Buscar

Sistemas Nervoso, Tegumentar e Endócrino

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 81 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 81 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 81 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
DEFINIÇÃO
Características morfofuncionais dos sistemas nervoso, tegumentar e endócrino. Conceitos
fisiológicos relacionados à função dos sistemas. Características funcionais e sua relação com
as respostas adaptativas.
PROPÓSITO
Apreender as características morfofuncionais dos sistemas para compreender os mecanismos
fisiológicos que mantêm a homeostase e explicam características comportamentais dos
animais em seus habitats.
OBJETIVOS
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
MÓDULO 1
Descrever as características anatomofisiológicas do sistema nervoso
MÓDULO 2
Identificar as características anatomofisiológicas do sistema tegumentar
MÓDULO 3
Descrever as características anatomofisiológicas do sistema endócrino
INTRODUÇÃO
Adaptar-se ao mundo em que vivemos requer a habilidade de perceber estímulos e executar
repostas especializadas e adequadas. Influenciadas pelos estímulos, estas respostas poderão
ser de defesa (ou de afastamento) quando o estímulo for interpretado como nocivo. Também
podem ser de aproximação, quando o estímulo for reconhecido como apetitivo ou atrativo.
É verdade que existem somente duas possibilidades de respostas (afastar-se ou aproximar-se)
diante de um estímulo, entretanto, a escolha entre um deles é decisiva para se adaptar ou se
manter vivo no ambiente. Um bom exemplo é o fato de o cupim, quando atraído pela luz de
uma lâmpada incandescente, encontrar um destino fatal no calor que emana dela. Nesse caso,
notamos que, apesar de o cupim ter interpretado corretamente o estímulo, a resposta não foi a
melhor executada.
Percebemos então que, para a adaptação de um ser vivo, não é apropriado que cada tipo de
estímulo esteja diretamente relacionado com a execução de uma única resposta. É importante
que o organismo animal tenha a capacidade de utilizar o mesmo estímulo para selecionar a
melhor resposta que o adapte ao ambiente.
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
O sucesso com que os seres vivos detectam os estímulos, bem como elaboram e executam
suas respostas, é dependente da existência de estruturas especializadas em tais funções, as
quais são encontradas nos sistemas tegumentar, nervoso e endócrino.
MÓDULO 1
 Descrever as características anatomofisiológicas do sistema nervoso
Quando iniciamos os estudos da fisiologia dos sentidos, a qual é voltada para os estímulos
ambientais detectados pelos seres vivos, percebemos o quanto os sistemas tegumentar e
nervoso estão intimamente relacionados. O sistema nervoso origina-se no anexo embrionário
ectodérmico; o tegumento, no ectoderma e mesoderma (fig.01).
 
Fonte: Systemoff/Shutterstock
 Figura 01 - Esquematização representativa dos anexos ou folhetos embrionários.
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
FUNDAMENTALMENTE, HÁ UMA INDUÇÃO
RECÍPROCA ENTRE O ECTODERMA E O MESODERMA
SUBJACENTE PARA A FORMAÇÃO DA EPIDERME, DE
SEUS ANEXOS E DA DERME, DE MODO QUE AS
ESTRUTURAS TEGUMENTARES E SENSORIAIS
NERVOSAS DO TEGUMENTO SE DESENVOLVEM
SINCRONICAMENTE. ASSIM, FICA CLARO QUE
INTERRELAÇÃO EXISTENTE ENTRE TEGUMENTO E
SISTEMA NERVOSO SURGE E SE DESENVOLVE NAS
PRIMEIRAS FASES DO DESENVOLVIMENTO
EMBRIONÁRIO.
(MONTANARI, 2013).
A figura 1 mostra a relação existente entre os anexos embrionários ectoderma, mesoderma e
endoderma. É importante notar que o ectoderma, que dará origem ao tegumento, recobre os
demais anexos embrionários, constituindo-se como o revestimento externo do organismo.
Enquanto na figura à direita, temos um corte transversal de embrião de quelônio Phrynops
hilarii, conhecido como cágado-de-barbelas, apresentando os trechos anexos embrionários.
Notocorda; Ectoderma extraembrionário do córion, presente somente em répteis e aves.
SISTEMA NERVOSO
O sistema nervoso é dividido em sistema nervoso central (SNC), que inclui o encéfalo e a
medula espinal, e o sistema nervoso periférico (SNP), que consiste em todo tecido nervoso fora
do SNC (fig.02). Ele recebe estímulos de um ou mais receptores e transmite informação para
um ou mais efetores, que respondem à estimulação.
Por conseguinte, as respostas do sistema nervoso envolvem contrações musculares e
secreções glandulares. O sistema nervoso regula toda e qualquer atividade de um animal,
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
integrando a informação sensorial imediata recebida com a armazenada, ou seja, os resultados
de experiências passadas. Em seguida, traduz as informações passadas e presentes em
ações, por meio dos efetores.
 
Fonte: Wikimedia e Public Domain Pictures.
 Figura 02 - Sistema nervoso central e periférico.
À direita da imagem, você vê o sistema nervoso central. Ele se encontra protegido por
estruturas ósseas, como o crânio (encéfalo) e a coluna vertebral (medula espinhal).
À esquerda, você pode ver que as ramificações provenientes do sistema nervoso central
ultrapassam os espaços intervertebrais e formam os nervos, principais representantes do
sistema nervoso periférico.
O sistema nervoso é composto de milhões de células nervosas, cada uma das quais
estabelece milhares de contatos com outras células nervosas, de modo que o número total de
interconexões é astronômico. Isso explica por que a análise da função do sistema nervoso
frequentemente inclui tanto filosofia quanto ciência.
A partir de agora, analisaremos os componentes celulares fundamentais do sistema nervoso.
Tipos de células no sistema nervoso
Existem dois tipos de células no sistema nervoso: as células da neuróglia ou glia e os
neurônios.
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
 
Fonte: Wikimedia.
 Figura 03 - Os diferentes fenótipos das células gliais no sistema nervoso central e
periférico.
Células da neuróglia ou glia
As células da neuróglia (glia = “cola”) não transmitem impulsos, e sim nutrem, sustentam,
conectam e isolam os neurônios. Além disso, unem o tecido nervoso e podem ser
especializadas. Células ependimárias, oligodendrócitos, astrócitos e microglia são neuroglias
exclusivas do sistema nervoso central, enquanto as células satélites e as células de Schwann
são exclusivas do sistema nervoso periférico (fig. 03).
A micróglia engloba materiais estranhos e bactérias; a oligodendróglia e as células de Schwann
isolam os axônios dos neurônios; as células ependimárias revestem o canal central do encéfalo
e medula espinal; e os astrócitos passam nutrientes entre os capilares sanguíneos e os
neurônios. Essas células guiam o desenvolvimento dos neurônios, regulam os níveis de
comunicação química (sinapses) e controlam o fluxo sanguíneo para os neurônios ativos.
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
 
