Logo Passei Direto
Buscar
O método da integração por partes possui fundamental importância no que diz respeito à integração de funções mais complexas em relação às habituais, que aparecem em tabelas de integração. Esse método consiste em separar a função em duas partes, de preferência de forma que uma das expressões seja mais fácil de se derivar, e a outra, mais fácil de se integrar.
Considerando essas informações e seus conhecimentos sobre a técnica de integração por partes, analise as asserções a seguir e a relação proposta entre elas.
I. A integral indefinida da função f(x) = (e^x)cos(x) é igual a (e^x)[sen(x)+cos(x)]/2 + C.
II. Consideramos a regra da integração por partes e tomando inicialmente u = e^x e dv = cos(x)dx, de forma que du = (e^x)dx e v = sen(x), ao integrar a função dada por partes, obtém-se outra expressão com uma integral parecida, e novamente é realizada a técnica de integração por partes. Após isso, se isola a integral cujo cálculo é desejado para encontrar a primitiva F(x) da função f(x).
As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I.
As asserções I e II são proposições verdadeiras, mas a II não é uma justificativa correta da I.
As asserções I e II são proposições falsas.
A asserção I é uma proposição falsa, e a II é uma proposição verdadeira.
A asserção I é uma proposição verdadeira, e a II é uma proposição falsa.
User badge image
Questões para o Sucesso

há 8 meses

Respostas

User badge image

Ed Verified user icon

há 8 meses

Vamos analisar as asserções uma a uma: I. A integral indefinida da função f(x) = (e^x)cos(x) é igual a (e^x)[sen(x)+cos(x)]/2 + C. - Essa afirmação é verdadeira. A integral de (e^x)cos(x) realmente resulta em (e^x)[sen(x)+cos(x)]/2 + C, após aplicar a técnica de integração por partes. II. Consideramos a regra da integração por partes e tomando inicialmente u = e^x e dv = cos(x)dx, de forma que du = (e^x)dx e v = sen(x), ao integrar a função dada por partes, obtém-se outra expressão com uma integral parecida, e novamente é realizada a técnica de integração por partes. Após isso, se isola a integral cujo cálculo é desejado para encontrar a primitiva F(x) da função f(x). - Essa afirmação também é verdadeira. A descrição do processo de integração por partes está correta, e a técnica pode ser aplicada repetidamente para resolver a integral. Agora, analisando a relação entre as asserções: - Ambas as asserções I e II são verdadeiras, e a II realmente justifica a I, pois descreve o processo que leva à solução da integral mencionada na I. Portanto, a alternativa correta é: As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I.

Essa resposta te ajudou?

0
Dislike0
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar essa resposta. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

Os métodos de integração auxiliam na resolução de integrais não triviais, ou seja, auxiliam na resolução daqueles que não podem ser facilmente determinada pelo conhecimento de algumas derivadas e antiderivadas. Um dos métodos importantes de integração é o método conhecido como integral por partes.
Tendo em vista o método supracitado, analise os procedimentos a seguir e ordene as etapas de acordo com a sequência na qual devem ser efetuados os passos para a utilização desse método de integração:
( ) Orientar-se pelo LIATE.
( ) Determinação de du e v.
( ) Identificar os tipos de funções.
( ) Substituição do u e dv.
( ) Substituição na fórmula de integração por partes e resolução da integral.
2, 1, 3, 4, 5.
2, 4, 1, 5, 3.
3, 4, 2, 1, 5.
5, 2, 3, 4, 1.
2, 4, 1, 3, 5.

O estudo acerca das integrais é essencial para aqueles que estudam cálculo. Por meio delas, obtém-se uma medida analítica de algumas áreas, volumes e comprimentos. Portanto, reconhecê-las e utilizá-las é essencial. Existem inúmeros métodos de integração, cada um para um fim definido. O método de integração por partes é um deles, e é extremamente útil para a integração de uma categoria de funções.
De acordo essas informações e com seus conhecimentos acerca de integração por partes, analise as afirmativas a seguir: Está correto apenas o que se afirma em:
I. A integração por partes é útil para se integrar certos tipos de produtos de funções.
II. A integração por partes pode ser concebida por meio da regra do produto das derivadas, realizando manipulações algébricas e integrando ambos lados da igualdade.
III. Esse método de integração consiste em transformar uma integral em termos de dv em outra em termos de du e um termo independente de integral.
IV. A função cos(x) é integrável por esse método.
I, II e III.
I, III e IV.
I, II e IV.
II e III.
II e IV.

