1.0 m y v. = 1.0 rn/s. Usando la ecuación (3.1-3), D,v, = o-o9o(1’o)(997’2) = 2 0.9142 x 1O-3 9 ’ 817 x 104 Según la figura 3.1-2 para un cilindro largo, C, = 1.4. Sustituyendo en la ecuación (3.1-2), donde AP = LD,, = l.O(O.090) = 0.090 m2, Fo = C$pA, = (1.4)-@;” (997.2)(0.09) = 62.82 N 3.1C Flujo en lechos empacados 1. Introducción. Un sistema de considerable importancia en ingeniería química y en otros campos de proceso es el lecho empacado o la columna empacada que se usa para un reactor catalítico de lecho fijo, para adsorción de un soluto, absorción simple, lecho de filtración, etc. El material que se empaca en el lecho puede consistir en esferas, partículas irregulares, cilindros o varios tipos de empaques comerciales. En el análisis que sigue se supone que el empaquetamiento es uniforme en todos lados y que, si acaso hay acanalamiento, éste es mínimo. La razón entre el diámetro de la torre y el diámetro del empaquetamiento debe ser de un mínimo de 8:l a 10: 1 para que los efectos de las paredes sean pequeños. En el enfoque teórico que se usa, la columna empacada se considera como un manojo de tubos torcidos con diferentes áreas de corte transversal. La teoría que se desarrolló en el capítulo 2 para tubos rectos simples se usa para obtener los resultados para el manojo de tubos torcidos. 2. Flujo laminar en lechos empacados. En las deducciones del flujo se usan ciertas relaciones geométricas para las partículas de los lechos empacados. La fracción vacía E de un lecho empacado se define como E volumen de huecos en el lecho = volumen total del lecho (huecos más solidos) (3.1-6) Cap. 3 Principios de la transferencia de momento lineal y aplicaciones 135 La superficie específica de una partícula a, en m-l se define como (3.1-7) donde Sp es el área superficial de una partícula en m2 y vp es el volumen de una partícula en m3. Para una partícula esférica, 6 a, =- DP (3.143) donde Dp es el diámetro en m. Para un lecho empacado de partículas que no son esféricas, el diámetro efectivo de partículas Dp se define como Puesto que (1 - E) es la fracción de volumen de las partículas del lecho, a=a,(l-s)=+(l-tz) P donde a es la razón entre el área superficial total del lecho y el volumen total del lecho (volumen vacío más volumen de partículas) en m-l. EJEMPLO 3.1-3. Área superficial en el lecho empacado de cilindros Un lecho empacado está compuesto por cilindros que tienen un diámetro D = 0.02 m y una longitud h = D. La densidad general del lecho empacado global es de 962 kg Ím3 y la densidad de los cilindros sólidos es de 1600 kg/m3. a) Calcule la fracción vacía e. b) Calcule el diámetro efectivo Dp de las partículas. c) Calcule el valor de a en la ecuación (3.1-10). Solución: Para el inciso a), tomando 1.00 m3 de lecho empacado como base, la masa total del lecho es de (962 kg/m3) (1.00 m3) = 962 kg. Esta masa de 962 kg es también la masa de los cilindros sólidos. Por lo tanto, el volumen de cilindros = 962 kg /( 1600 kg /m3) = 0.601 m3. Usando la ecuación (3.1-6), E = volumen de huecos en el lecho =volumen total del lecho Para el diámetro efectivo de partícula, Dp , del inciso (b), para un cilindro donde h = D, el área superficial de una partícula es s, = (2) “Y2-(extremos) + xD( D)( lados) = + rcD2 136 3.1 Flujo alrededor de objetos inmersos y lechos empacados y fluidizados El volumen vp de una partícula es Al sustituir en la ecuación (3.1-7), SP +ltD* 6 av = - = -=- vP +CD’ D Por último, sustituyendo en la ecuación (3.1-9), 6 6 Dp = a, = 6/. = D = 0.02m En consecuencia, el diámetro efectivo que se debe usar es Dp = D + 0.02 m. Para el inciso c), usando la ecuación (3.1-lo), a=$(l-&)=&(l-0.399)= 180.3m-’ P La velocidad intersticial promedio en el lecho es v m/s y se relaciona con la velocidad superficial v’, basada en el corte transversal del recipiente vacío, por medio de VI = EV (3.1-11) El radio hidráulico rHpara el flujo definido en la ecuación (3.10-21) se modifica como sigue (B2). área de corte transversal disponible para flujo rH = (perímeko mojado) (volumen de huecos disponible para el flujo) = (superficie mojada total de sólidos) ( volumen de huecos/volumen del lecho ) E = ( superficie mojada/volumen del lecho ) = ã Al combinar las ecuaciones (3.1-10) y (3.1-12), r =----D, H 6&) (3.1-12) (3.1-13) Cap. 3 Principios de la transferencia de momento lineal y aplicaciones 137 Puesto que el diámetro equivalente D para un canal es D = 4r~, el número de Reynolds para un lecho empacado es, según la ecuación (3.1- 13) y v’ = EV, (3.1-14) Para lechos empacados, Ergun (El) define el número de Reynolds como se acaba de mostrar pero sin el término 416. (3.1-15) donde G’ = v’p. Para el flujo laminar, la ecuación de Hagen-Poiseuille (3.10-2) puede combinarse con la ecuación (3.1-13) para rH y la ecuación (3.1-11) para dar 32pv AL = 32~(+) M = (72)~‘A@-&)’ @= D2 &-HI2 E~D; (3.1-16) El verdadero hL es más largo debido a la trayectoria tortuosa y el uso del radio hidráulico predice una v’ demasiado grande. Los datos experimentales muestran que la constante debe ser 150, que da la ecuación de Blake-Kozeny para el flujo laminar, las fracciones de vacío de menos de 0.5, el diámetro de partícula efectivo DP y NRe, P < 10. 4P= 15o/.&‘AL (l- E)2 D2 ___ P E3 (3.1-17) 3. Flujo turbulento en los lechos empacados. Para el flujo turbulento se usa el mismo procedimiento, empezando con la ecuación (2.10-5) y sustituyendo las ecuaciones (3.1-11) y (3.1-13) en esta ecuación para obtener 3fp(v’)2 AL 1 - E LL?= D - P E3 (3.1-18) Para el flujo sumamente turbulento, el factor de fricción puede aproximarse a un valor constante. Además, se supone que todos los lechos empacados deben tener la misma rugosidad relativa. Los datos experimentales indican que 3f = 1.75. Por consiguiente, la ecuación final para el flujo turbulento para NR~, p > 1000, que se llama ecuación de Burke-Plummer, se convierte en 1.75p(v’)2 M 1 - & Q= D - P E3 138 3.1 Flujo alrededor de objetos inmersos y lechos empacados y fluidizados Al sumar la ecuación (3.1-l 7) para flujo laminar y la ecuación (3.1- 19) para flujo turbulento, Ergun (El) propuso la siguiente ecuación general para números de Reynolds bajos, intermedios y altos que se ha verificado experimentalmente. ~ = 15o&U (l-E)* + 1.75p(v’)*M 1-E D; tz3 DP E3 Al reescribir la ecuación (3.1-20) en términos de grupos sin dimensiones, 3---=-(bp’ 2 1EE Wf.0, +1.75 (3.1-20) (3.1-21) Véase también la ecuación (3.1-33) para conocer otra forma de la ecuación (3.1-21). La ecuación de Ergun (3.1-2 1) se puede usar para gases utilizando la densidad p del gas como elpromedio aritmético de las presiones de entrada y de salida. La velocidad v’ cambia en todos los puntos del lecho, para un fuido compresible, pero G’ es una constante. A valores altos de NRe,+ las ecuaciones (3.1-20) y (3.1-21) se reducen a la ecuación (3.1-19), y a la ecuación (3.1-17) para valores bajos. Para grandes caídas de presión en gases, la ecuación (3.1-20) puede escribirse de forma diferencial .(Pl). EJEMPLO 3.1-4. Caída de presión y flujo de gases en un lecho empacado A través de un lecho empacado de esferas que tienen un diámetro de 12.7 mm fluye aire a 3 11 K. La fracción de vacío E del lecho es 0.38 y el lecho tiene un diámetro de 0.61 m y una altura de 2.44 m. El aire penetra en el lecho a 1.10 atm absolutas a una velocidad de 0.358 kg /s. Calcule la caída de presión del aire en el lecho empacado. El peso molecular promedio del aire es de 28.97. Solución: Según el Apéndice A.3, para el aire a 311 K, /J = 1.90 x 10m5 Pa . s. El area de corte transversal del lecho es A = (d4)D2 = (p/4)(0.61)2 = 0.2922 m2. Por lo tanto, G’ = 0.35810.2922 = 1.225 kg/m2 9 s (con base en el corte transversal vacío del recipiente o lecho). DP = 0.0127 m, ti = 2.44 m, y la presión de entrada es PI = l.l(l.01325 x lOs) = 1.115 x lOs Pa. De la ecuación (3.1-15), N D,G’ 0.0127(1.225) Re’p =(1-= (1-()38)(1.90~10-“) =1321 A fín de usar la ecuación (3.1-2 1) para gases, la densidad p que debe utilizarse es el promedio de las presiones de entrada pt y de salida ~2, o (Pr + p2)/2. Esta operación se realiza por aproximaciones sucesivas, ya que desconoce p2. Suponiendo que Ap = 0.05 x 1 O5 Pa, p2 = 1.115 x 105-0.05 x 105= 1.065 x 105Pa.Lapresiónpromedioespr,,,=(1.115 x 105+ 1.065 X los)/2 = 1.090 x lo5 Pa. La densidad promedio que debe usarse es M Pprom = RT Pprom 28.97(1.090 x 10’) = g314.34(311) =1.221 Wm3 Cap. 3 Principios de la transferencia de momento lineal y aplicaciones 1 3 9 Al sustituir en la ecuación (3.1-21) y despejando Ap, Ap(1.221) 0.0127 (0.38)’ 150------=-(1.225)* 2.44 l- 0.38 1321 + 1.75 Resolviendo, Ap = 0.0497 x lo5 Pa. Este resultado es bastante cercano al pronosticado, por lo que no se necesita un segundo intento. 4. Factores de forma. En los lechos empacados, muchas partículas suelen tener forma irregular. El diámetro equivalente de una partícula se define como el diámetro de una esfera que tuviera el mismo volumen que esa partícula. El factor de esfericidad 4s de una partícula es la razón entre el área superficial de esa esfera (que tiene el mismo volumen que la partícula) y el área superficial real de la partícula. Para una esfera, el área superficial es Sp = rc@ y el volumen es vp = 7cDi/6. Por consiguiente, para toda partícula, $S = 7c DiISp, donde Sp es el área superficial real de la partícula y Dp es el diámetro (diámetro equivalente) de la esfera que tiene el mismo volumen que la partícula. Entonces, sp-~D;/$s 6---=- vP 7cDP/6 bD, A partir de la ecuación (3.1-7), so 6 av =c= $,D, Entonces la ecuación (3.1-10) se transforma en (3.1-23) (3.1-24) Para una esfera, $s= 1 .O. Para un cilindro cuyo diámetro es igual a su longitud, 4s se calcula como 0.874, y para un cubo, $sse calcula como 0.806. En cuanto a los materiales granulares, es difícil medir el volumen y el área superficial reales para obtener el diámetro equivalente, así que Dp generalmente se toma como el tamaño nominal obtenido en un análisis por mallas (tamices) o en mediciones visuales de longitud. El área superficial está determinada por las mediciones de adsorción o por mediciones de la caída de presión en un lecho de partículas. Así, se usa la ecuación (3.1-23) para calcular 4s (Tabla 3. l-l). Los valores más comunes para muchos materiales triturados se encuentran entre 0.6 y 0.7. Para el cilindro y el cubo, en ocasiones se usa por conveniencia el diámetro nominal (en vez del diámetro equivalente), lo que da un factor de forma de 1.0. 