Fonte: Wikimedia.
 Figura 04 - Os neurônios são as principais células do sistema nervoso.
Neurônios
Os neurônios são especializados na transmissão de impulsos elétricos a longas distâncias por
todo o corpo, sendo a unidade estrutural e funcional do sistema nervoso. Um neurônio consiste
no corpo celular, o pericário, e em prolongamentos celulares finos, denominados fibras
nervosas (ou neuritos) se forem longos. Os prolongamentos são de dois tipos: axônio ou
dendritos.
Os dendritos transmitem os impulsos elétricos que chegam ao pericário. Os axônios
transportam os impulsos e deixam o pericário. Os neurônios são agrupados de acordo com o
número de prolongamentos (fig. 4).
PERICÁRIO
Corpo ou soma do neurônio.
javascript:void(0)
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
OS DIFERENTES TIPOS DE NEURÔNIOS
Os neurônios unipolares possuem uma única haste, que se divide em dendrito e axônio. Os
neurônios bipolares apresentam dois prolongamentos, habitualmente em extremidades
opostas. Os neurônios multipolares possuem muitos prolongamentos associados ao corpo
celular (fig. 05).
null 
Fonte: Wikimedia.
 Figura 05 – Três tipos básicos de neurônios.
TRATOS E NERVOS SÃO UM CONJUNTO DE FIBRAS
NERVOSAS: O QUE OSDIFEREM É A LOCALIZAÇÃO
Os neurônios e seus prolongamentos são frequentemente conhecidos por terminologias
diferentes, dependendo de sua localização no SNC ou no SNP. Por exemplo, um conjunto de
fibras nervosas que seguem um percurso juntas é um trato nervoso no SNC e um nervo no
SNP. Um conjunto de corpos celulares de neurônios forma um núcleo no SNC e um gânglio no
SNP (fig. 06).
null 
Fonte: Wikimedia.
 Figura 06 – Locais de fibra vertebral.
PROCESSO DE TRANSMISSÃO DE INFORMAÇÃO
ENTRE CÉLULAS
Vimos anteriormente que as variações do potencial de membrana são decorrentes de
estímulos recebidos pela membrana. Esses estímulos são provenientes de transmissão de
informação que ocorrem entre células, sejam processos químicos sejam elétricos.
Os processos químicos de transmissão de informação entre as células são de quatro tipos:
mecanismos autócrino, parácrino, endócrino e as sinapses químicas, sendo este último
exclusivamente desempenhado por células do sistema nervoso.
Mecanismo autócrino: acontece quando as células lançam suas moléculas mensageiras
para si mesmas, ligam-se em seus próprios receptores de membrana (fig. 07).
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
Mecanismo parácrino: a célula é capaz de enviar moléculas mensageiras para as
vizinhas que se encontram nas imediações (fig. 07).
Mecanismo endócrino: as células liberam suas moléculas mensageiras (hormônios)
diretamente na corrente sanguínea, e esses hormônios atuarão em células de tecidos e
órgãos distantes (fig. 07).
null 
Fonte: O autor.
 Figura 07 – Mecanismos autócrino, parácrino e endócrino de comunicação celular.
TRANSMISSÃO SINÁPTICA
SINAPSE QUÍMICA
Células nervosas transmitem informações por meio de moléculas mensageiras denominadas
de neurotransmissores (fig. 08). Os neurotransmissores são produzidos no citoplasma do
terminal sináptico ou no núcleo da célula pré-sináptica. Quando as moléculas
neurotransmissoras são apolares, podem ser prontamente liberadas pelos neurônios, por
difusão simples. Por outro lado, neurotransmissores, que são moléculas polares, deverão ser
armazenados em vesículas sinápticas (fig. 08). Vesículas sinápticas são esferas ocas formadas
por uma bicamada lipídica semelhante à membrana celular, mas que apresenta suas proteínas
específicas.
As vesículas sinápticas saem da inércia quando um potencial de ação, que viajara ao longo do
axônio neuronal, alcança o terminal sináptico do neurônio e despolariza esse segmento final da
membrana neuronal. A despolarização da membrana ativa os canais de cálcio do tipo T
sensíveis à voltagem, localizados no terminal sináptico, permitindo que íons cálcio entrem na
célula pré-sináptica. Após serem mobilizadas do citoesqueleto, as vesículas se dirigem para as
zonas ativas da membrana pré-sináptica (fig. 08).
javascript:void(0)
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
Quando os íons cálcio entram no terminal pré-sináptico, eles ativam a proteína
calmodulina, que ativa a proteína quinase II. A proteína quinase então fosforila a proteína
Sinapsina, liberando a vesícula de sua gaiola de actina no citoesqueleto. A vesícula cai
na zona ativa no terminal pré-sináptico.
 
Fonte: Wikimedia.
 Figura 08 - Transmissão sináptica química e exocitose.
 EXEMPLO
Vamos tomar como exemplo o processo de transmissão sináptica que ocorre entre um
neurônio motor, dentre os muitos que constituem um nervo motor (por exemplo, nervo ciático)
que inerva a musculatura da perna.
Nesse processo de transmissão de informação, a molécula mensageira é a acetilcolina (ACh),
que é sintetizada no citoplasma do neurônio motor, através da conjugação da molécula de
Acetil CoA, proveniente do ciclo de Krebs, com a molécula de Colina, um aminoácido
transportado adquirido do extracelular pelo neurônio. Essa reação é catalisada pela enzima
Colina Acetil Transferase (CAT). Uma vez formada, a ACh será transportada para o interior das
vesículas sinápticas por meio da atividade de uma proteína Transportadora Vesicular de ACh
(TVA), que é encontrada exclusivamente na membrana vesicular. Além da TVA, a membrana
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
vesicular também apresenta proteínas importantes para o processo de ancoramento e fusão da
vesícula na membrana pré-sináptica.
 