As integrais são um dos principais objetos matemáticos utilizados pelo cálculo. É por meio delas que se tem uma mensuração mais precisa de áreas, volumes e comprimento de arcos de funções.
De acordo com seu conhecimento acerca das integrais definidas, analise as afirmativas a seguir e assinale V para a(s) verdadeira(s) e F para a(s) falsa(s).
I. ( ) As integrais definidas de interesse para o cálculo de áreas entre curvas podem ser definidas em termos de subtrações ou soma de outras integrais.
II. ( ) A fórmula representa o cálculo do volume de um sólido de revolução construído com eixo de rotação em x.
III. ( ) representa a fórmula para o cálculo do comprimento do arco de uma função.
IV. ( ) pode ser utilizada para o cálculo do volume de um sólido de revolução construído com eixo de rotação y.
Agora, assinale a alternativa que apresenta a sequência correta: V, V, F, V.
F, F, V, F.
V, F, V, V.
V, V, F, F.
V, V, V, F.

As técnicas de integração servem para possibilitar a resolução do cálculo de uma integral indefinida, onde muitas vezes não há um passo direto para encontrarmos a primitiva F(x) de uma certa função f(x). Dessa forma, dependendo do arranjo algébrico dos termos de f(x), decidimos por diferentes técnicas de integração, como o método da substituição, o da integração por partes, o das frações parciais, e etc.
De acordo com as definições e propriedades do cálculo da integral indefinida e definida pelo método de integração por partes e com seus conhecimentos sobre funções trigonométricas, analise as afirmativas a seguir e assinale V para a(s) verdadeiras e F para a(s) falsa(s).
I. ( ) A integral da função f(x) = (x+1)³(x-1) só pode ser calculada pela regra da integração por partes, por se tratar do produto de duas funções.
II. ( ) A técnica de integração por partes é dada pela seguinte fórmula:
III. ( ) A primitiva de g(x) = ln(x) é G(x) = xln(x) - x + C.
IV. ( ) A integral definida no intervalo [-pi,pi] de h(x) = xsen(x) é aproximadamente igual a 6,28.
Agora, assinale a alternativa que representa a sequência correta: V, F, F, V.
F, F, V, F.
F, V, V, V.
F, V, V, V.
V, V, F, F.

Os métodos de integração buscam auxiliar na resolução das integrais, em geral reescrevendo as integrais complexas em integrais mais simples e facilmente solucionáveis.
Com base nessas informações e nos seus conhecimentos acerca dos métodos de integração, associe os itens a seguir com os significados descritos:
1) Integração por partes.
2) Integração por substituição trigonométrica.
3) Integração por frações parciais.
4) Integração por substituição u du.
( ) Método de substituição mais simples, que pode ser utilizado em inúmeros casos de integrais.
( ) Útil para integração de certos tipos de produtos de funções.
( ) Útil para a eliminação de tipos específicos de radicais nos integrandos.
( ) Utilizado para integração de funções racionais.

O método de integração por substituições trigonométricas é um dos mais trabalhosos e complexos métodos. Busca-se, com ele, a realização de uma substituição a partir de funções trigonométricas específicas para a eliminação de uma estrutura determinada do integrando.
Com base no seu conhecimento acerca desse método de integração, analise as afirmativas a seguir e assinale V para a(s) verdadeira(s) e F para a(s) falsa(s).
I. ( ) O método trabalha com a eliminação de radicais específicos do integrando.
II. ( ) x= asen( ) é uma das substituições possíveis.
III. ( ) O conhecimento acerca das relações trigonométricas é dispensável para resolução desse método.
IV. ( ) Há ligação entre o círculo trigonométrico e esse método de integração.
Agora, assinale a alternativa que representa a sequência correta: V, F, F, F.
V, V, F, V.
V, V, V, F.
F, F, V, V.
V, V, F, F.

As funções racionais possuem diversas aplicações em diversos estudos de fenômenos modelados matematicamente, de forma que o conhecimento da regra de integração de funções racionais por frações parciais é essencial para o bom aproveitamento dos conceitos estudados.
Considerando essas informações e seus conhecimentos sobre regras de integração de funções racionais por frações parciais, é correto afirmar que:
I. f(x) = cos(x)/sen(x) é uma função integrável pelo fato de ser possível aplicar o método das frações parciais ou fazer alguma outra substituição para sua resolução.
II. Funções racionais podem ser expressas como a soma de frações mais simples, chamadas frações parciais, as quais são mais fáceis de se integrar.
III. Sendo f a função racional tal que f(x) = P(x)/Q(x), então f pode ser expressa como uma soma de frações parciais desde que o grau de Q seja menor que o grau de P.
IV. g(x) = (x+5)/(x² + x - 2) pode ser reescrita como g(x) = 2/(x-1) – 1/(x+2).
Está correto apenas o que se afirma em: III e IV.
II e III.
I, II e IV.
I e III.
II e IV.

Mais conteúdos dessa disciplina