5. Mezclas de partículas. Para las mezclas de partículas de varios tamaños podemos definir una superficie específica media avm como a wn = C X& (3.1-26) 140 3.1 Flujo alrededor de objetos inmersos y lechos empacados y jluidizados donde Xi es la fracción de volumen. Combinando las ecuaciones (3.1-24) y (3.1-26), (3.1-27) donde DPnz es el diámetro medio efectivo para la mezcla. EJEMPLO 3.1-5. Diámetro medio para una mezcla de partículas Una mezcla contiene partículas de tres tamaños: 25% del volumen es de 25 mm, 40% es de 50 mm y 35% es de 75 mm. La esfericidad es de 0.68. Calcule el diámetro promedio efectivo. TABLA 3.1-I. Factores de forma (esfericidad) de algunos materiales Material Factor deforma, Q s Referencia Esferas Cubos Cilindros Dp = h (longitud) Sillas Berl Anillos Raschig Carbón en polvo Arena, promedio Vidrio triturado 1.0 0.81 0.87 0.3 (B4) 0.3 WI 0.73 (C2) 0.75 (ca 0.65 G? Solución: Se tienen los siguientes datos: x1 = 0.25, DPl = 25 mm; x2 = 0.40, DP2 = 50; x3 = 0.35, DP3 = 75; 4s = 0.68. Sustituyendo en la ecuación (3.1-27), 1 Dpnl = 0.25/(0.68 x 25) + 0.40/(0.68 x 50) + 0.35/(0.68 x 75) = 30.0 mm 6. Ley empírica de Darcypara elflujo laminar. La ecuación (3. l-l 7) para el flujo laminar en lechos empacados muestra que el gasto es proporcional a Ap e inversamente prophcional a la viscosidad ,U y a la longitud AL. Ésta es la base de la ley de Darcy que se presenta a continuación sólo para el flujo viscoso en un medio poroso consolidado. (3.1-28) donde v’ es la velocidad superficial basada en el corte transversal vacío en crnk, q’ es el gasto en cm31 s, A es el corte transversal vacío en cm2, iu es la viscosidad en cp, Ap es la caída de presión en atm, Cap. 3 Principios de la transferencia de momento lineal y aplicaciones 1 4 1 hL es la longitud en cm y k es la permeabilidad en (flujo en cm3/s) . (cp) (longitud en cm)/(área en cm*). (caída de presión en atm). Las unidades de cm* . cpk . atm usadas para k con frecuencia son en darcys o en milidarcys (l/lOOO darcy). Por tanto, si un medio poroso tiene una permeabilidad de 1 darcy, un fluido con viscosidad de 1 cp fluirá a 1 cm3/s por un corte transversal de 1 cm2 con una Ap de 1 atm por centímetro de longitud. Esta ecuación se usa a menudo para medir permeabilidades en depósitos subterráneos de petróleo. 3.1D Flujo en lechos fluidizados 1. Velocidad mínima y porosidad mínima. Cuando un fluido corre hacia arriba por un lecho empacado de partículas a bajas velocidades, las partículas permanecen estacionarias. Al aumentar la velocidad del fluido, la caída de presión aumenta de acuerdo con la ecuación de Ergun (3.1-20). Si sigue aumentando la velocidad, llegará un momento en que la fuerza de la caída de presión por el área de corte transversal iguale a la fuerza gravitatoria sobre la masa de las partículas. Entonces las partículas empezarán a moverse, y éste es el principioo de la fluidización, o fluidización mínima. La velocidad del fluido a la cual empieza la fluidización es la velocidad de fluidización mínima v’,f en m/s, basada en el corte transversal de la torre vacía (velocidad superficial). La porosidad del lecho cuando ocurre la verdadera fluidización es la porosidad mínima para la fluidización y es Ego Algunos valores típicos de E,,~ para varios materiales se muestran en la tabla 3.1- 2. El lecho se expande hasta este ahuecamiento o porosidad antes de que aparezca el movimiento de las partículas. Esta expansión mínima puede determinarse experimentalmente sometiendo el lecho auna corriente de gas ascendente y midiendo la altura del lecho L,,f en m. En general parece ser mejor usar pmgas como fluido, y no un líquido, ya que los líquidos dan valores ligeramente superiores de F+ Como se indicó antes, la caída de presión aumenta al elevarse la velocidad del gas hasta el inicio de la fluidización mínima. Después, al aumentar aún más la velocidad, la caída de presión decrece muy poco y luego permanece prácticamente sin cambio mientras el lecho sigue expandiéndose o aumentando su porosidad al aumentar la velocidad.El lecho parece un líquido en ebullición. A medida que el lecho se expande con el aumento de velocidad, el lecho continúa conservando su superficie horizontal superior. En un momento dado, cuando el aumento de la velocidad ya es muy grande, el arrastre de partículas del lecho fluidizado real se vuelve apreciable. La relación entre la altura L del lecho y la porosidad E es como se indica para un lecho que tiene un área de corte transversal uniforme A. Puesto que el volumen LA(l - E) es igual al volumen total de los sólidos como si formaran una pieza, L,A(l - E,) = &A(l - E2) (3.1-29) 1 J-E2L L2 l-E, donde L, es la altura del lecho con porosidad s1 y L2 es la altura con porosidad ~2. 2 . Caída de presión y velocidad mínima de fluidización. Como una primera aproximación, la caída de presión al comenzar la fluidización puede determinarse como sigue. La fuerza obtenida de la caída de presión por el área de corte transversal debe ser igual a la fuerza gravitatoria ejercida por la masa de las partículas menos la fuerza de flotación del fluido desplazado. APA = L,&U - ~,f)@ - /‘k (3.1-31) 1 4 2 3 . 1 Flujo alrededor de objetos inmersos y lechos empacados y fluidizados TABLA 3.1-2. Fracción de vacío &m$ en condiciones de jluidización mínima (L2) Tipo de partículas 0.06 Tamaño de partículas D,(rnm) 0.10 0.20 0.40 Arena angulosa (Qs=0.67) 0.60 Arena redonda (Qs = 0.86) 0.53 Carbón de antracita ($s = 0.63) 0.61 Fraccien de vacío, ~~~ 0.58 0.53 0.49 0.48 0.43 (0.42) 0.60 0.56 0.52 Por lo tanto, $ = (hf)(Pp -+ (SI) (3.1-32) $ = (wnf)(PP -P)$ (Unidades del sistema inglés) c Puesto que muchas veces se tienen partículas de forma irregular en el lecho, es más conveniente utilizar el tamaño de partícula y el factor de forma en las ecuaciones. Primero se sustituye el diámetro medio efectivo Dp por el término I$@, , donde Dp ahora representa el tamaño de partícula de una esfera que tiene el mismo volumen que la partícula y I$~ es el factor de forma. Muchas veces el valor de Dp se aproxima usando el tamaño nominal obtenido en un análisis de criba. Entonces la ecuación (3.1-20) para la caída de presión en un lecho empacado se convierte en 4 _ 15op’ @-Ey + 1.75&q2 1-E - - - z $;D; e3 @sD, E3 (3.1-33) donde A,C = L, longitud del lecho en m. La ecuación (3.1-33) ahora puede usarse mediante una pequeña extrapolación para los lechos empacados a fin de calcular la velocidad mínima de fluidización v’mfa la cual empieza la fluidización, sustituyendo vfmfpor v’, E por smfy L por L,+ y combinando el resultado con la ecuación (3.1-32) para dar 1.75D; (I&)” p* + ~++‘,v~~P D;P(P~ -P)g = o G&2 wtfP - P2 (3.1-34) Si definimos el número de Reynolds como N +if P- - - Re,mf- P la ecuación (3.1-34) se convierte en (3.1-35) 1.75(N~.a~f)~ + 150(1-%f)( NRe,mf) wnf Di+J -dg =o 4bGlf Pu2 (3.1-36) Cap. 3 Principios de la transferencia de momento lineal y aplicaciones 1 4 3 Cuando NRe, ,& 20 (partículas pequeñas), el primer término de la ecuación (3.1-36) puede eliminarse, YcuandoN~e,mf > 1000 (partículas g2el segundo término se anula. Si no se conocen el término E,,,~, el término $s o ninguno de los dos, Wen y Yu (W4) encontraron que, para diversos sistemas, Al sustituir en la ecuación (3.1-36), se obtiene la siguiente ecuación simplificada. 112 NRe, ,,f (33.7)2 + 0.0408 DDpi;2- ‘lg 1 - 33.7 (3.1-37) (3.1-38) Esta ecuación es válida para un intervalo de números de Reynolds de entre 0.001 y 4000, con una desviación promedio de + 25%. Otras ecuaciones alternativas pueden encontrarse en la bibliografía (Kl, W4). EJEMPLO 3.14 Velocidad mínima para la jluidización Se van a fluidizar partículas sólidas que tienen un tamaño de 0.12 mm, un factor de forma 4s de 0.88 y una densidad de 1000 kg/m3, usando aire a 2.0 atm absolutas y 25 “C. El ahuecamiento en las condiciones mínimas de fluidización es de 0.42. a) Si el corte transversal del lecho vacío es de 0.30 m* y el lecho contiene 300 kg de sólido, calcule la altura mínima del lecho fluidizado. b Calcule la caída de presión en las condiciones de fluidización mínimas. c) Calcule la velocidad mínima para la fluidización. d) Utilice la ecuación (3.1-38) para calcular v’,,~ suponiendo que no se dispone de los datos para f, ni para E~,Z Solución: Para el inciso a), el volumen de sólidos = 300 kg /( 1000 kg /m3) = 0.300 m3. La altura que los sólidos ocuparían en el lecho si s1 = 0 es LI = 0.300 m3/(0.30 m* de corte transversal) = 1.00 m. Usando la ecuación (3.1-30) y nombrando L,f= L2 y E~J= ~2, L 1 J-Q- - - L mf l-E, 1 . 0 0 1 - 0.42-=- L mf 1 - o Resolviendo, L,,f= 1.724 m. Las propiedades físicas del aire a 2.0 atm y 25 “C (Apéndice A.3) son ,U = 1.845 X 1O-5 Pa. s, p = 1.187 x 2 = 2.374 kg/m3, p = 2.02’65 x lOs Pa. Para la partícula, Dp = 0.00012 m, pp = 1000 kg/m3, 4s = 0.88, s,,f= 0.42. Para el inciso b), utilizando la ecuación (3.1-32) para calcular Ap. Ap = Lmf(l - G&P~ - pk = 1.724(1 - 0.42)(1000 - 2.374)(9.80665) = 0.0978 x lOs Pa 1 4 4 3 . 1 Flujo alrededor de objetos inmersos y lechos empacados y fluidizados Para calcular vlmfpara el inciso c), se usa la ecuación (3.1-36). 1.q NRP.,mf)2 + 150(1- 0.q NP.,, mf) (0.88)( 0.42)3 (0.88)’ (0.42)3 -(0.00012)3 2.374(1000 - 2.374)(9.80665) (1.845 x 10-y Al resolver, N D&p 0.00012(v,)(2.374) Re, ,,f= 0.07764 = - = CL 1.845 x 1O-5 v’,,f = 0.005029 m Is Usando la ecuación simplificada (3.1-38) para el inciso d), 1 112 (33.7)2 + 0.0408(0.00012)‘(2.374)(1000- 2.374)(9.80665) NRe, mf = (1.845 x lo-y2 - 33.7 =0.07129 Resolviendo, vfmf = 0.004618 rnk. 3. Expansión de lechosfluidizados. Para el caso de partículas pequeñas y donde NR~, mf= DPv’pl p < 20, podemos calcular la variación de la porosidad o altura del lecho L como sigue. Suponemos que la ecuación (3.1-36) se aplica al intervalo completo de velocidades del fluido y se desprecia el primer término. Después, despejando v’, v, = &(Pp -P)g@S 2 = K E3 15op 1-E ’ 1-E (3.1-39) Se encuentra que todos los términos, excepto E, son constantes para el sistema en particular, y que E depende de v’. Esta ecuación puede usarse para líquidos a fin de calcular E con E < 0.80, pero, debido al amontonamiento y a otros factores, pueden ocurrir errores si se utiliza para gases. El gasto en un lecho fluidizado está limitado por una parte por la v’“zf mínima, y por otra, por el arrastre de sólidos del lecho en sí. Esta velocidad máxima permisible se considera aproximadamente como la velocidad de sedimentación terminal v’~ de las partículas. (Véanse en la sección 13.3 los métodos para calcular la velocidad de sedimentación). Las que siguen son ecuaciones aproximadas para calcular el intervalo de operación (P2). Para sólidos finos, con NRe,f< 0.4, Vt’ 90-E-I - vmf 1 (3.1-40) Para sólidos grandes, con NRe,f > 1000, 4 91-zz-I - vmf 1 (3.1-41) EJEMPLO 3.1-7. Expansión de un lecho fluidizado Utilizando los datos del ejemplo 3.1-6, calcule la velocidad máxima permisible v’ [. Empleando una velocidad de operación de 3.0 veces el mínimo, estime la expansión del lecho. Solución: A partir del ejemplo 3.1-6, NRe,mf= 0.07764, v’*f= 0.005029 m/s, &,,f= 0.42. Usando la ecuación (3.1-40), la velocidad máxima permisible es vft z 90(v’mf) = 90(0.005029) = 0.4526 m/s Usando una velocidad de operación v ’ de 3.0 veces el mínimo, v’ = 3.0(v’,,f) = 3.0(0.005029) = 0.01509 m/s Para determinar el ahuecamiento a esta nueva velocidad, la sustituimos en la ecuación (3.1- 39) usando los valores conocidos en las condiciones de fluidización mínimas para determinar K, . 