Fonte: O autor.
 Figura 09 - Mecanismo de exocitose para a liberação de neurotransmissores.
O ancoramento e a fusão da membrana vesicular com a membrana pré-sináptica ocorre por
meio da interação entre as proteínas dessas duas organelas. As proteínas da membrana
celular relacionadas ao ancoramento e à fusão encontram-se em regiões específicas
conhecidas como zonas ativas. As proteínas das vesículas são conhecidas como v-SNARE e
as da membrana como t-SNARE.
As v-SNAREs e t-SNAREss são capazes de se associarem reversivelmente, formando
complexos com três SNAREs: sintaxina e SNAP-25, residentes na membrana celular, e
sinaptobrevina (também conhecida como proteína de membrana associada à vesícula ou
VAMP), ancorada na membrana da vesícula.
Quando uma v-SNARE interage com uma t-SNARE, seu domínio helicoidal se enrola ao redor
do outro domínio helicoidal. Essa interação forma um complexo estável denominado de trans-
SNARE, que prende uma membrana a outra. A especificidade com que cada SNARE interage
determina a especificidade do ancoramento e da fusão de cada vesícula. Dessa maneira, as
SNAREs especificam a identidade de seus compartimentos e governam a troca de materiais
durante o transporte vesicular.
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
 
Fonte: Wikimedia.
 Figura 10 - Proteínas SNAREs e neurotoxinas bacterianas.
Muitas neurotoxinas afetam diretamente complexos SNARE. As toxinas evitam a reciclagem
vesícula adequada e resultam em mau controle muscular, espasmos, paralisia e até morte.
Toxina botulínica (BoNT) é uma das neurotoxinas mais potentes.
É uma enzima proteolítica que cliva qualquer proteína SNARE. A toxina do tétano, ou TeNT,
é composto de uma cadeia pesada (100 kDa) e uma cadeia leve (50 kDa). Esta neurotoxina
produz a quebra das sinaptobrevinas ou VAMP.
SINAPSE ELÉTRICA
Sinapses elétricas são menos comuns do que as químicas no sistema nervoso de vertebrados,
além de transmitirem informações de maneira mais rápida.
Na sinapse elétrica, as correntes iônicas que entram na célula e provocam a despolarização da
membrana são transmitidas por junções comunicantes (GAP junctions : proteínas conexinas),
mecanismo semelhante ao do tecido cardíaco. As cargas iônicas se diluem de uma célula a
outra, despolarizando-as e gerando uma onda despolarizante unidirecional (fig. 11). Como os
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
citoplasma das células estão conectados, a variação do potencial de membrana é transmitida
rapidamente para as células.
Não importa se a transmissão da informação ocorre por meio de uma sinapse química ou
elétrica, a informação a ser transmitida sempre será a variação do potencial de membrana da
célula pós-sináptica.
Enquanto na sinapse elétrica a informação é transmitida imediatamente, na química, a
molécula mensageira (neurotransmissor), que carrega a informação, deve ser recebida por
alguma estrutura molecular capaz de interpretar a informação. Denominamos essa estrutura
receptiva aos mensageiros químicos de RECEPTORES pós-sinápticos.
 
Fonte: Wikimedia.
 Figura 11 - Transmissão sináptica elétrica e as junções comunicantes.
EVENTOS PÓS-SINÁPTICOS: OS POTENCIAIS PÓS-
SINÁPTICOS
Os potenciais graduados pós-sinápticos podem ser de dois tipos: excitatório (PEPS: potencial
excitatório pós-sináptico) e inibitório (PIPS: potencial inibitório pós-sináptico). Os PEPS são
gerados por estímulos que resultam em ativação de canais iônicos que permitem o influxo
(fluxo de entrada) de íons positivos (Na+ e/ou Ca2+) ou em inibição do efluxo (fluxo de saída)
de K+.
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
Agora,repare que, na figura seguinte, temos um gráfico que correlaciona as variações do
potencial de membrana com o tempo. Nele, vemos que o PEPS (linha verde) é representado
como uma deflexão positiva (variação para cima) da linha de base (linha referente ao potencial
de repouso, cujo valor é -60 mV). Repare também que o PEPS indica que o potencial de
repouso sofreu uma despolarização, ou seja, ficou menos negativo.
 
Fonte: Wikimedia.
 Figura 12 - Potenciais pós-sinápticos e sua integração.
INTEGRAÇÃO DOS POTENCIAIS PÓS-SINÁPTICOS
(INTEGRAÇÃO SINÁPTICA)
A variação da atividade sofrida por um neurônio, especificamente aquela em que potenciais de
ação são gerados, depende da integração sináptica. Trataremos aqui a integração sináptica
como a “somação” dos potenciais pós-sinápticos, sejam excitatórios (PEPS) sejam inibitórios
(PIPS).
Vamos observar na próxima figura, um neurônio hipotético que recebe três projeções axonais
(3 entradas sinápticas), 2 excitatórias (em verde) e uma inibitória (em vermelho). Suponhamos
que uma das entradas sinápticas excitatórias (E1 ou E2) seja ativada (a chegada de um
potencial de ação no terminal axonal promove a liberação de neurotransmissores excitatórios)
e produza um PEPS de +6 miliVolts de amplitude no nosso neurônio.
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
Imediatamente após isto, em poucos milissegundos, mais dois potenciais de ação produzem
mais dois PEPS de mesma amplitude, e estes juntos despolarizam a membrana em +18
miliVolts (3 x 6 mV), fazendo com que a membrana deixe seu potencial de repouso de -60 mV
para – 42 mV. Essa despolarização é resultado de uma somação das 3 PEPS que ocorreu no
tempo como resultado da atividade de uma única sinapse. Entretanto, quando duas ou mais
sinapses são ativadas pode ocorrer uma somação espacial, pois os PEPS são produzidos em
pontos diferentes da membrana pós-sináptica ao mesmo tempo. Suponhamos que as entradas
sinápticas excitatórias E1 e E2 tenham, respectivamente, produzido PEPS com +6 mV e +16
mV, gerando um PEPS resultante de +22 mV. Essa despolarização da membrana provocada
pela somação espacial dos PEPS fez a membrana sair do potencial de repouso e ir para o
potencial de -38 mV, uma despolarização supra limiar que ativou os canais Nav e gerou um
potencial de ação (em azul), determinando a ativação do neurônio pós-sináptico. Você pode
estar se perguntando agora, somente a somação espacial pode gerar PEPS supralimiares e
disparar um potencial de ação? Definitivamente, não! A somação temporal também produz
PEPS supralimiares, e tudo vai depender da intensidade dos estímulos, ou seja, da amplitude
dos PEPS produzidos.
A integração sináptica também poderá incluir os PIPS. Nesse caso, por hiperpolarizarem o
potencial da membrana, sua somação com os PEPS resultará na subtração, e não no
incremento, das variações do potencial de membrana.
 
Fonte: O autor.
 Figura 13 - Potenciais Pós-Sinápticos e a sua Integração Sináptica.
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
SISTEMA NERVOSO PERIFÉRICO (SNP)
Os termos utilizados para descrever os componentes do SNP referem-se às propriedades
anatômicas e funcionais dos nervos. Os nervos periféricos servem aos tecidos somáticos ou
viscerais e transportam informação sensorial ou motora. Os nervos somáticos projetam-se para
os tecidos somáticos ou provêm deles – músculo esquelético, pele e seus derivados. Os
nervos viscerais projetam-se para as vísceras ou são provenientes delas – músculos
involuntários e glândulas. Os nervos que transportam informação dos tecidos para o sistema
nervoso central são neurônios aferentes, sensitivos ou sensoriais. Os neurônios que
transportam a informação a partir do SNC para tecidos ou órgãos efetores recebem a
denominação de neurônios eferentes ou motores (fig. 14).
 
