Ed
ontem
Para identificar a alternativa que contém números racionais, precisamos lembrar que os números racionais são aqueles que podem ser expressos como a razão de dois inteiros, ou seja, na forma \( \frac{a}{b} \), onde \( b \neq 0 \). Isso inclui números inteiros, frações e decimais finitos ou periódicos. Vamos analisar as alternativas: A) A= {1; 2; 3; 4; 5; 5,555; 6,30; 7,213; 8, …} - Contém números inteiros e decimais (5,555; 6,30; 7,213), todos racionais. B) A= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, …} - Contém apenas números inteiros, que são racionais. C) A= {… -4, -3, -2, -1, 0, 1, 2, 3, 4, …} - Contém apenas números inteiros, que são racionais. D) A= {1, 2, 3, 4, 5, 6, 7, 8, …} - Contém apenas números inteiros, que são racionais. Todas as alternativas contêm números racionais, mas a alternativa A é a única que inclui números decimais, que também são racionais. Portanto, a alternativa correta que contém números racionais é: A) A= {1; 2; 3; 4; 5; 5,555; 6,30; 7,213; 8, …}