0.005029 = K, & Al resolver, K, = 0.03938. Después, usando la velocidad de operación en la ecuación (3.1-39), 0.01509 = (0.3938) & Resolviendo, el ahuecamiento del lecho es E = 0.555 a la velocidad de operación. 3.2 MEDICIÓN DEL FLUJO DE FLUIDOS Es importante poder medir y controlar la cantidad de material que entra y que sale de una planta de procesamiento químico o de otro tipo. Como muchos de los materiales estánen forma de fluidos, suelen fluir por tuberías o conductos. Para medir el flujo de fluidos se utilizan muchos tipos diferentes de dispositivos. Los más sencillos son los que miden directamente el volumen de los fluidos, como los medidores ordinarios de gas y agua y las bombas de desplazamiento positivo. Los medidores actuales usan un elemento, como un propulsor o copas en un brazo rotatorio, que gira a una rapidez determinada por la velocidad del fluido que pasa por él. Para medir los fluidos se utilizan extensamente el tubo pitot, el medidor venturi, el medidor de orificio y los vertederos de canal abierto. 3.2A Tubo pitot El tubo pitot se usa para medir la velocidad local en un punto dado en la corriente de flujo, y no la velocidad promedio dentro de la tubería o conducto. En la figura 3.2-la se muestra un esquema de este sencillo dispositivo. Un tubo, el tubo de impacto, tiene su abertura normal a la dirección del flujo, y el tubo estático tiene su abertura paralela a la dirección del flujo. 146 3.2 Medicidn del jlujo de fluidos tubo esthtico (4 tubo de /-impacto (b) -t A h f FIGURA 3.2-l. Diagrama del tubo pitot: a) tubo simple, b) tubo con orifìcios de presión estática El fluido fluye hacia adentro de la abertura en el punto 2; la presión aumenta y luego permanece estacionaria en este punto, llamadopunto de estancamiento. La diferencia de la presión de estancamien- to en este punto 2 y la presión estática medida por el tubo estático representa la elevación de presión asociada con la desaceleración del fluido. El manómetro mide esta pequeña elevación de presión. Si el fluido es incompresible, podemos escribir la ecuación de Bernoulli (2.7-32) entre el punto 1, donde la velocidad v1 no se altera antes de que el fluido se desacelere, y el punto 2, donde la velocidad v2 es cero. Haciendo v2 = 0 y despejando vl, (3.2-l) v = c 2(P2-Pd P \i P (3.2-2) donde v es la velocidad vr en el tubo en el punto 1 en m /s, p2 es la presión de estancamiento, p es la densidad del fluido que fluye a la presión estática pr y C, es un coeficiente adimensional que sirve para tomar en cuenta las desviaciones a partir de la ecuación (3.2-l) y que generalmente varía entre cerca de 0.989 y 1.0. Para un uso preciso, el coeficiente debe determinarse por la calibración del tubo pitot. Esta ecuación se aplica a fluidos incompresibles, pero puede servir para aproximar el flujo de gases a velocidades moderadas y con cambios de presión de cerca del 10% o menos de la presión total. Para los gases, el cambio de presión suele ser bastante pequeño, por lo que resulta difícil medir con precisión las velocidades. El valor de la caída de presiónp2 -pl o Ap en Pa se relaciona con Ah, la lectura del manómetro, mediante la ecuación (2.2-14), como sigue: AP = A&‘A - Pk (3.2-3) donde PA es la densidad del fluido en el manómetro en kg/m3 y Ah es la lectura del manómetro en metros. En la figura 3.2-lb se muestra un diseño más compacto, con tubos concéntricos. En el tubo exterior, los hoyos de presión estática son paralelos a la dirección del flujo. Mayores detalles pueden encontrarse en la bibliografía (Pl). Cap. 3 Principios de la transferencia de momento lineal y aplicaciones 147 Dado que el tubo pitot mide la velocidad sólo en un punto del flujo, pueden usarse varios métodos para obtener lavelocidadpromedio en la tubería. En el primer método, la velocidad se mide exactamente en el centro del tubo para obtener v,~,. Luego, usando la figura 2.10-2, se puede obtener vprom. Debe tenerse el cuidado de colocar el tubo pitot al menos 100 diámetros corriente abajo de cualquier obstrucción de la tubería. En el segundo método se toman lecturas en varias posiciones conocidas en el corte transversal de la tubería, y luego, usando la ecuación (3.6- 17), se realizan integraciones gráficas o numéricas para obtener vprom. EJEMPLO 3.2-l. Medición del flujo usando un tubo pitot Se usa un tubo pitot semejante al de la figura 3.2- 1 a para medir el flujo de aire en un dueto circular de 600 mm de diámetro. La temperatura del aire que fluye es de 65.6 “C. El tubo pitot se coloca en el centro del dueto y la lectura Ah del manómetro es de 10.7 mm de agua. Una medida de la presión estática obtenida en la posición del tubo pitot es de 205 mm de agua sobre la atmosférica. El coeficiente del tubo pitot es C, = 0.98. a) Calcule la velocidad en el centro y la velocidad promedio. b) Calcule el gasto volumétrico del aire que fluye en el dueto. Solución: Para el inciso a), las propiedades del aire a 65.6 “C, a partir del Apéndice A.3, sonp=2.03 x 10e5P a . s, p = 1.043 kg/m3 (a 101,325 kPa). Para calcular la presión estática absoluta, la lectura del manómetro Ah = 0.205 m del agua indica la presión por encima de 1 atm absoluta. Usando la ecuación (3.2-14), considerando la densidad del agua como 1000 kg/m3 y suponiendo que la densidad del aire es de 1.043 kg /m3, Ap = 0.205(1000 - 1.043)9.80665 = 2008 Pa Entonces, la presión estática absoluta espI = 1.01325 x lo5 + 0.02008 x lo5 = 1.0333 x lo5 Pa. La densidad del aire correcta en el aire que fluye es de (1.0333 x 1G5/1 .01325 x 105)( 1.043) = 1.063 kg/m3. Si se usa este valor correcto en lugar de 1.043, tendrá un efecto despreciable en el nuevo cálculo de pl. Para calcular la Ap para el tubo pitot se emplea la ecuación (3.2-3). & = Ah(p, - dg = g(lOOO - 1.063)(9.80665) = 104.8 Pa Al usar la ecuación (3.2-2), la velocidad máxima en el centro es v = 0.98 J .2( 104.8)1 063 13.76 mls El número de Reynolds, usando la velocidad máxima, es A partir de la figura 2.10-2, vprom/v,, = 0.85. Entonces, vprom = 0.85(13.76) = 11.70 m/s. Para calcular el gasto para el inciso b), el área de la sección transversal del dueto es A = (r~/4)(0.600)~ = 0.2827 m2. El gasto volumétrico = 0.2827(11.70) = 3.308 m3/s 148 3.2 Medición del flujo de fluidos 3.7B Medidor Venturi En la figura 3.2-2 se muestra un medidor Venturi que se inserta directamente en una tubería. En las dos derivaciones que se muestran se conecta un manómetro u otro dispositivo para medir la diferencia de presión p1 - p2 entre los puntos 1 y 2. La velocidad promedio en el punto 1, donde el diámetro es DI, m es v1 m/s y en el punto 2 o garganta, la velocidad es v2 y el diámetro D2. Puesto que el estrechamiento de DI a D2 y la expansión de D2 a DI son graduales, se producen pocas pérdidas por fricción originadas en la contracción o la expansión. Para deducir la ecuación para el medidor Venturi se desprecia la fricción y se supone que la tubería es horizontal. Suponiendo un flujo turbulento y escribiendo la ecuación de balance de energía mecánica, ecuación (2.7-28) entre los puntos 1 y 2 para un fluido incompresible, v: PI 2z+-=!k+lL P P (3-2-4) La ecuación de continuidad para la constante p es (3.2-5) P2 FIGURA 3.2-2. Medidor cle jlujo Venturi Al combinar las ecuaciones (3.2-4) y (3.2-5) y eliminar vl, v2 = J----& i 2(p1pp2) ~ (3.2-6) Para tomar en cuenta la pequeña pérdida por fricción se introduce un coeficiente experimental C,,, con lo cual (3.2-7) (Unidades del sistema inglés) Para la mayoría de medidores y un número de Reynolds > 1 O4 en el punto 1, C,, es aproximadamente 0.98 para diámetros de tubería inferiores a 0.2 m y 0.99 para tamaños mayores. Sin embargo, estos coeficientes pueden variar y se recomienda una calibración individual cuando no se dispone de la del fabricante. Cap. 3 Principios de la transferencia de momento lineal y aplicaciones 149 Para calcular el gasto volumétrico, la velocidad v2, se multiplica por el área 4, Gasto volumétrico = v2 4 m3/s (3.2-8) . Para la medición del flujo compresible de gases, en la ecuación (3.2-7) debe tomarse en cuenta la expansión adiabática de la presión depr yp2. Se utiliza una ecuación semejante y el mismo coeficiente C,junto con el factor de corrección de expansión adimensional Y(mostrado en la Fig. 3.2-3 para el aire), como sigue: donde m es el gasto en kgls, pr es la densidad del flujo corriente arriba en elpunto 1 en kg/m3, y A2 es el área de corte transversal en el punto 2 en m2. La diferencia de presión p1 - p2 se presenta debido a que la velocidad aumenta de vt a ~2. No obstante, después de cierto recorrido en el tubo, la velocidad regresa a su valor original vr , en el caso de líquidos. Debido a algunas pérdidas por fricción, una parte de la diferenciapt - p2 nunca se recupera. En un medidor Venturi de buen diseño, la pérdida permanente es de más o menos 10% de la diferencia p1 - p2 y esto representa una pérdida de energía. Los medidores Venturi suelen usarse para medir flujos en tuberías extensas, tales como los sistemas de distribución municipales. 0.80 Venturi 1.0 0 0.9 0.8 0.7 _ Razón de presión, p2/p] FIGURA 3.2-3. Factor de expansión para aire en el Venturi y en el orifìcio. [Calculados a partir de las ecuaciones y datos dk las referencias (AZ, M2. S3)./ 3.2C Medidor de orificio El medidor Venturi tiene varias desventajas para utilizarse en instalaciones comunes de las plantas de proceso: ocupa un espacio considerable y es costoso. Además, el diámetro de la garganta es fijo, por lo que, si el intervalo de velocidades de flujo cambia de manera notable, se obtienen diferencias de presión poco precisas. El medidor de oriJìcio elimina estas objeciones, aunque a costa de una pérdida de carga o potencia mucho mayor. 