Fonte: Flickr.
 Figura 14 - Representação esquemática de um circuito básico da integração sensorial e
motora responsável pela resposta reflexa.
Por conseguinte, um nervo sensitivo somático pode transportar informações sobre tato, dor ou
temperatura da superfície da pele para o sistema nervoso central. De lá, um nervo motor
somático transporta impulsos do SNC para um músculo estriado a fim de estimular sua
contração. Da mesma maneira, um nervo sensitivo visceral conduz informações sobre a
condição das vísceras internas para o SNC, de onde um nervo motor visceral, que inerva
efetores viscerais (músculo cardíaco, músculo liso ou glândulas), será responsável por
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
desencadear a resposta ao estímulo. Os componentes do SNP que controlam a atividade
visceral constituem o sistema nervoso autônomo (SNA).
Com base em critérios anatômicos, o sistema nervoso periférico pode ser dividido em nervos
espinais, que surgem a partir da medula espinal, e nervos cranianos que se originam do
encéfalo. Começaremos a analisar essas divisões anatômicas do sistema nervoso periférico.
NERVOS ESPINAIS
Os nervos espinais são sequencialmente dispostos e enumerados (C 1, T 1, L 1, S 1) de acordo
com sua associação a regiões da coluna vertebral (cervical, torácica, lombar, sacral). Eles
emergem dos forames intervertebrais e são formados pela fusão das raízes dorsal e ventral
(fig. 15). Assim, podemos dizer que cada nervo espinhal possui uma raiz dorsal e outra ventral.
As fibras aferentes sensoriais entram na medula espinal por meio da raiz dorsal, enquanto as
fibras eferentes motoras deixam a medula espinal por meio da raiz ventral. Desse modo, lesões
da raiz dorsal irão comprometer a transmissão e a integração da informação sensorial no SNC
enquanto lesões da raiz dorsal comprometerão a atividade motora do SNC. O gânglio espinhal,
uma dilatação existente na raiz dorsal, consiste em um conjunto de corpos celulares de
neurônios sensoriais unipolares (já mostrados algumas figuras acima). Eles se conectam
indiretamente aos neurônios motores da raiz ventral (neurônios multipolares) por meio de
interneurônios.
null 
Fonte: Wikimedia.
 Figura 15 - Os nervos espinhais possuem um componente sensorial e motor.
GÂNGLIOS PARAVERTEBRAIS SIMPÁTICOS
A cadeia de gânglios paravertebrais (cadeia simpática), uma série de pares de gânglios ligados
de modo adjacente à coluna vertebral, é paralela à medula espinhal e está ligada a cada nervo
espinhal por meio de ramos comunicantes que se projetam ao longo da medula espinhal (fig.
16).
null 
Fonte: Flickr.
 Figura 16 - Gânglios paravertebrais simpáticos.
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
GÂNGLIOS PERIFÉRICOS COLATERAIS E VISCERAIS
Outros gânglios periféricos formam os gânglios colaterais (gânglios pré vertebrais). Os gânglios
cervicais, celíacos e mesentéricos pareados são exemplos de gânglios colaterais. Os gânglios
viscerais ocorrem nas paredes dos órgãos efetores viscerais. Por conseguinte, existem três
tipos de gânglios: simpáticos, colaterais e viscerais (fig. 17).
null 
Fonte: Flickr.
 Figura 17 - Os gânglios periféricos colaterais e viscerais. Gânglio Ciliar / Gânglio
Pterigopalatino / Gânglio Submaxilar / Gânglio Ótico / Gânglio Cervical Superior / Gânglio
Celíaco / Gânglio Mesentérico / _Superior / _Inferior / Gânglios Simpáticos.
NERVOS CRANIANOS
Nervos cranianos são os 12 pares de nervos do sistema nervoso periférico que emergem de
forames (buracos) e fissuras cranianas. Eles são ordenados numericamente de acordo com
seu local de saída no crânio, tendo como orientação anatômica o eixo rostrocaudal.
Todos os pares de nervos cranianos têm sua origem de núcleos encéfalicos. Dois deles
emergem da região prosencéfálica (nervos olfatório e óptico), um tem o núcleo na medula
espinhal (nervo acessório), enquanto o restante dos nove nervos cranianos se originam do
tronco cerebral.
Os nervos cranianos podem ser classificados, de acordo com a informação transportada,
como:
Especial: origina-se dos sentidos especiais (visão, olfato, paladar, tato e audição);Geral: descreve as informações recebidas ou transmitidas;
Somática: transmitida ou recebida por pele e músculos esqueléticos;
Visceral: transmitida ou recebida pelas vísceras internas.
O sistema convencional de numeração desses nervos é, algumas vezes, inconsistente. Além
disso, o segundo nervo craniano (II- nervo óptico) não é propriamente um nervo, mas, sim, uma
extensão do encéfalo. Entretanto, por convenção, é denominado como “nervo” óptico (fig. 18).
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
O décimo primeiro par de nervo craniano (XI-nervo acessório) representa a fusão de um ramo
do décimo nervo craniano (X- nervo vago) com elementos dos primeiros dois nervos espinais
(C 1 e C 2). Apesar de sua estrutura composta, o XI nervo craniano é denominado nervo
acessório espinhal.
Os pares cranianos fazem o suprimento sensitivo e motor da cabeça e do pescoço, controlando
a atividade desta região. Somente o nervo vago se estende além do pescoço, para inervar as
vísceras torácicas e abdominais.
Os nervos cranianos emergem das raízes contidas no interior da caixa craniana e recebem, em
sua maioria, nomes e números por algarismos romanos.
Do ponto de vista filogenético, é possível que os nervos cranianos tenham evoluído a partir de
nervos dorsais e ventrais espinhais anteriores, após estes terem sido incorporados na caixa
craniana. Os nervos dorsais e ventrais, que se fundem no tronco, mas não na cabeça,
produzem duas séries: nervos cranianos dorsais (V, VII, IX e X) e nervos cranianos ventrais (III,
IV, VI e XII).
null 
Fonte: Wikimedia.
 Figura 18 - Os Doze pares de nervos cranianos.
FUNÇÕES DO SISTEMA NERVOSO PERIFÉRICO
REFLEXOS ESPINAIS
Os reflexos espinhais exibem o nível mais simples de controle no sistema nervoso. Embora os
reflexos possam difundir a informação para centros superiores, todos os seus componentes
necessários e funcionais residem ou têm suas raízes na medula espinal. O reflexo espinhal é
um circuito de neurônios que se estende de um receptor até a medula espinal e, daí, para um
efetor. A informação sensorial que chega à informação motora e a que sai percorrem circuitos
estabelecidos por neurônios nos nervos espinhais. Dentro da medula espinhal, neurônios de
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
associação (interneurônios) conectam esses neurônios sensoriais e motores para completar o
circuito entre eles.
Existem dois tipos de arco reflexo espinal: o somático e o visceral. O circuito neuronal para
cada tipo de arco é distinto, pelo menos nos mamíferos, nos quais foi mais amplamente
estudado.
A maioria dos arcos reflexos somáticos em nível da medula espinal inclui três neurônios: o
neurônio sensorial somático e o neurônio motor somático, com um interneurônio de associação
para conectá-los. O corpo do neurônio sensorial somático está localizado na raiz dorsal. Suas
fibras nervosas seguem seu percurso através do nervo espinal e fazem sinapse com um
neurônio de associação dentro da medula espinal. O interneurônio de associação pode
transmitir impulsos em várias direções, fazer sinapse com um neurônio motor somático no
mesmo lado da medula, no lado oposto da medula, ou seguir um percurso rostrocaudal ao
longo da medula para fazer sinapses com neurônios motores em diferentes níveis. Em seguida,
o neurônio motor transmite o impulso por meio da raiz ventral para um efetor somático.
Diferentemente destes, os reflexos espinais que controlam a postura dos animais é um reflexo
com estrutura mais simples pois, envolvem apenas dois neurônios. O neurônio sensorial faz
sinapse diretamente com o neurônio motor. Quando um animal começar a sofrer uma alteração
de sua postura normal, seus músculos são estirados e desencadeiam um reflexo somático que
causa contração do músculo apropriado, restaurando a postura original do animal.
O arco reflexo visceral é estruturalmente mais complexo. O corpo de um neurônio sensorial
visceral também reside na raiz dorsal, porém suas fibras nervosas seguem seu percurso por
um ou mais gânglios da cadeia simpática e, em seguida, pelo ramo comunicante. Seus axônios
finalmente fazem sinapse dentro da medula espinal com um neurônio de associação.
Diferentemente do arco somático, a saída motora do arco reflexo visceral inclui dois neurônios
em sequência. O primeiro é o neurônio pré ganglionar, que se estende para fora da raiz ventral
e faz sinapse no gânglio simpático, em um gânglio colateral ou na parede de um órgão visceral
com um segundo neurônio, o pós-ganglionar.
O neurônio pós ganglionar segue seu trajeto para inervar o órgão visceral efetor. Por
conseguinte, em sua forma mais simples, o arco visceral inclui quatro neurônios: um neurônio
sensorial visceral, dois neurônios motores viscerais em série e um neurônio de associação
interconectado.
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
SISTEMA NERVOSO AUTÔNOMO
Os nervos periféricos e gânglios associados à atividade visceral parecem ser autônomos (sua
ação independe da vontade do indivíduo). Nessa divisão do sistema nervoso, estão incluídas
fibras tanto sensoriais quanto motoras.
As fibras sensoriais autônomas monitoram o ambiente interno do organismo, ou seja, os
parâmetros fisiológicos, como a pressão arterial, temperatura central e da pele, as pressões
parciais dos gases e a atividade das vísceras. As fibras motoras são neurônios motores que se
projetam e inervam vísceras, como o músculo cardíaco, os músculos lisos dos vasos e as
glândulas. Também estão envolvidas no controle do trato digestório, da árvore brônquica, da
bexiga, dos órgãos sexuais e de outras vísceras. Como o sistema nervoso autônomo inclui o
circuito motor visceral geral, neurônios pré e pós ganglionares em série caracterizam a
interação motora para cada órgão.
Em sua forma mais simples, o circuito neuronal do sistema nervoso autônomo inclui quatro
neurônios ligados a uma alça reflexa: um neurônio sensorial que faz sinapse com um
neurônio de associação, que faz sinapse com um neurônio motor pré- ganglionar em série
com um neurônio motor pós- ganglionar.
Divisões funcionais do sistema nervoso autônomo
Nos mamíferos, o sistema nervoso autônomo está dividido em dois sistemas antagônicos
contrastantes de controle sobre a atividade visceral: o sistema simpático e o sistema
parassimpático (fig. 21).
SISTEMA NERVOSO SIMPÁTICO
O sistema nervoso simpático prepara o corpo do animal para uma ação de luta ou fuga (ambas
são situações estressantes), aumentando a atividade de algumas das vísceras, embora reduza
a velocidade dos processos digestivos. A estimulação do sistema simpático inibe a atividade do
canal alimentar, promove a contração do baço (causando a liberação de eritrócitos extras na
circulação geral que resultará em maior transporte do oxigênio), aumenta a frequência cardíaca
e a pressão arterial (logo, aumentando a perfusão do sangue para os tecidos), mobiliza a
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
glicose a partir da reserva de glicogênio no fígado (oferecendo mais energia para todas as
células) e aumenta o diâmetro da pupila (midríase).
Os nervos motores viscerais gerais que participam na atividade simpática saem das regiões
torácica e lombar (tóraco-lombar) da medula espinhal dos mamíferos. Os axônios dos
neurônios pré ganglionar simpático são normalmente mais curtos e fazem sinapse no gânglio
da cadeia simpática ou em algum gânglio pré-vertebral, localizado distante da coluna vertebral.
As suas fibras pós ganglionares são habitualmente mais longas.
SISTEMA NERVOSO PARASSIMPÁTICO
O sistema nervoso parassimpático está relacionado ao estado de repouso ou vegetativo do
corpo do animal, pois sua atividade está relacionada com a diminuição das atividades viscerais,
embora os órgãos do trato digestório sejam estimulados. Os efeitos do sistema parassimpático
são antagônicos àqueles apresentados pelo sistema simpático. Ele aumenta a digestão,
diminui a frequência cardíaca, reduzo diâmetro da pupila (miose), produz queda da pressão
arterial, comprime os vasos coronários e promove a formação de glicogênio.
CONTROLE ADRENÉRGICO E COLINÉRGICO
O sistema simpático é considerado adrenérgico, visto que os neurotransmissores liberados
durante a estimulação são a epinefrina ou a norepinefrina (também denominadas de adrenalina
e noradrenalina). O sistema parassimpático é descrito como colinérgico, visto que o
neurotransmissor liberado é a acetilcolina, a qual também é liberada entre as fibras pré e pós -
ganglionares em ambos os sistemas e nas junções entre nervos e músculos esqueléticos.
Nos mamíferos, quase todos os órgãos viscerais possuem inervação simpática e
parassimpática. As exceções a essa dupla inervação incluem as glândulas suprarrenais, os
vasos sanguíneos periféricos e as glândulas sudoríparas, que recebem apenas inervação
simpática. A cessação da estimulação simpática faz com que esses órgãos possam retornar a
um estado de repouso.
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
A glândula suprarrenal (ou glândula adrenal) também é excepcional, visto que é inervada
apenas por fibras pré ganglionares; as fibras pós ganglionares estão ausentes. Como a
epinefrina e a norepinefrina atuam como sinais químicos adrenérgicos do circuito simpático e
como os hormônios são produzidos pelas glândulas suprarrenais, existe a possibilidade de
confusão química. Entretanto, o neurônio pré ganglionar libera acetilcolina, e não epinefrina ou
substâncias químicas semelhantes, de modo que a inervação direta das glândulas suprarrenais
por fibras pré ganglionares remove a possibilidade de ambiguidade química entre a inervação
parassimpática e a estimulação hormonal pela glândula.
Veja na imagem a seguir os exemplos citados acima:
 
