Logo Passei Direto
Buscar
36. Dois tubos cilíndricos verticais 1 e 2 (ver figura) têm áreas de secção de 0,5 m2 e 0,1 m2 respectivamente. As extremidades inferiores estão ligadas por um tubo estreito de secção desprezível e dotado de uma válvula que se encontra inicialmente fechada. Encheram-se os tubos com líquidos não miscíveis de pesos específicos g1=800 kgf/m3 e g2=1200 kgf/m3 até à altura de 0,1 m e 0,25 m respectivamente. Determinar os níveis h1 e h2 após a abertura da válvula.

User badge image
Questões Para o Saber

há 2 anos

Respostas

User badge image

Ed Verified user icon

há 2 anos

Para resolver esse problema, podemos utilizar a equação de Bernoulli, que relaciona a pressão, a altura e a velocidade de um fluido em um ponto com a pressão, a altura e a velocidade em outro ponto. Antes de abrir a válvula, a pressão em ambos os tubos é a mesma, pois estão abertos para a atmosfera. Assim, podemos igualar as pressões em ambos os tubos: P1 + ρ1gh1 = P2 + ρ2gh2 Onde: P1 e P2 são as pressões nos tubos 1 e 2, respectivamente; ρ1 e ρ2 são as densidades dos líquidos nos tubos 1 e 2, respectivamente; g é a aceleração da gravidade; h1 e h2 são as alturas dos líquidos nos tubos 1 e 2, respectivamente. Como os tubos estão ligados por um tubo estreito de secção desprezível, a velocidade do fluido é a mesma em ambos os tubos. Assim, podemos igualar as velocidades: A1v1 = A2v2 Onde: A1 e A2 são as áreas das seções transversais dos tubos 1 e 2, respectivamente; v1 e v2 são as velocidades dos líquidos nos tubos 1 e 2, respectivamente. Como os líquidos são não miscíveis, não há mistura entre eles. Assim, a altura total dos líquidos nos tubos é a mesma: h1 + h2 = 0,1 + 0,25 = 0,35 m Agora, podemos resolver o sistema de equações para encontrar as alturas h1 e h2 após a abertura da válvula: P1 + ρ1gh1 = P2 + ρ2gh2 A1v1 = A2v2 h1 + h2 = 0,35 Substituindo a segunda equação na primeira, temos: P1 + ρ1gh1 = P2 + ρ2gh2 v1 = (A2/A1)v2 h1 + h2 = 0,35 Substituindo a segunda equação na terceira, temos: h1 + (A1/A2)h1 = 0,35 Simplificando, temos: h1(1 + A1/A2) = 0,35 Substituindo os valores numéricos, temos: h1(1 + 0,5/0,1) = 0,35 h1(6) = 0,35 h1 = 0,0583 m Substituindo na equação h1 + h2 = 0,35, temos: 0,0583 + h2 = 0,35 h2 = 0,2917 m Assim, as alturas dos líquidos nos tubos 1 e 2 após a abertura da válvula são h1 = 0,0583 m e h2 = 0,2917 m, respectivamente.

Essa resposta te ajudou?

0
Dislike0
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar essa resposta. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

Mais conteúdos dessa disciplina