1 5 0 3.2 Medición del Jujo de jluidos FIGURA 3.2-4. Medidor de jlujo de orijicio. En la figura 3.2-4 se muestra un medidor de flujo con orificio típico de bordes afilados. La placa torneada y perforada de orificio con diámetro Do se monta con dos bridas en un tubo de diámetro DI. Las derivaciones de presión en el punto 1 corriente arriba y en el 2 corriente abajo, miden la diferencia p1 - p2. Las posiciones exactas de las dos derivaciones son algo arbitrarias, y en algunos tipos de medidores se instalan a aproximadamente un diámetro del tubo corriente arriba y entre 0.3-O. 8 diámetro del tubo corriente abajo. La corriente de fluido forma una vena contracta o chorro de flujo libre después de pasar por el orificio. La ecuación para el orificio es parecida a la ecuación (3.2-7), r---2(PI - P2 >vo= $-&qi P (SI) (3.2-10) donde v. es la velocidad en el orificio en m /s, Do es el diámetro del orificio en m y Cs es el coeficiente adimensional del orificio. El coeficiente de orificio Co siempre se determina experimentalmente. Si el valor de NRe en el orificio es superior a 20000 y Do /DI es inferior a más o menos 0.5, el valor de CO se mantiene casi constante en 0.61, que es un valor de diseño adecuado para líquidos (M2, Pl). Por debajo de 20000 el coeficiente asciende abruptamente y luego cae; una correlación para CO puede encontrarse en otros libros (Pl). Como en el caso de Venturi, para la medición del flujo compresible de gases en un orificio se usa un factor de corrección Y dado en la figura 3.2-3 para el aire, comfigue. (3.2-l 1) donde m es el gasto en kg/s, p1 es la densidad corriente arriba en kg/m3 y Ao es el área de la sección transversal del orificio. La pérdida permanente de presión es mucho más alta que en un Venturi, debido a los remolinos que se forman cuando el chorro se expande debajo de la vena contracta. Esta pérdida depende de Do/D, y es 73% dept -p2 paraDo/D1 = 0.5; 56% para Do/D1 = 0.65, y 38% para DoiD = 0.8 (Pl). EJEMPLO 3.2-2. Medición de flujo de petróleo con un orificio Se instala un orificio de bordes afilados con un diámetro de 0.0566 m en una tubería de 0.154 m, por la que fluye petróleo con densidad de 878 kg/m3 y viscosidad de 4.1 cp. La Cap. 3 Principios de la transferencia de momento lineal y aplicaciones 1 5 1 diferencia de presión medida en las derivaciones del orificio es de 93.2 kN/m2. Calcúlese el gasto volumétrico en m3/s. Supóngase que C0 = 0.61. Solución: p1 -p2 = 93.2 kN/m2 = 9.32 x 104N/m* D1 = 0.1541 m Do=O.O566m %=0.0566= 0.368 4 0.1541 Sustituyendo en la ecuación (3.2-10) Vo = d* \i 2cp’pp2) 0.61 J 2(9.32 x 104) = Jq¿zq 878 v. = 8.97 mh Gasto volumétrico = v (8.97) (n)(o’0566)2nDi -0 4 4 = 0.02257 m3/s (0.797 pie3/s) Se calcula el valor de iVRe para saber si es superior a 20 000 para Co = 0.61, p=4.1 x 1 x lo-3= 4.1 x lOe3 kg/m . s = 4.1 x 10m3 Pa . s DOVOP NRe= T-= O.O56@*97)(8W = 1 087 x 1o5 4.1 x 1o-3 * Por consiguiente, el número de Reynolds es superior a 20 000. En las referencias (Pl) se analizan otros dispositivos de medición para flujos en duetos cerrados, tales como rotámetros, toberas de flujo, etcétera. 3.2D. Flujo en canales abiertos o vertederos En muchos casos de ingeniería de procesos e instalaciones agrícolas, los líquidos fluyen en canales abiertos y no en duetos cerrados. Para medir el gasto volumétrico en estos casos se suele usar ver- tederos. Un vertedero es un dique sobre el cual fluye el líquido. Los dos tipos principales son el vertedero rectangular y el triangular que se muestran en la figura 3.2-5. El líquido fluye sobre el vertedero y, tal como se muestra en la figura, se mide la altura h. (carga del vertedero) en metros por encima de la base plana o de la muesca. Esta carga debe medirse a una distancia aproximada de 3ho m corriente arriba del vertedero, por medio de un nivel o un flotador. La ecuación para obtener el gasto volumétrico q en m3/s para un vertedero rectangular, es la siguiente: q = 0.415(L - 0.2ho)Iz&& (3.2-12) 152 3.3 Bombas y equipo para manejar gases -+-L-c Ca) FIGURA 3.2-5 Tipos de vertederos: a) rectangular, b) triangular. donde L = longitud de la cresta en m, g = 9.80665 mls2, y Izo = carga del vertedero en m. A esta expresión se le llama fórmula de vertedero de Francis modificada y concuerda con los resultados experimentales con un 3% de aproximación cuando: L > 2ho, la velocidad corriente arriba es < 0.6 m/s, h,,> 0.09 m y la altura de la cresta por encima del fondo del canal es > 3ho. En unidades inglesas, L y h están en pies, q en pie3fs, y g = 32.174 pies/s2. Para el vertedero triangular, 0.3 ll$’ 4= tangl-fi (3.2-13) Las ecuaciones (3.2-12) y (3.2-13) son aplicables sólo para agua. Para otros líquidos, consúltense los datos de otras referencias (Pl). 3.3 BOMBAS Y EQUIPO PARA MANEJAR GASES 3.3A Introducción Para que un fluido fluya de un punto a otro en un dueto cerrado o en una tubería, es necesario contar con una fuerza impulsora. Algunas veces, esta fuerza es la gravedad cuando hay diferencias de nivel. Por lo general, un dispositivo mecánico como una bomba o un ventilador, suministra la energía o fuerza impulsora que incrementa la energía mecánica del fluido. Esta energía puede usarse para aumentar la velocidad (mover el fluido), la presión o la elevación del fluido, tal como lo expresa la ecuación del balance de energía mecánica, ecuación (2.7-28), que relaciona v conp, p y el trabajo. Los métodos más comunes para adicionar energía son el desplazamiento positivo y la acción centrífuga. En general, la palabra “bomba” describe una máquina o dispositivo que se usa para mover un líquido incompresible. Los ventiladores, sopladores y compresores son dispositivos para mover gases (casi siempre aire). Los ventiladores descargan grandes volúmenes de gases a presiones bajas del orden de varios cientos de milímetros de agua. Los sopladores y los compresores descargan gases a altas presiones. En las bombas y los ventiladores, la densidad del fluido no varía de manera apreciable y se puede suponer que existe un flujo incompresible. En el caso de los sopladores y compresores se usa la teoría de flujo compresible. 3.3B. B o m b a s 1. Potencia y trabajo requeridos. Mediante la expresión del balance total de energía mecánica, ecuación (2.7-28) para una bomba y un sistema de tuberías, puede calcularse la energía Cap. 3 Principios de la transferencia de momento lineal y aplicaciones 153 mecánica real o teórica W, J/kg adicionada al fluido por la bomba. El ejemplo 2.7-5 corresponde a este tipo de cálculo. Si la eficiencia fraccionaria es TI y Wp es el trabajo axial suministrado por labomba, la ecuación (2.7-30) da (3.3-l) La potencia real (o potencia al freno de una bomba) es la siguiente: 5” kW al freno = 1000 = - w,mq x 1000 (Unidades SI) (3.3-2) Tm hp al freno = 550 = -5 (Unidades del sistema inglés) donde W P está en J/kg, m es la velocidad de flujo en kgfs y 1000 es el factor de conversión WikW. En unidades del sistema inglés, W, esta en pie . lbr/lb, y m en lb,/s. La potencia teórica del fluido es potencia teórica = (kW al freno)(n) (3.3-3) La energía mecánica W, en J/kg adicionada al fluido se suele expresar como la carga H desarrollada por la bomba en metros de fluido bombeado, donde -W,= Hg (SI) (3.3-4) -W, = H: (Unidades del sistema inglés) c Para calcular la potencia de un ventilador donde la diferencia de presión es del orden de unos cuantos cientos de milímetros de agua, se usa una densidad promedio lineal del gas entre la entrada y la salida del ventilador para calcular W, y los kW caballos de potencia al freno. Puesto que la mayoría de las bombas son impulsadas por motores eléctricos, debe tomarse en cuenta la eficiencia del motor para determinar el suministro total de energía eléctrica al mismo. Las eficiencias típicas ?-le de motores eléctricos son: 75% para motores de 0.5 kW, 80% para 2 kW, 84% para 5 kW, 87% para l5 kW; y, aproximadamente, 93% para motores de más de 150 kW. Por consiguiente, el suministro total de energía eléctrica es igual a la potencia al freno dividida entre la eficiencia del motor eléctrico TI,. kW al freno Suministro de energía eléctrica (kW) = -W,m r e = qTJe .lOOO (3.3-5) 2. Altura de aspiración. La potencia calculada con la ecuación (2.7-3) depende de las diferencias de presión y no de que las presiones reales estén por encima o por abajo de la presión atmosférica. Sin embargo, el límite inferior de la presión absoluta en la línea de aspiración (entrada) de la bomba queda fijado por la presión de vapor del líquido a su temperatura en la línea de aspiración. Si la presión 154 3.3 Bombas y equipo para manejar gases sobre el líquido en la línea de aspiración se reduce a la presión de vapor, parte del líquido se evapora instantáneamente (cavitación). En estas condiciones, no puede introducirse líquido a la bomba. Para el caso especial en que el líquido no es volátil, la fricción en la línea de aspiración de la bomba es despreciable y si el líquido está siendo bombeado desde un depósito abierto, la bomba operará con su máximo de altura vertical de aspiración. Para agua fría esto sería de unos 10.4 m de agua. No obstante, en condiciones prácticas, la fricción, la presión de vapor, los gases disueltos y las pérdidas en la entrada, hacen que este valor sea muy inferior. Para más detalles, se recomienda consultar las referencias (PI, M2). 3. Bombas centrzfkgas. Las industrias de proceso emplean con frecuencia bombas centrífugas. Se pueden adquirir en tamaños desde 0.004 hasta 380 m3/min (1 a 100000 gal/min) y para presiones de descarga desde unos cuantos metros de carga hasta 5000 kPa. Una bomba centrífuga consiste, en su forma más simple, en un propulsor que gira dentro de una armadura. La figura 3.3-l muestra el diagrama esquemático de una bomba centrífuga simple. succión Flecha de potencia 4-YY-Carcasa 4 FIGURA 3 .3 - l . Bomba centrífuga simple. El líquido entra axialmente ala bomba en el punto 1 en la línea de aspiración y penetra hasta el centro de rotación del propulsor, de donde se distribuye de manera radial. Al hacerlo así, se introduce en los canales, entre las paletas en el punto 2, y fluye por dichos canales hacia el punto 3, situado en la periferia del impulsor. Aquí se recolecta en la cámara espiral 4 y fluye hacia la descarga de la bomba 5, La rotación del impulsor imparte una carga de alta velocidad al fluido, que se transforma en carga de presión a medida que el líquido pasa a la cámara espiral y de aquí a la descarga. Algunas unidades se construyen como bombas de dos etapas o de etapas múltiples. Muchos factores complican la determinación de la eficiencia real y las características de funcionamiento de una bomba. Por tanto, es muy común emplear el funcionamiento real experimental. Casi siempre, el propio fabricante expresa el funcionamiento de la bomba por medio de curvas llamadas curvas características, y éstas suelen ser para agua. La carga H producida en metros es igual para cualquier líquido de la misma viscosidad. La presión desarrollada, que se expresa como p = Hpg, es proporcional a la densidad. Las viscosidades inferiores a 50 cp tienen poco efecto sobre la carga producida. Los kilowatts al freno varían directamente con la densidad. Se pueden usar las siguientes aproximaciones para una bomba. La capacidad ql en m3/s es directamente proporcional a las rpm N,. Es decir, s- NI q2 -N, (3.3-6) Cap. 3 Principios de la transferencia de momento lineal y aplicaciones 155 La carga HI es proporcional a c,&, 0 1 = 4: = N:H Hz q; N; La potencia consumida WI es proporcional al producto Hlql, o (3.3-7) (3.3-8) La mayoría de las bombas tienen velocidad constante. En la figura 3.3-2 se muestran curvas características para una bomba centrífuga típica de una sola etapa, que opera a velocidad invariable. En general, las bombas se clasifican con base en la carga y en la capacidad en su punto de eficiencia máxima. Esta eficiencia se logra a aproximadamente 50 gal /min. A medida que la velocidad de descarga en gal/min aumenta, la carga desarrollada disminuye. Tal como es de esperarse, los hp al freno aumentan al incrementarse la velocidad del flujo. EJEMPLO 3.3-l. Cálculo del caballaje al freno de una bomba Para ilustrar la determinación de la curva de hp al freno, calcúlese el valor de hp al freno a 40 gal/min de gasto para la bomba de la figura 3.3-2. Solución: A 40 gal/min la eficiencia Ra en la curva se aproxima a 60% y la carga H es 38.5 pies. Un gasto de 40 gallmin de agua con densidad de 62.4 Ib masa/pie3, vale: Velocidad 1750 rpm 1.6 ov I I I I I I I I Lo 0 20 40 60 80 Descarga (U.S. gal/min) FIGURA. 