Fonte: Wikimedia.
 Figura 19 - Sistema nervoso autonômico: simpático e parassimpático.
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
Assista ao vídeo sobre núcleos da base e controle motor
Agora que terminamos o nosso conteúdo, elaboramos algumas questões para você verificar o
seu nível de entendimento sobre o assunto. Se tiver alguma dúvida, não tenha receio de voltar
ao conteúdo e revisá-lo.
VERIFICANDO O APRENDIZADO
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
1. NO SISTEMA NERVOSO, UM ARCO REFLEXO É O CIRCUITO MAIS
SIMPLES CAPAZ DE PRODUZIR UM COMPORTAMENTO. SOBRE O ARCO
REFLEXO, É INCORRETO AFIRMAR QUE:
A) O arco reflexo pode ser formado por dois neurônios, um sensorial e outro motor.
B) Em um arco reflexo sempre haverá somente dois neurônios, um sensorial e outro motor.
C) Arco reflexo é um circuito simples com estruturas do sistema nervoso central e periférico.
D) Um interneurônio pode intermediar a transmissão da informação entre neurônios sensoriais
e motores.
2. O SISTEMA NERVOSO AUTÔNOMO APRESENTA RESPOSTAS OU
EFEITOS ANTAGÔNICOS EM MUITOS TECIDOS. NA PUPILA, SEUS
EFEITOS SÃO CONHECIDOS COMO:
A) Midríase ou dilatação da pupila pela ativação parassimpática.
B) Miose ou dilatação da pupila pela ativação simpática.
C) Midríase e dilatação da pupila pela ativação do simpático.
D) Miose ou dilatação da pupila pela ativação parassimpática.
GABARITO
1. No sistema nervoso, um arco reflexo é o circuito mais simples capaz de produzir um
comportamento. Sobre o arco reflexo, é INCORRETO afirmar que:
A alternativa "B " está correta.
 
