Ed
ano passado
Para calcular o valor de \( f(\sqrt{2}, 2) \) na função \( f(x, y) = \frac{x^2 - y}{5} \), siga os passos: 1. Substitua \( x \) por \( \sqrt{2} \) e \( y \) por \( 2 \): \[ f(\sqrt{2}, 2) = \frac{(\sqrt{2})^2 - 2}{5} \] 2. Calcule \( (\sqrt{2})^2 \): \[ (\sqrt{2})^2 = 2 \] 3. Substitua na função: \[ f(\sqrt{2}, 2) = \frac{2 - 2}{5} \] 4. Simplifique: \[ f(\sqrt{2}, 2) = \frac{0}{5} = 0 \] Portanto, o valor de \( f(\sqrt{2}, 2) \) é \( 0 \).