3.3-2. Curvas características para una bomba centrífuga de una sola etapa que maneja agua. (Tomada de W. L. Badger y J. T. Banchero. Introduction to Chemical Engineering, Nueva York. McGraw-Hill, Inc.. 1955. Con Permiso.) 156 3.3 Bombas y equipo para manejar gases Con base en la ecuación (3.3-2), el trabajo FV, es: pie. Ib, w,=-H&=-38.5 lb, La potencia al freno, con la ecuación (3.3-2), es de: -wsm 38.5(5.56) hp al freno = r1.550 = o.60(550) = 0.65 hp (0.48 kW) Este valor concuerda con el de la curva en la figura 3.3-2. 4. Bombas de desplazamiento positivo. En esta clase de bombas se introduce en la cámara un volumen definido de líquido que después se fuerza a salir a presión mayor. Existen dos tipos principales de bombas de desplazamiento positivo. En la bomba de vaivén, la cámara es un cilindro estacionario en cuyo interior entra el líquido por la acción de un pistón en el cilindro. Después, la salida se fuerza por medio del pistón en su desplazamiento regresivo. En la bomba rotatoria, la cámara se mueve de la entrada a la descarga y regresa a la entrada. En una bomba rotatoria de engranes hay dos de éstos acoplados, entre cuyos dientes se atrapa el líquido para forzarlo a salir en la descarga. Tanto las bombas de vaivén como las rotatorias pueden usarse a presiones muy elevadas, mientras que las bombas centrífugas tienen limitaciones en cuanto a la carga y se usan para presiones más bajas. Las bombas centrífugas suministran líquido a presiones uniformes (sin variaciones ni pulsaciones) y pueden manejar líquidos con grandes cantidades de sólidos en suspensión. Es muy común que en plantas químicas y de procesamiento biológico, las bombas que más se usen sean las centrífugas. Las ecuaciones (3.3-l) a (3.3-5) son válidas para el cálculo de la potencia en bombas de desplazamiento positivo. A velocidad constante, la capacidad de flujo permanece invariable con diferentes líquidos. En general, la velocidad promedio de descarga depende directamentede la velocidad. La potencia aumenta con relación directa a la carga, y la velocidad de descarga permanece casi constante a medida que aumenta la carga. 3.3C Maquinaria para el movimiento de gases La maquinaria para mover gases comprende dispositivos mecánicos que se usan para comprimir y mover gases los cuales se clasifican o se consideran generalmente desde el punto de vista de las cargas de presión producidas, y son ventiladores para presiones bajas, sopladores (o ventiladores) para presiones intermedias y compresores para presiones elevadas. 1 . Ventiladores. El método más común para mover volúmenes pequeños de gases (a presiones bajas) consiste en el empleo de un ventilador. Los ventiladores grandes suelen ser centrífugos y su principio de operación es similar al de las bombas centrífugas. Las cargas de descarga son bajas, desde 0.1 m a 1.5 m de H20. Sin embargo, en algunos casos, gran parte de la energía añadida al ventilador se convierte en energía cinética y otra pequeña cantidad en carga de presión. Cap. 3 Principios de la transferencia de momento lineal y aplicaciones 157 En un ventilador centrífugo, la fuerza centrífuga producida por el rotor causa una compresión del gas, llamada carga estática depresión. Además, puesto que la velocidad del gas aumenta, se produce también una carga de velocidad. Al estimar la eficiencia y la potencia se debe incluir tanto la elevación de la carga estática de presión como el incremento de la carga de velocidad. Las eficiencias de operación varían entre 40 y 70%. La presión de operación de un ventilador casi siempre se expresa en pulgadas de agua manométricas y es la suma de la carga de velocidad y de la presión estática del gas que sale del ventilador. Para calcular la potencia de los ventiladores se puede usar la teoría del flujo incompresible. . EJEMPLO 3.3-2 Potencia al freno en kW de un ventilador centr@ugo Se desea usar 28.32 m3/min de aire (medido a presión de 101.3 kPa y a 294.1 K) en un proceso. Esta cantidad de aire, que está en reposo, entra a la succión del ventilador a una presión de 741.7 mm Hg y temperatura de 366.3 K, y se descarga a una presión de 769.6 mm de Hg y velocidad de 45.7 m/s. Se usará un ventilador centrífugo que tiene una eficiencia del 60% Calcúlese la potencia al freno en kW necesaria. Solución: Se puede suponer un flujo incompresible, pues la caída de presión es de sólo (27.9/741.7) 100, o 3.8% de la presión, corriente arriba. En la ecuación del balance de energía mecánica puede usarse una densidad promedio del gas. La densidad en la succión, punto 1, es p1 = 28g7 kg mol 22.414 m3 rnolX:;~~~;;)kg aire11 kg = 0.940 kg/m3 (El peso molecular de 28.97 para el aire, el volumen de 22.414 m3/kg mol a 101.3 kPa y 273.2 K se obtuvieron del Apéndice A. 1.) La densidad en la descarga, punto 2, es 769.6 p2 = (0.940) 741.7 = 0.975 kg/m3 La densidad promedio del gas es = Pl + P2 - 0.940+ 0.975 Pprom 2 2 = 0.958 kg/m3 El gasto másico del gas es m = (28.32&)(~)(;2414ni])(~)(28.97$$ = 0.5663 kgls La carga de presión desarrollada es P2-PI _ (769.6- 741.7)mm Hg- - 1 01325 x 1o5 N/m2 Ppm,, 760 mm/atm ’ x)[ 0.958Lg/m3) = 3883 Jlkg 158 3.3 Bombas y equipo para manejar gases La carga de velocidad desarrollada para v1 = 0 es $ + (45’7)2 ~1044 J/kg 2 2 Al escribir el balance de energía mecánica, ecuación (2.7-28), í,g$+$-ws =z,g+$+g+CF Estableciendo z1 = 0, z2 = 0, vl = 0, y CF = 0 y despejando W,, 4-Ws = 2 + T = 3883 + 1044 = 4927 J/kg Al sustituir en la ecuación (3.3-2) -W,m 4927(0.5663) kW al freno = m = 0.60( 1000) = 4.65 kW (6.23 hp) 2. Sopladores y compresores. Para el manejo de volúmenes de gases a presiones más altas que en los ventiladores, se usan diversos tipos de equipo. Los turbosopladores, turboventiladores o compresores centrifugos se emplean para mover grandes volúmenes de gas con elevaciones de presión desde unos 5 kPa hasta varios miles de kPa. Los principios de operación de un turbosoplador son los mismos de una bomba centrífuga. Un turbosoplador tiene una apariencia física similar a la de una bomba centrífuga; la principal diferencia consiste en que el gas del soplador es compresible. Como las bombas centrífugas, la carga del turbosoplador es independiente del tipo de fluido. Para lograr presiones más elevadas aún, se usan turbosopladores de etapas múltiples. Los sopladores y compresores rotatorios son máquinas del tipo de desplazamiento positivo y son, esencialmente, equipos de velocidad de flujo a volumen constante con presión de descarga variable. Al variar la velocidad se modifica el gasto volumétrico. Lós detalles de construcción de los diversos tipos existentes (Pl) son muy variables y de acuerdo con el modelo usado pueden obtenerse presiones de hasta 1000 kPa. Los compresores de vaivén que se usan para presiones más altas son de desplazamiento positivo con pistones. Existen también equipos de etapas múltiples para presiones de 10 000 kPa o mayores. 3.3D Ecuaciones para la compresión de gases En sopladores o ventiladores y compresores, los cambios de presión son considerables por lo que se presenta un flujo compresible. Puesto que la densidad varía de manera notable, la ecuación de balance de energía mecánica debe escribirse de forma diferencial e integrarse para obtener el trabajo de compresión. En la compresión de gases se eliminan los términos de carga estática, carga de Cap. 3 Principios de la lransferencia de momento lineal y aplicaciones 1 5 9 velocidad y fricción, y sólo quedan (en la forma diferencial de la ecuación de energía mecánica) el término de trabajo dW y el término dplp; es decir, La integración entre la presión de aspiraciónpI y la presión de descargap2, nos proporciona el trabajo de compresión, (3.3-10) Para integrar la ecuación (3.3-10) para un gas perfecto, se supone una compresión adiabática o isotérmica. Para una compresión isotérmica, en la que el gas se enfría al comprimirlo, pIp es una constante igual a RT/M, donde R = 8314.3 J/kg mol . K {en unidades SI) y 1545.3 pie . lbf/“R (en unidades del sistema inglés). Entonces, Pl _ P- - - PI P Si se despeja p en la ecuación (3.3-11) y se sustituye en la ecuación (3.3-lo), el trabajo para la compresión isotérmica es log% Además, puesto que el proceso es isoténnico, 7’, = T2. Para una compresión adiabática, el fluido sigue una trayectoria isoentrópica, y p1- 0 ( 1 Y P- P (3.3-12) (3.3-13) donde y = c,/c,; esto es, la relación de las capacidades caloríficas. Combinando las ecuaciones (3.3- 10) y (3.3-íl) e integrando, -w = y Rq- - s y-1M Las temperaturas adiabáticas están relacionadas por la expresión T2 = pz ( 1 (y-l”y T Pl Para calcular la potencia al freno, cuando la eficiencia es q, (3.3-14) (3.3-15) kW al freno = CVygo, donde m = kg gas Is y W, = J/kg. (3.3-16) 160 3.3 Bombas y equipo para manejar gases Los valores de y son, aproximadamente, 1.40 para aire, 1.3 1 para metano, 1.29 para SOZ, 1.20 para etano y 1.40 para N2 (Pl). Para una relación de compresión, dada el trabajo de compresión isotérmica de la ecuación (3.3-12) es inferior al trabajo de compresión adiabática de la ecuación (3.3-14). Por consiguiente, algunos compresores requieren enfriamiento. EJEMPLO 3.3-3. Compresión de metano Un compresor de una sola etapa tiene que comprimir 7.56 x lOe3 kg mol/s de metano gaseoso a 26.7 “C y 137.9 kPa abs a 551.6 kPa abs. a) Calcúlese la potencia necesaria si la eficiencia mecánica es de 80% y la compresión es adiabática. b) Repítase el cálculo para la compresión isotérmica. Solución: Para el inciso a),pl = 137.9 kPa,pz = 551.6 