O arco reflexo é uma estrutura formada por componentes do sistema nervoso central (medula
espinhal) e sistema nervoso periférico (nervos). Esse é o circuito mais simples existente para
que um comportamento possa ser executado, podendo ser constituído por dois neurônios, um
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
sensorial e outro motor ou por um terceiro neurônio, um interneurônio, que se coloca entre os
neurônios sensoriais e motores intermediando a resposta.
2. O sistema nervoso autônomo apresenta respostas ou efeitos antagônicos em muitos
tecidos. Na pupila, seus efeitos são conhecidos como:
A alternativa "C " está correta.
 
Embora as inervações simpática e parassimpática produzam respostas de contração da
musculatura pupilar, elas inervam músculos diferentes. O simpático estimula a contração da
musculatura radial enquanto o parassimpático estimula a contração da musculatura circular.
Quando contraídas, a musculatura radial produzirá um aumento da pupila ou midríase
enquanto a musculatura circular produzirá uma redução da pupila ou miose.
MÓDULO 2
 Identificar as características anatomofisiológicas do sistema tegumentar
A presença de terminais de neurônios do tegumento dos animais revela a íntima relação entre
os sistemas nervoso e tegumentar, sendo essa integração determinante para a adaptação do
organismo ao ambiente externo.
O sistema tegumentar se apresenta como um conjunto de estruturas que formam o
revestimento externo dos seres vivos. Por meio do tegumento, os seres vivos não somente se
protegem, mas também interagem com o mundo exterior. Nele, residem terminais nervosos
que aferem as variações de diversos estímulos ambientais. Como exemplos de tegumento,
podemos citar a pele dos vertebrados, o ritidoma das plantas, a concha dos moluscos e a
casca de um fruto.
O tegumento é classificado como um órgão composto, sendo dividido em:
Epiderme – camada mais externa do tegumento, deriva do ectoderma e produz a lâmina
basal;
Membrana basal – segunda camada, dividida em lâmina basal e lâmina reticular);
javascript:void(0)
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
Derme – camada mais profunda do tegumento, se desenvolve do mesoderma e do
mesênquima, originando a lâmina reticular.
Entre o tegumento e a musculatura corporal profunda está uma região subcutânea de transição
constituída por tecido conjuntivo muito frouxo e tecido adiposo, denominada hipoderme (fig.20).
TEGUMENTO
Definição dada pela Biologia à toda e qualquer cobertura natural de um organismo ou
órgão.
 
Fonte: MicroOne/Shutterstock
 Figura 20 - Esquematização representativa de um corte transversal do tegumento humano.
As setas indicam algumas das principais estruturas que constituem os componentes do
tegumento e suas localizações na epiderme, derme e hipoderme.
EPIDERME
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
A epiderme é formada pelo estrato córneo, estrato granuloso, estrato espinhoso e estrato basal
(fig.21). Na superfície da epiderme de muitos vertebrados, encontram-se os óstios dos ductos
de muitas glândulas dérmicas exócrinas. Também é na superfície do tegumento onde são
secretados os produtos das glândulas, umedecendo essa camada. Em peixes e anfíbios, a
secreção umidificante sobre o tegumento é de natureza mucosa. Em anfíbios, esse muco
contém alcaloides que oferecem proteção contra infecção bacteriana, toxinas que protegem os
anfíbios contra a predação (ver box.1), além de ajudar a garantir o fluxo laminar de água pela
superfície corporal. Nos anfíbios, o muco desempenha funções semelhantes e ainda ajuda a
proteger a pele contra o ressecamento quando o animal faz suas incursões terrestres. Nos
vertebrados estritamente terrestres, a epiderme forma uma camada externa queratinizada ou
cornificada, denominada como estrato córneo. É uma das várias características inovadoras
surgidas com os tetrápodes, permitindo a conquista do ambiente terrestre, que é seco e
abrasivo.
 
