Ed
há 11 meses
Para calcular a intensidade do vetor indução magnética \( B \) em um ponto localizado a uma distância \( r \) de um fio condutor retilíneo que transporta uma corrente \( I \), utilizamos a fórmula: \[ B = \frac{\mu \cdot I}{2 \pi r} \] Onde: - \( \mu = 4\pi \times 10^{-7} \, \text{T.m/A} \) - \( I = 5 \, \text{A} \) - \( r = 2 \, \text{cm} = 0,02 \, \text{m} \) Substituindo os valores na fórmula: \[ B = \frac{(4\pi \times 10^{-7}) \cdot 5}{2 \pi \cdot 0,02} \] Os \( \pi \) se cancelam: \[ B = \frac{4 \times 10^{-7} \cdot 5}{2 \cdot 0,02} \] Calculando: \[ B = \frac{20 \times 10^{-7}}{0,04} = 20 \times 10^{-7} \div 0,04 = 20 \times 10^{-7} \times 25 = 5 \times 10^{-5} \, \text{T} \] Portanto, a intensidade do vetor indução magnética é: d) B = 5 . 10^{-5} T.
Já tem uma conta?
Ao continuar, você aceita os Termos de Uso e Política de Privacidade
Mais perguntas desse material