kPa, M= 16.0 kg masalkg mal, y T, = 273.2 + 26.7 = 299.9 K. El gasto másico por segundo es m = (7.56 x 10m3 kg mol/s)(l6.0 kg/mol kg) = 0.121? Sustituyendo en la ecuación (3.3-14) el valor y = 1.31 para el metano yp2/pI = 551.6/137.9 = 4.011, (Y-l)/Y - 1 = ( 1.:,!l)8314~~~9.9)[(q)ll~3’-““~3’ eI] = 256300 Jlkg Al usar la ecuación (3.3-16), -W,m kW al freno = m = (256300)0.121 0.80( 1000) = 38.74 kW(52.0 hp) Para el inciso b), usando la ecuacion (3.3-12) para compresión isotérmica, _ w s = 2.3026RT log- = 2.3026(8314.3>(299.9> M PI 16.0 1og; = 216000 J/kg -W,m kW al freno = m = (216000)0.121 0.80( 1000) = 32.67 kW (43.8 hp) Por tanto, la compresión isotérmica requiere 15.8% menos potencia. Cap. 3 Principios de la transferencia de momento lineal y aplicaciones 1 6 1 3.4 AGITACIÓN Y MEZCLADO DE FLUIDOS Y NECESIDADES DE POTENCIA 3.4A Objetivos de la agitación En las industrias químicas de procesos y en otras semejantes, muchas operaciones dependen en alto grado de la agitación y mezclado eficaz de los fluidos, Por lo general, la agitación se refiere a forzar un fluido por medios mecánicos para que adquiera un movimiento circulatorio en el interior de un recipiente. El mezclado implica partir de dos fases individuales, tales como un fluido y un sólido pulverizado o dos fluidos, y lograr que ambas fases se distribuyan al azar entre sí. Existen varios objetivos en la agitación de fluidos y algunos de ellos son: 1. Mezclado de dos líquidos miscibles, tales como alcohol etílico y agua. 2. Disolución de sólidos en líquidos, tales como sal en agua. 3. Dispersión de un gas en un líquido en forma de burbujas pequeñas, como en el caso del oxígeno del aire en una suspensión de microorganismos para la fermentación, o para el proceso de activación de lodos en el tratamiento de aguas de desperdicio. 4. Suspensión de partículas sólidas finas en un líquido, tal como en la hidrogenación catalítica de un líquido, donde las partículas del catalizador sólido y las burbujas de hidrógeno se dispersan en un líquido. 5. Agitación de un fluido para aumentar la transferencia de calor entre dicho fluido y un serpentín o una camisa en las paredes del recipiente. 3.4B Equipo para agitación Generalmente, los líquidos se agitan en un recipiente cilíndrico que puede estar cerrado o abierto. La altura del líquido debe equivaler en forma aproximada al diámetro del tanque. Un motor eléctrico impulsa al propulsor agitador, que está montado en un eje. En la figura 3.4-l se muestra un sistema de agitación típico. 1. Agitador propulsor de tres aspas. Existen varios tipos de agitadores de uso común. Uno de los más conocidos es el agitador de tres aspas de tipo marino, similar a la hélice de un motor fuera de borda para lanchas. El agitador puede ser móvil para introducirlo lateralmente en el tanque o estar montado en la pared de un tanque abierto, en posición desplazada del centro. Estos agitadores giran a velocidades de 400 a 1750 rpm (revoluciones por minuto) y son propios para líquidos de baja viscosidad. En la figura 3.4-l se muestra el patrón de flujo en un tanque con deflectores y con un propulsor colocado en el centro del tanque. Este tipo de patrón de flujo se llamaflujo axial, ya que el fluido fluye axialmente hacia abajo en el eje central o eje de la hélice y hacia arriba a los lados del tanque, como se muestra en la citada figura. Ca) deflectores (b) FIGURA 3.4- 1. Tanque con deflectores y agitador de turbina de paletas planas con patrh de flujo axial. aj vista lateral, b) vista del fondo. 162 3.4 Agitación y mezclado de fluidos y necesidades de potencia -l- - * +fF ta) (b) (cl (4 FIGURA 3.4-2 Varios tipos de agitadores: a) paleta de cuatro aspas, b) paleta de compuerta o ancla, c) turbina abierta de seis aspas, d) turbina de aspas inclinadas (45q. 2. Agitadores depaletas. Para velocidades de 20 a 200 rpm se emplean diversos tipos de agitadores de paletas. Tal como lo muestra la figura 3.4-2a se tienen sistemas de dos a cuatro paletas planas. La longitud total del propulsor de paletas mide del 60 al 80% del diámetro del tanque y la anchura de la paleta es de 1/6 a l/lO de su longitud. A bajas velocidades se consigue una agitación suave en un recipiente sin deflectores. A velocidades más altas se usan deflectores porque, sin ellos, el líquido simplemente hace remolinos y en realidad casi no se mezcla. El agitador de paletas no es efectivo para sólidos en suspensión porque, aunque hay un buen flujo radial, hay poco flujo axial o vertical. Se suele usar una paleta de ancla o compuerta, ilustrada en la figura 3.4-2b, la cual barre o raspa las paredes del tanque y a veces su fondo. Se emplea con líquidos viscosos que pueden generar depósitos en las paredes y para mejorar la transferencia de calor hacia las mismas, pero no es buen mezclador. Se suele usar para procesar pastas de almidón, pinturas, adhesivos y cosméticos. 3. Agitadores de turbina. Cuando se procesan líquidos con amplia diversidad de viscosidades se usan turbinas semejantes a un agitador de paletas múltiples con aspas más cortas. El diámetro de una turbina suele medir del 30 al 50% del diámetro del tanque. Normalmente las turbinas tienen cuatro o seis aspas. En la figura 3.4-3 se muestra un agitador de turbina de seis aspas, con disco; en la figura 3.4-2~ se ilustra una turbina plana abierta de seis aspas. Las turbinas con aspas planas producen un flujo radial, como se muestra en la figura 3.4-3. Para dispersar un gas en un líquido, el gas puede hacerse penetrar justo por debajo del propulsor de la turbina en su eje; de esa manera las paletas dispersan el gas en muchas burbujas tinas. Con la turbina de hojas inclinadas que se muestra en la figura 3.4-2d, con las aspas a 45”, se imparte cierto flujo axial, de modo que hay una combinación de flujos radial y axial. Este tipo es útil para sólidos en suspensión, ya que las corrientes fluyen hacia abajo y luego levantan los sólidos depositados. 4. Agitadores de banda helicoidal. Este tipo de agitadores se usa para soluciones sumamente viscosas y opera a pocas rpm, en la región laminar. La banda se forma en una trayectoria helicoidal y está unida a un eje central. El líquido se mueve en una trayectoria de flujo tortuosa hacia abajo en el centro y hacia arriba a los lados, con movimiento de giro, Otros tipos semejantes son el de banda helicoidal doble y el de banda helicoidal con tornillo. Cap. 3 Principios de la transferencia de momento lineal y aplicaciones 163 5. Selección del agitador e intervalos de viscosidad. La viscosidad del fluido es uno de los diferentes factores que influyen en la selección del tipo de agitador. En seguida se dan algunas indicaciones de los intervalos de viscosidad de esos agitadores. Los propulsores se usan para viscosidades del fluido inferiores a 3 Pa . s (3000 cp); las turbinas pueden usarse por debajo de unos 100 Pa . s (100000 cp); las paletas modificadas como los agitadores tipo ancla se pueden usar desde más de 50 Pa . s hasta unos 500 Pa . s (500000 cp); los agitadores helicoidales y de tipo banda se suelen usar desde arriba de este intervalo hasta cerca de 1000 Pa * s y se han utilizado hasta para más de 25000 Pa . s. Para viscosidades mayores de unos 2.5 a 5 Pa . s (5000 cp) o más, los deflectores no se necesitan porque hay poca turbulencia. \ motor Deflectores ta) (b) H Brecha FIGURA 3.4-3 Tanque con deflectores con un agitador de turbina de seis aspas con disco, que muestra patrones de jlujo: a) vista lateral, b) vista superior, c) dimensiones de la turbina y el tanque. 3.4C. Trayectoria del flujo en la agitación La trayectoria del flujo en un tanque de agitación depende de las propiedades del fluido, de la geometría del tanque, del tipo de deflectores y del propio agitador. Si el propulsor u otro agitador va montado verticalmente en el centro del tanque sin deflectores, casi siempre se desarrolla una trayectoria de flujo tipo remolino. Esto suele ser indeseable debido a que se atrapa aire, se desarrolla un vórtice considerable y ocurren oleadas y otros efectos perjudiciales, en especial cuando se opera a velocidades altas. Para evitar esto, puede usarse una posición angular desplazada del centro cuando se trata de propulsores de baja potencia. Sin embargo, para agitación vigorosa a potencias altas, las fuerzas no equilibradas pueden ser severas y limitar el uso de esas potencias. Para lograr una agitación vigorosa conagitadores verticales, se acostumbra el empleo de deflectores para reducir el tamaño del remolino y obtener así un buen mezclado. En la figura 3.4-3 se muestran deflectores montados en las paredes en posición vertical. Casi siempre basta con cuatro deflectores, que tengan anchura de cerca de & del diámetro del tanque para turbinas y propulsores. El impulsor de la turbina fuerza al líquido en dirección radial hasta las paredes donde se divide, en una porción que fluye hacia arriba, hasta tocar la superficie para regresar hacia el propulsor, mientras la otra porción fluye hacia abajo. Algunas veces, cuando se trata de tanques con grandes profundidades de líquido en comparación con el diámetro del tanque, se montan dos o tres propulsores en el mismo eje, y cada uno actúa como un mezclador individual. El propulsor inferior está cerca de 1 .O diámetro del propulsor por arriba del fondo del tanque. 1 6 4 3.4 Agitación y mezclado de fluidos y necesidades de potencia En un sistema de agitación, el gasto volumétrico del fluido que mueve el impulsor (esto es, la velocidad de circulación), es un factor muy importante para asegurarse de agitar la totalidad del volumen del mezclador en tiempo razonable. Además, la turbulencia en la corriente de agitación es decisiva para el mezclado, puesto que arrastra al material hacia la corriente. Algunos sistemas de agitación requieren una alta turbulencia con velocidades de circulación bajas; otros se basan en turbulencias bajas con altas velocidades de circulación. Esto casi siempre depende de los tipos de fluidos que se mezclan y del grado de mezclado que se solicite. 314D Diseño “normal” típico de una turbina El agitador de turbina que se muestra en la figura 3.4-3 es el agitador más usado en las industrias de proceso. Para diseñar un sistema de agitación ordinario, generalmente se usa este tipo de agitador en el diseño inicial. Las proporciones geométricas del sistema de agitación que se considera como el diseño “normal” típico se muestra en la tabla 3.4- 1. Estas proporciones relativas son la base de las correlaciones principales del desempeño de los agitadores en muchas publicaciones. (Véase la nomenclatura en la figura 3.4-3c) En algunos casos, para las correlaciones del agitador, W/D, = 1/8. El número de deflectores en la mayoría de los usos es 4. El claro o brecha entre los deflectores y la pared suele ser de 0.10 a 0.15 J para asegurar que el líquido no forme bolsas estancadas cerca de esa zona. En pocas correlaciones la relación entre el deflector y el diámetro del tanque es J/D, = l/lO en lugar de 1112. 