Fonte: Wikimedia.
 Figura 21 - Histologia da epiderme de vertebrados.
À esquerda: esquematização representativa das camadas celulares que constituem a
epiderme. À direita: corte histológico da epiderme corada por hematoxilina-eosina. A camada
córnea é a mais externa, e a camada basal é a mais profunda. Entre essas duas camadas,
encontra-se a camada espinhosa, constituída por células epidermais (ceratinócitos).
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
 
Fonte: Wikimedia.
BOX 1. ANFÍBIOS VENENOSOS E TECNOLOGIA
PRIMITIVA
Alguns anfíbios do novo mundo (América Centrale do Sul) possuem glândulas tegumentares
que produzem secreções que possuem alcaloides tóxicos em sua constituição. Estes anfíbios
pertencem a família Dendrobatidae e são animais aposemáticos, ou seja, animais que
possuem um tegumento com coloração bem chamativa, típica de animais venenosos. Estes
animais são conhecidos, pela cultura popular, como rãs ou sapos flechas pois, os índios
sulamericanos utilizam suas secreções tegumentares nas pontas das flechas, como uma
ferramenta para a caça. Quando a caça é atingida por flecha ou dardo contaminado pelas
toxinas da pele dos anfíbios, a caça desenvolve uma paralisia motora que facilitará sua captura
pelos índios. Algumas destas toxinas são estudadas com objetivo de serem utilizadas para fins
medicinais.
ESTRATO CÓRNEO E EPIDERME
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
De todas as estruturas do tegumento, apenas o estrato córneo é constituído por células mortas.
A constante divisão mitótica das células do estrato basal profundo produz novas células
epidérmicas, as quais empurram a mais antigas em direção à superfície, onde estas se
autodestroem de maneira ordenada.
Essa autodestruição das células epidérmicas antigas produz uma grande quantidade de
produtos proteicos que, acumulados, formam uma camada de queratina, processo denominado
como queratinização. A queratina é uma proteína produzida durante a queratinização, e as
células epidérmicas específicas que participam desse processo são as queratinócitas ou
ceratinócitas.
O estrato córneo superficial resultante é uma camada não viva que reduz a exposição das
camadas vivas do tegumento, protegendo-as da desidratação nos ambientes terrestres secos
e, em certa medida, nos aquáticos salinos.
Nos vertebrados, a epiderme produz dois tipos de queratinócitos – um contendo a forma alfa
(mole) e outro contendo a forma beta (dura) de queratina. A alfa queratina está presente nas
camadas epidérmicas com maior flexibilidade, enquanto a beta queratina é mais comum em
especializações como as escamas duras, as garras, os bicos e as penas.
A queratinização do estrato córneo pode se tornar mais acentuada como uma consequência de
um excesso do atrito constante sofrido por determinadas regiões da epiderme. A essa
hiperqueratinização chamamos vulgarmente de “calo” (fig. 22).
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
 
Fonte: Wikimedia.
 Figura 22 - Hiperqueratinização do estrato córneo.
O estrato córneo também pode dar origem a diversas outras estruturas observadas
externamente nos vertebrados. É o exemplo dos pelos, dos cascos, das bainhas córneas, das
escamas, das glândulas mamárias e dos dentes. Todas essas estruturas constituem um
sistema de queratinização, uma referência à elaborada interação existente entre epiderme e
derme, responsável por produzir a transformação ordenada de queratinócitos nas estruturas
cornificadas mencionadas acima.
CARACTERÍSTICAS DO TEGUMENTO DE
PEIXES
Escamas são estruturas em forma de placas achatadas, que se dispõem no tegumento como
uma armadura protetora e estão presentes em peixes, répteis e aves. As escamas podem ser
de cinco tipos: ganoide, cosmoide, placoide, ciclóide e ctenóide (fig. 23).
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
 
Fonte: Wikimedia.
 Figura 23 - Tipos de escamas dos peixes. 1-Cicloid; 2-Ctenoid; 3-Ganoid; 4-Placoid.
TIPOS DE ESCAMAS
Escamas ganoides: têm a forma de placa rômbica e crescem por adição em ambas as
faces, de baixo para cima e de dentro para fora. É composta por três camadas: uma
superficial de ganoína (semelhante ao esmalte), uma de cosmina e um tecido ósseo
lamelar (isopedina).
Escamas cosmoides: são mais grossas e duras do que as placoides. Encontradas nos
celacantos (Latimeria sp, fóssil vivente); nos crossopterigeos e dipnoicos fósseis. É
composta por 4 camadas: uma fina camada superficial de vitrodentina (= esmalte), uma
de cosmina (tecido semelhante a dentina), uma de osso esponjoso com numerosos vasos
sanguíneos e uma basal de isopedina.
Escamas placoides: são características de peixes cartilaginosos e outras espécies
antigas. São de origem dérmica e epidérmica e constituídas por uma polpa, onde são
encontrados vasos sanguíneos e nervos, semelhante à composição dos dentes da boca
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
dos tubarões. A cobertura externa de uma escama placoide é constituída por esmalte,
formado pelas células epidérmicas, e sua cobertura interna é constituída por dentina,
formada pelas células dérmicas (fig. 24).
As escamas dos elasmobrânquios não aumentam de tamanho conforme o crescimento do
peixe. Ao invés disso, novas escamas são adicionadas para ocupar o espaço vazio entre elas.
Então, o número de escamas varia com a idade (ou tamanho) dos elasmobrânquios.
 
Fonte: Wikimedia.
 Figura 24 - Escamas placoides típicas de peixes elasmobrânquios.
As escamas placoides são formadas por uma polpa de origem da derme, rica em vasos
sanguíneos e terminações nervosas. Essa polpa se projeta em direção à epiderme, formando o
espinho. A polpa é toda revestida por uma cobertura de dentina. Na base dela, o revestimento
de dentina forma a placa basal. A partir da superfície da epiderme o espinho da escama passa
a ser revestido por uma camada de esmalte.
ESCAMAS PLACOIDES E NATAÇÃO
Durante a natação, há um fluxo laminar horizontal e unidirecional do fluido sobre a superfície
do corpo do animal, de modo que podemos imaginar que existem diversas camadas do fluido
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
se deslocando sobre a superfície corporal do animal. Nos tubarões, quando as camadas do
fluxo laminar encontram as nadadeiras laterais (camada limite), ocorre a separação do fluxo,
freando o fluxo laminar horizontal. Essa desaceleração do fluxo aumenta bastante a turbulência
e a pressão de arrasto e, assim, reduz a velocidade de deslocamento do animal (fig. 25).
 
