Ed
há 11 meses
Para calcular a armadura principal de flexão de um pilar intermediário utilizando o método do pilar padrão conforme a NBR 6118/2014, siga os passos abaixo: 1. Dados do Pilar: - Seção transversal: 20 cm x 40 cm - Concreto: C30 (fck = 30 MPa) - Aço: CA-50 (fy = 500 MPa) - Comprimento equivalente: 300 cm - Esforço normal: 1.500 kN 2. Cálculo da área da seção: - A área da seção transversal (A) = 20 cm x 40 cm = 800 cm² = 0,08 m². 3. Cálculo da resistência do concreto: - A resistência à compressão do concreto (fcd) = fck / γc, onde γc = 1,5 (coeficiente de segurança). - fcd = 30 MPa / 1,5 = 20 MPa. 4. Cálculo da capacidade de carga do pilar: - Nrd = A * fcd = 0,08 m² * 20 MPa = 1.600 kN. 5. Verificação do esforço normal: - Como o esforço normal de 1.500 kN está abaixo da capacidade de 1.600 kN, o pilar está seguro. 6. Cálculo da armadura de flexão: - Para calcular a armadura de flexão, utilize a fórmula: \[ M_{ed} = N_{ed} \cdot (h/2) \quad \text{(considerando a altura útil)} \] - Onde \( M_{ed} \) é o momento fletor, \( N_{ed} \) é o esforço normal e \( h \) é a altura da seção. 7. Cálculo da altura útil (d): - Considerando uma cobertura de 2,5 cm para a armadura superior e inferior, a altura útil \( d \) = 40 cm - 2,5 cm = 37,5 cm. 8. Cálculo do momento fletor: - \( M_{ed} = 1.500 kN \cdot 0,375 m = 562,5 kNm \). 9. Cálculo da armadura necessária: - Utilize a fórmula para a armadura de tração: \[ A_{s} = \frac{M_{ed}}{0,87 \cdot f_{y} \cdot d} \] - Substituindo os valores: \[ A_{s} = \frac{562,5 \times 10^6}{0,87 \cdot 500 \cdot 0,375} \approx 3.200 cm². \] 10. Escolha da armadura: - Escolha a quantidade e o diâmetro das barras de aço que somem a área de aço necessária. Esses passos fornecem uma visão geral do cálculo da armadura principal de flexão para o pilar. É importante seguir as normas e considerar todos os fatores de segurança e dimensionamento adequados.
Já tem uma conta?
Ao continuar, você aceita os Termos de Uso e Política de Privacidade