3.4E Potencia consumida en los recipientes de agitación Un factor trascendental en el diseño de un recipiente de agitación es la potencia necesaria para mover el impulsor. Puesto que la potencia requerida para un sistema dado no puede predecirse teóricamente, se tienen correlaciones empíricas para estimar los requerimientos de potencia. La presencia o ausencia de turbulencia puede correlacionarse con el número de Reynolds del impulsor N’R,, que se define como (3.4-l) donde D, es el diámetro del impulsor (agitador) en m, N la velocidad de rotación en rev/s, p la densidad del fluido en kg/m3 y p la viscosidad en kg/m 9 s. El flujo es laminar en el tanque cuando N’Re < 10, turbulento cuando N’Re > 10000 y para un intervalo de 10 a 10000, el flujo es de transición, mostrándose turbulento en el impulsor y laminar en la partes más recónditas del recipiente. El consumo de potencia se relaciona con la densidad del fluido p, su viscosidad p, la velocidad de rotación Ny el diámetro del impulsor Da, por medio de gráficas de número de potencia Np en función de NIRe. El número de potencia es P NP = pN3D,5 (SI) (3.4-2) pgc NP = pN’@ (Unidades del sistema inglés) donde P = potencia en JIS o W. En unidades del sistema inglés, P = pie ’ lbf/s. Cap. 3 Principios de la transferencia de momento lineal y aplicaciones 165 TABLA 3.4-l. Proporciones geométricas para un sistema de agitación “normal” Dn C= 0.3 a 0.5 f-- =4 1 t - = f Dt W 1 Dd-2 1 J 1-----= - __- D, SD, 3 $,=I -=- Dt 1 2 La figura 3.4-4 es una correlación (B3, Rl) de impulsores deuso comúncon líquidos newtonianos contenidos en recipientes cilíndricos con deflectores. En la figura 3.4-3~ se incluyen mediciones dimensionales de los tamaños de los deflectores, el tanque y el impulsor. Estas curvas también son prácticas para tanques sin deflectores cuando l\PRe vale 300 o menos (B3, Rl). Cuando N’R~ es superior a 300, el consumo de potencia en un recipiente sin deflectores es considerablemente menor que en uno con deflectores. Existen también curvas para otros tipos de impulsores (B3, Rl). EJEMPLO 3.4-l. Consumo de potencia en un agitador En un tanque similar al de la figura 3.4-3 se instala un agitador de turbina de aspas planas que tiene seis aspas. El diámetro del tanque D, mide 1.83 m el diámetro de la turbina D,, 0.61 m, D, = H y el ancho W, 0.122 m. El tanque tiene cuatro deflectores, todos ellos con un ancho J= 0.15 m. La turbina opera a 90 rpm y el líquido del tanque tiene una viscosidad de 10 cp y densidad de 929 kg/m3. a) Calcúlense los kilowatts requeridos para el mezclador. b) Con las mismas condiciones (excepto.que la solución tiene ahora una viscosidad de 100000 cp), vuélvase a calcular la potencia requerida. 100 L 6 0 ’ ’ ’ , III I I III I 1111 I ,I III I III 1 2 4 lo 2 4 1o22 4 1o3 2 4 1o42 4 1o~ NRe = D,ZNP P FIGURA 3.4-4 Correlaciones de potencia para diversos impulsores y defectores (véase en la Fig. 3.4-3~ las dimen- siones D,, DI, J y W) Curva 1. Turbina de seis aspas planas (igual a la Fig. 3.4-3 pero con seis aspas); D,/W = 5; cuatro deflectores cada uno con Dt /J = 12. Curva 2. Turbina abierta de seis aspas planas (igual a la Fig. 3.4-2~ pero con seis aspas); D,/W = 8; cuatro deji’ectores con Dt/J = 12. Curva 3. Turbina abierta de seis aspas a 45” (igual a la Fig. 3.4-2d pero las aspas a 45”); D,/W = 8; cuatro dejlectores con Dt/J = 12. Curva 4. Propulsor; inclinacion 20, cuatro deflectores con Dt/J = 10; también es valida para el mismo propulsor en posición angular y desplazado del centro sin dejlectores. Curva 5. Propulsor; inclinación = Da, cuatro dejlectores con Dt /J = 10; también es valida para un propulsor en posición angular desplazada del centro sin dejlectores. [Curvas 1. 2 y 3 reproducidas con permiso de R. L. Bates, P. L. Fondy y R. R. Corpstein. Ind. Eng. Chem. Proc. Des: Dev., 2. 310 (1963). Derechos registrados por la Ameritan Chemical Society. Curvas 4 y 5 tomadas con permiso de J. H. Rushton, E. W. Costich y H. J. Everett. Chem. Eng. Progr.. 46, 395, 467 (1950).] 166 3.4 Agitación y mezclado de fluidos y necesidades de potencia Solución: Para el inciso a) se cuenta con los datos siguientes: D, = 0.61 m, W= 0.122 m, D,= 1.83 m, J= 0.15 m, N= 90/60 = 1.50 rev/s, p = 929 kg/m3 y kg p = (10.0 cp)(l x 10w3) = 0.01 G = 0.01 Pa . s Al aplicar la ecuación (3.4-l), el número de Reynolds es NrRe = @ = (“‘61)2(1’50)929 = 5 1‘35 x 104 P 0.01 . Considérese la curva 1 en la figura 3.44, puesto que D, /W = 5 y D, /J = 12, Np = 5 para NRe = 5 1850. Al despejar P en la ecuación (3.4-2) y sustituir los valores conocidos, P = N,pN3~,5 = 5 (929)(1.50)3(0.61)5 = 1324 J/s = 1.324 kW (1.77 hp) Para el inciso b), k p= 100 OOO(1 x 10-j) = 100 -m.s N’ Re = (“‘61)2(1’50)929 = 5 1‘35 100 Esta es la región de flujo laminar. Con base en la figura 3.4-4, Np = 14. P = (14)(929)(l.50)3(0.61)5 = 3707 J/s = 3.71 kW (4.98 hp) Por lo anterior, un aumento de 10000 veces en la viscosidad sólo incrementa el consumo de potencia de 1.324 a 3.71 kW. Las diversas relaciones geométricas que difieren del diseño “normal” pueden tener diferentes efectos en el número de potencia Np en la región turbulenta de los distintos agitadores de turbina, como se indica (B3). 1. Para la turbina abierta de seis aspas planas, Np CC ( W/D,)“‘. 2. Para la turbina abierta de seis aspas planas, si se hace varias D, /D, de 0.25a 0.50 prácticamente no hay efectos sobre Np. 3. Para dos turbinas abiertas de seis aspas instaladas en el mismo eje, y si el espaciamiento entre los dos impulsores (la distancia vertical entre los bordes inferiores de las dos turbinas) es al menos igual a Da, la potencia total es 1.9 veces la de un impulsor de una aspa plana. Para dos turbinas de seis aspas inclinadas (45”), la potencia también es de cerca de 1.9 veces la de un impulsor de aspa inclinada. 4. Un tanque cuadrado vertical con deflectores y un tanque cilíndrico horizontal tienen el mismo número de potencia que un tanque cilíndrico vertical, pero en ellos se producen patrones de flujo marcadamente diferentes. Cap. 3 Principios de la transferenciu de momento lineal y aplicaciones 161 El número de potencia de un agitador simple de tipo ancla, semejante al de la figura 3.4-2b pero sin las dos barras transversales horizontales, es como sigue para NIRe < 100 (H2): NP = 215(hrR )-“.955e (3.4-3) donde Da ID, = 0.90, W/D, = 0.10 y UD, = 0.05. El número de potencia para un agitador de banda helicoidal para líquidos muy viscosos, con hpR, < 20, es como se indica (H2,P3). Np = 186(M& (paso del agitador/diámetro del tanque = 1.0) (3.4-4) Np = 290(IVR,)-’ ( p aso del agitador/diámetro del tanque = 0.5) (3.4-5) Las proporciones dimensionales típicas que se usan son D, /D,= 0.95, con algunas tan bajas como 0.75, y W/D, = 0.095. 3.4F Aumento de escala de los agitadores 1. Introducción. En las industrias de procesos los datos experimentales suelen estar disponibles a partir de un sistema de agitación de tamaño de laboratorio o de unidad piloto, y se desea aumentar la escala de los resultados para diseñar una unidad a escala completa. Como hay una gran diversidad en los procesos cuya escala se debe aumentar, no hay un solo método que pueda manejar todos los tipos de problema de aumento de escala, y hay muchas maneras de hacer esto. La semejanza geométrica es importante, por supuesto, y es la más fácil de lograr. La semejanza cinemática puede definirse en términos de razones de velocidades o de tiempos (R2). La semejanza dinámica requiere proporciones fijas de fuerzas viscosas, inerciales o gravitatorias. Aun si se logra la semejanza geométrica, las semejanzas dinámica y cinemática no siempre se pueden obtener al mismo tiempo. Por consiguiente, a veces lo que el diseñador debe hacer es confiar en su buen juicio y experiencia para hacer el aumento de escala. En muchos casos, los objetivos principales que se presentan en un proceso de agitación son los siguientes: igual movimiento de líquidos, como en la mezcla de líquidos, donde el movimiento o velocidad correspondiente de los líquidos es aproximadamente igual en ambos casos; igual suspensión de sólidos, donde los niveles de suspensión son iguales; e iguales tasas de transferencia de masa, donde la transferencia de masa ocurre entre una fase líquida y una sólida, entre dos fases líquidas, etc., y las tasas son iguales. 2. Procedimiento de aumento de escala. En seguida se sugiere un procedimiento paso a paso para aumentar de escala desde las condiciones iniciales, donde los tamaños geométricos dados en la tabla 3.4-l son D,l, DT~, HI, WI, y así sucesivamente, hasta las condiciones finales de Da 2, DT~, y así sucesivamente. 1. Calcule la razón de aumento de escala R. Suponiendo que el recipiente original es un cilindro estándar con DT~ = HI, el volumen VI es (3.4-6) 1 6 8 3.4 Agitación y mezclado de fluidos y necesidades de potencia Por tanto, la relación entre los volúmenes es Así, la relación de aumento de escala es (3.4-7) (3.4-8) 2. Al usar este valor de R, aplíquelo a todas las dimensiones de la tabla 3.4-l para calcular las nuevas dimensiones. Por ejemplo, Da2 = RDa1, J2 = RI,, ... (3.4-9) 3. Después debe elegirse una regla de aumento de escala y aplicarse para determinar la rapidez del agitador N2 que debe usarse para duplicar los resultados a pequeña escala que se obtuvieron empleando NI. Esta ecuación es la siguiente (R2): N2=N, (+)“=N@) (3.4-10) donde n = 1 para igual movimento de líquidos, y1= f para igual suspensión de sólidos, y n = f para iguales tasas de transferencia de masa (lo que equivale a igual potencia por volumen unitario). Este valor de IZ se basa en consideraciones empíricas y teóricas. 