Buscar

Encontrar por intermédio da integração por partes a integral indefinida dada por x a. ½.e .(senx – cosx) + C. b. ½.e .(senx + cosx) + C. c. e .(se...

Encontrar por intermédio da integração por partes a integral indefinida dada por

x
a. ½.e .(senx – cosx) + C.
b. ½.e .(senx + cosx) + C.
c. e .(senx + cosx) + C.
d. e .(senx – cosx) + C.
e. (senx + cosx) + C.

Essa pergunta também está no material:

UN 1 - Avaliação Objetiva (1)
2 pág.

Cálculo III Faculdade MultivixFaculdade Multivix

💡 1 Resposta

User badge image

Ed Verified user icon

Para encontrar a integral indefinida de x por intermédio da integração por partes, é necessário escolher uma função u e sua derivada du, e outra função dv e sua integral v, de modo que a integral de x possa ser escrita como a integral de u.dv. Nesse caso, podemos escolher u = sen(x) e dv = e^cos(x)dx. Então, temos que du/dx = cos(x) e v = e^cos(x). Aplicando a fórmula de integração por partes, temos: ∫ e^cos(x)sen(x)dx = e^cos(x)sen(x) - ∫ e^cos(x)cos(x)dx Agora, podemos escolher u = cos(x) e dv = e^cos(x)dx. Então, temos que du/dx = -sen(x) e v = e^cos(x). Aplicando novamente a fórmula de integração por partes, temos: ∫ e^cos(x)cos(x)dx = e^cos(x)cos(x) + ∫ e^cos(x)sen(x)dx Substituindo essa integral na primeira equação, temos: ∫ e^cos(x)sen(x)dx = e^cos(x)sen(x) - e^cos(x)cos(x) - ∫ e^cos(x)sen(x)dx Somando ∫ e^cos(x)sen(x)dx em ambos os lados, temos: 2∫ e^cos(x)sen(x)dx = e^cos(x)sen(x) - e^cos(x)cos(x) + C Dividindo por 2, temos: ∫ e^cos(x)sen(x)dx = 1/2 e^cos(x)(sen(x) - cos(x)) + C Portanto, a alternativa correta é a letra a) ½.e .(senx – cosx) + C.

0
Dislike0

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis


✏️ Responder

SetasNegritoItálicoSublinhadoTachadoCitaçãoCódigoLista numeradaLista com marcadoresSubscritoSobrescritoDiminuir recuoAumentar recuoCor da fonteCor de fundoAlinhamentoLimparInserir linkImagemFórmula

Para escrever sua resposta aqui, entre ou crie uma conta.

User badge image

Outros materiais