4. Al conocer N2, la potencia necesaria puede determinarse usando la ecuación (3.4-2) y la figura 3.4-4. EJEMPLO 3.4-2. Deducción del exponente de la regla de aumento de escala Para el exponente n de la regla de aumento de escala de la ecuación (3.4-lo), demuestre lo siguiente para la agitación turbulenta. a) Que cuando II = 5, la potencia por volumen unitario es constante en el aumento de escala. b) Que cuando n = 1 .O, la velocidad de la punta es constante en el aumento de escala. Solución: Para el inciso a), se ve en la figura 3.4-4 que Np es constante para la región turbulenta. Entonces, a par& de la ecuación (3.4-2), - P, = N,pN: D,‘, (3.4-l 1) Así, para igual potencia por volumen unitario, P,IV, = P#‘2 , o, usando la ecuación (3.4-6), pl- 4 p2 p2- - - v, TcD;, /4 = v, = nD;, /4 (3.4-12) Cap. 3 Principios de la transferencia de momento lineal y aplicaciones 169 Al sustituir Pt de la ecuación (3.4-l 1) y también una ecuación semejante para P2 en la ecuación (3.4-12) y combinándolas con la ecuación (3.4-g), 213 N2 = N, (3.4-13) Para el inciso b), usando la ecuación(3.4-10) con ~t = 1.0, reordenando y multiplicando por TC, D,, “O Nx=Nl D,,t-1 (3.4-14) nDT2N2 = xDTIN1 (3.4-15) donde 7cDT2 N2 es la velocidad del extremo en mls. Para ayudar al diseñador de nuevos sistemas de agitación y para que sirvan como guía para evaluar los sistemas existentes, en seguida se dan algunas indicaciones aproximadas para líquidos de viscosidades normales (M2): para agitación y mezclado suave, 0.1 a 0.2 kW/m3 de fluido (0.0005 a 0.001 hp/gal); para agitación vigorosa, 0.4 a 0.6 kW/m3 (0.002 a 0.003 hp/gal); para agitación intensa o cuando la transferencia de masa es importante, 0.8 a 2.0 kW/m3 (0.004 a 0.0 10 hp/gal). Esta potencia en kilowatts es la potencia real proporcionada al fluido como se indica en la figura 3.4-4 y en la ecuación (3.4-2). Esto no incluye la potencia que se usa en las cajas de engranajes y chumaceras. Las eficiencias típicas de los motores eléctricos se dan en la sección 3.3B. Como una aproximación, la pérdida de potencia en las cajas de engranajes y chumaceras y en la ineticiencia del motor eléctrico es de entre el 30 y el 40% de P, la entrada de potencia real en el fluido. EJEMPLO 3.4-3. Aumento de escala de un sistema de agitación de turbina Cierto sistema de agitación existente es igual al del ejemplo 3.4-la para una turbina de aspa plana con un disco y seis aspas. Las condiciones y los tamaños son DT1 = 1.83 m, D,, = 0.61 m, W, = 0.122 m, JI = 0.15 m, NI = 90/60 = 1.50 rev/s, p = 929 kg/m3 y p = 0.01 Pa . s. Se desea aumentar la escala de estos resultados para un recipiente cuyo volumen es 3.0 veces mayor. Realice esto para los siguientes objetivos de proceso. a) Cuando se desea igual cantidad de transferencia de masa. b) Cuando se necesita igual movimiento de líquido. Solución: Puesto que HI = DT1 = 1.83 m, el volumen del tanque original Vt = (n&/4 (H1)=x(1.83)3/4=4.813m3.Elvolumenes V,=3.0(4.813)= 14.44m3. Siguiendolospasos del procedimiento de aumento de escala, y usando la ecuación (3.4-g), R= (2)j13 z(%)“~ = 1.442 Las dimensiones del sistema de agitaciónmás grande son como sigue: L?T2 =R& 1 = 1.442( 1.83) = 2.64 m, Da2 = 1.442(0.61) = 0.880 m, W 2 = 1.442(0.122) = 0.176 m, y JI = 1.442(0.15)= 0.216 m. 170 Para el inciso a), para N2 = N, 3.4 Agitación y mezclado de fluidos y necesidades de potencia igual transferencia de masa, n = + en la ecuación (3.4-10). (i)“’ = (1.50)(&)2i) = 1.175 rev/s (70.5 rpm) Al usar la ecuación (3.4-l), Ar = D,2N, (0.880)2(1.175)929 R e -= P 0.01 = 8.453 x lo4 Utilizando Np = 5.0 en la ecuación (3.4-2) P2 = Npp~; 0a2 = 5.0(929)(1.175)3(0.880)5= 3977 J/s = 3.977 kW La potencia por volumen unitario es 4 1.324 v,- - -= 4.813 0.2752 kWlm3 p2 3.977 v, = m= 0.2752 kW/m3 El valor de 0.2752 kW/m3 es un poco menor que el de las indicaciones aproximadas de 0.8 a 2.0 para la transferencia de masa. Para el inciso (b), para igual movimiento de líquido, n = 1 .O. 1.0 = 1.040 rev/s P2 = 5.0(929>(1.040)3(0.880)5 = 2757 Jís = 2.757 kW Le 2.757P y2 * - 1444 0.1909 kW/m3 3.4G Tiempos de mezcla para los líquidos miscibles En uno de los métodos que se usan para estudiar el tiempo de mezcla de los líquidos miscibles, se agrega cierta cantidad de ácido clorhídrico a un equivalente de NaOH y se anota el tiempo requerido para que el indicador cambie de color. Ésta es una medida del mezclado de las moléculas. También se usan otros métodos experimentales. Cerca del impulsor se verifica una mezcla rápida, y una mezcla más lenta (que depende de la tasa de circulación de bombeo) en las zonas más externas. En la figura 3.4-5 se da una correlación del tiempo de mezcla para un agitador de turbina (B5, M5, NI). El factor adimensional de mezclaf; se define como (3.4-16) Cap. 3 Principios de la transferencia de momento lineal y aplicaciones 1 7 1 donde tT es el tiempo de mezcla en segundos. Para hr,, >lOOO, como f; es aproximadamente constante, entonces tT$13 es constante. Para algunas otras mezcladoras se ha demostrado que t,N es aproximadamente constante. Para aumentar la escala del recipiente 1 a otro recipiente 2 de diferente tamaño, pero con igual geometría y con la misma potencia/volumen unitario en la región turbulenta, los tiempos de mezcla se relacionan mediante tT2 Da2 ““* -= - tTl L 1DOI (3.4-17) Por tanto, el tiempo de mezcla aumenta para el recipiente más grande. Al aumentar la escala se mantiene el mismo tiempo de mezcla y la potencia /volumen unitario P/V aumenta marcadamente. l (Wb) s 1�4 ---= ( 1(W☺ 4 (3.4-18) Normalmente, cuando se aumenta la escala para los recipientes de gran tamaño, se utiliza un tiempo de mezcla un tanto mayor, de modo que la potencia /volumen unitario no aumente demasiado. 1O3 lo* 1 0 ND:PN’ - - Re- P FIGURA 3.4-5 Correlación del tiempo de mezcla para líquidos miscibles usando una turbina en un tanque con defectores (para turbina simple, una turbina con disco y una turbina con aspas inclina- das). [De “Flow Patterns and Mixing Rates in Agitated Vessels” por K. W. Norwood y A. B. Metzner, A. I. Ch. E. J., 6, 432 (1960). Reproducido con autorización del Ameritan hstitute of Chemical Engineers, 1960.1 El tiempo de mezcla para un agitador de banda helicoidal es el siguiente para MRe < 20 (H2). N,r = 126 (paso del agitador/diámetro del tanque = 1.0) (3.4-19) NtT = 90 (paso del agitador/diámetro del tanque = 0.5) (3.4-20) < Para líquidos muy viscosos, la mezcladora de banda helicoidal da un tiempo de mezcla mucho menor que una turbina para la misma potencia/volumen unitario (M5), pero para líquidos no viscosos, da tiempos mayores. 172 3.4 Agitación y mezclado de fluidos y necesidades de potencia Biggs (B5) da una correlación de tiempo de mezcla para un agitador propulsor en un tanque con deflectores, Fox y Gex (Fl) la dan para un tanque sin deflectores. 3.4H Número de flujo y rapidez de circulación en la agitación Un agitador funciona como un impulsor de bomba centrífuga sin carcasa, y genera un flujo con cierta carga de presión. Esta tasa de circulación Q en m3/s a partir del borde del impulsor es la cantidad de flujo perpendicular al área de descarga del impulsor. Las velocidades de flujo se han medido en las mezcladoras y se han usado para calcular la rapidez de circulación. Los datos para los recipientes con deflectores se han correlacionado usando el número de flujo adimensional NQ (Ul). l e NQ = jI☺o,3 (3.4-21) NQ = 0.5 propulsor marino (paso = diámetro) NQ = 0.75 turbina de seis aspas con disco (W/D, = $) NQ = 0.5 turbina de seis aspas con disco (W/D, = f) NQ = 0.75 turbina con aspas inclinadas (W/D, = i) 3.41 Sistemas de agitación especiales 1. Suspensión de sólidos.En algunos sistemas de agitación se suspende un sólido en el líquido agitado. Hay ejemplos en los que un sólido finalmente disperso se debe disolver en el líquido, se suspenden microorganismos en la fermentación, se debe producir una mezcla homogénea de sólido y líquido para alimentar un proceso o se usa un sólido suspendido como catalizador para apresurar una reacción. La suspensión de sólidos es un tanto parecida a un lecho fluidizado. En el sistema agitado, las corrientes de circulación del líquido conservan las partículas en suspensión. La cantidad y tipo de agitación necesaria depende principalmente de la velocidad terminal de sedimentación de las partículas, la cual puede calcularse usando las ecuaciones de la sección 14.3. En las referencias (M2, Wl) se dan ecuaciones empíricas para predecir la potencia requerida para suspender partículas. 2. Dispersión de gases y líquidos en líquidos. En los procesos de dispersión de gas-líquido, el gas se introduce por debajo del impulsor, que corta el gas en burbujas sumamente finas. El tipo de agitación determina el tamaño de las burbujas y el área interfacial total. Los más típicos de estos procesos son la aereación en plantas de tratamiento de aguas negras, la hidrogenación de líquidos mediante hidrógeno gaseoso en presencia de un catalizador, la absorción del soluto de un gas mediante un líquido, y la fermentación. Se dispone de correlaciones para predecir el tamaño de la burbuja, la demora y la potencia en kilowatts necesaria (C3, Ll, Zl). Para líquidos dispersos en líquidos inmiscibles, véase la referencia (Tl). La potencia requerida por el agitador en los sistemas de dispersión gas-líquido puede ser hasta del 10 al 50% menos de la que se necesita cuando no hay gas presente (C3, T2). 3. Mezcladoras sin movimiento. La mezcla de dos fluidos puede realizarse en mezcladoras inmóviles que no tienen partes móviles. En estos dispositivos comerciales, unos elementos estacionarios que se encuentran dentro de una tubería dividen sucesivamente porciones de la corriente y luego las Cap. 3 Principios de la transferencia de momento lineal y aplicaciones 173 recombinan. En un tipo de mezcladoras, un elemento helicoidal corto divide la corriente ‘en dos y la hace girar 180”. El segundo elemento, puesto a 90” respecto al primero, vuelve a dividir la corriente en dos. Por cada elemento existen 2 divisiones y recombinaciones, o 2n para IZ elementos en serie. Para 20 elementos ocurren cerca de lo6 divisiones. Hay disponibles otros tipos que consisten en barras o placas planas colocadas a lo largo en una tubería. Las caídas a baja presión son características de todos estos tipos de mezcladoras, y en ellas es bastante buena la mezcla incluso de materiales sumamente viscosos. 3.45 Mezclado de polvos, materiales viscosos y pastas 1. Polvos. Al mezclar partículas sólidas (o polvos) es necesario desplazar algunas partes de la mezcla en polvo con respecto a las porciones restantes. Los dispositivos más simples propios para un mezclado poco vigoroso son los tambores giratorios. Sin embargo, no sirven para romper aglomerados. Entre los dispositivos de mezclado giratorio, uno de los tipos más comunes es el mezclador cónico, en el que se montan dos conos unidos por sus extremos abiertos, que giran tal como lo muestra la figura 3.4-6a, aunque también pueden emplearse deflectores internos. Si el cono incluye en su interior un dispositivo de rotación, el sistema puede romper aglomerados. Otras geometrías usadas son un cilindro con deflectores internos o el mezclador en V de doble cuerpo. Los mezcladores adaptados para romper aglomerados son cilindros o conos giratorios en los que se cargan también bolas o cilindros de metal o porcelana. Otro tipo de dispositivos para el mezclado de sólidos es el llamado de coraza estacionaria, donde el recipiente está inmóvil y el desplazamiento del material se logra por medio de dispositivos giratorios internos, simples o múltiples.