Fonte: O Autor.
 Figura 25 - Redução do arrasto durante a natação provocado pelas escamas placoides.
Um fluxo laminar na superfície do tubarão faz com que as escamas fiquem acomodadas e
relaxadas (parte superior). Quando o fluxo laminar passa pelas nadadeiras, surge a
turbulência, o fluxo torna-se nulo e aumenta-se a pressão de arrasto. No entanto, o fluxo
reverso gerado pela turbulência eriça as escamas placoides (parte inferior). Por fim, esse
eriçamento produz um efeito favorável sobre a separação do fluxo.
As escamas placoides da pele de muitos tubarões exercem, pelo menos, dois mecanismos que
controlam essa separação e, desta forma, reduzem o arrasto. Primeiro, a superfície do espinho
da escama é esculpida como quilhas paralelas que controlam a separação da camada limite.
Em segundo lugar, nas regiões do corpo do tubarão que são mais suscetíveis à separação,
como as laterais, ocorre um eriçamento passivo das escamas placoides devido à presença de
um fluxo reverso, que faz com que as escamas placoides se tornem eriçadas. Quando
eriçadas, as escamas placoides reduzem a separação do fluxo e minimizam a pressão de
arrasto, facilitando o deslocamento do tubarão.
As raias possuem escamas placoides modificadas, conhecidas como ferrão envenenados, que
são utilizados pelo animal como uma ferramenta de defesa contra predadores. Entretanto,
essas escamas não fazem parte do tegumento de algumas famílias de raias como
Torpedinidae, Dasyatidae, Myliobatidae e Rajidae .
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
Escamas ósseas: essas escamas não têm esmalte, dentina ou camada óssea vascular,
apenas possuem osso lamelar, que é acelular e não calcificado. Parte da escama está
inserida na derme, sendo a outra extremidade livre. São de dois tipos: as cicloides, de
superfície lisa, e as ctenoides, com dentículos na extremidade exterior. 
Peixes ósseos apresentam escamas dérmicas, originadas pelas células da derme e
recobertas por uma fina camada de células epidérmicas. Répteis e avestêm escamas
córneas, formações de queratina originadas pelas células epidérmicas.
CARACTERÍSTICAS DO TEGUMENTO DOS
ANFÍBIOS
Entender a epiderme dos anfíbios também é compreender uma das diversas mudanças que
possibilitaram o início da transição da vida aquática para a terrestre. Nos anfíbios modernos, a
pele é um órgão respiratório (respiração cutânea), por meio do qual ocorre troca de gases com
o sangue dos capilares na epiderme e na derme.
Anfíbios como as salamandras dependem completamente da respiração cutânea para
satisfazer suas necessidades metabólicas (fig. 26), pois não possuem pulmões. Também
nesses animais, a epiderme apresenta estrato córneo, camada de transição e estrato basal. Na
epiderme deles, há células basais ou profundas e células apicais ou superficiais.
Durante a fase larvar, células de Leydig são distribuídas ao longo de toda a epiderme e
desaparecem após a metamorfose. Acredita-se que essas células possam transmitir um
estímulo hormonal e induzir a liberação de uma secreção musgosa sobre o tegumento das
larvas de anfíbios (WHITEAR, 2009).
Após a metamorfose, embora os anfíbios tenham perdido as células de Leydig, ainda mantêm
um estrato córneo fino capaz de oferecer proteção contra estímulos mecânicos abrasivos sem
perder capacidade para as trocas de gases respiratórios.
Também na epiderme, de modo ocasional, podem ser vistas células pigmentosas, os
cromatóforos, os quais são mais encontrados na derme.
Os cromatóforos ou cromatócitos ou células de Langerhans são células tegumentares
especializadas responsáveis por sintetizar e armazenar pigmentos e possuem aspecto
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
dendrítico devido às suas muitas projeções citoplasmáticas. Essas células sintetizam,
armazenam e secretam pigmentos que refletem a luz, o que as tornam responsáveis pela
coloração do tegumento dos animais. Podem ser encontradas em uma ampla variedade de
seres vivos, como os peixes, anfíbios, répteis, crustáceos e alguns cefalópodes. Nos
mamíferos e aves, os melanócitos desempenham a mesma função dos cromatóforos.
 
Fonte: Wikimedia.
 Figura 26 - Características histológicas e funcionais da epiderme dos anfíbios.
A característica úmida da superfície do tegumento dos anfíbios não é decorrente do ambiente
aquático no qual vivem, mas é decorrente da secreção de muco realizada sobre o tegumento. 
A. Epiderme, camada córnea, derme e suas glândulas. A superfície úmida do tegumento
facilita a solubilização e difusão de moléculas como O2 e CO2, permitindo a troca de gases
respiratórios. 
B. representação artística da epiderme, seus capilares, derme e suas glândulas.
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
AS MOLÉCULAS QUE PRODUZEM COR PODEM SER
DIVIDIDAS EM DUAS CLASSES: BIOCROMOS E
ESQUEMOCROMOS. OS BIOCROMOS APRESENTAM
PIGMENTOS AUTÊNTICOS, POR EXEMPLO OS
CAROTENOIDES E PTERIDINAS. OS CROMATÓFOROS
QUE POSSUEM GRANDES QUANTIDADES DE
PIGMENTOS DE PTERIDINA AMARELOS SÃO
DENOMINADOS XANTÓFOROS, E OS QUE SÃO
PRINCIPALMENTE CAROTENOIDES VERMELHOS OU
LARANJAS SÃO DENOMINADOS ERITRÓFOROS. 
OUTROS CROMATÓFOROS POSSUEM IRIDÓFOROS
OU GUANÓFOROS, QUE SÃO PIGMENTOS
CELULARES QUE REFLETEM A LUZ UTILIZANDO
PLACAS CRISTALINAS DE QUIMIOCROMOS
FORMADOS A PARTIR DA GUANINA. ESSAS PLACAS,
QUANDO ILUMINADAS, GERAM CORES
IRIDESCENTES POR CAUSA DA DIFRAÇÃO SOFRIDA
PELA LUZ NAS PLACAS AMONTOADAS. ASSIM, OS
IRIDÓFOROS CRIAM UM EFEITO ÓPTICO CONHECIDO
COMO EFEITO TYNDALL, RESULTANDO A PRODUÇÃO
DE CORES BRILHANTES AZUIS OU VERDES.
(BAGNARA, 1998).
Nos camaleões, ocorre uma mudança da pigmentação dos cromóforos da pele, permitindo-lhes
se camuflarem para serem confundidos com as cores das superfícies. Essa característica de
camuflagem tem diversas funções e varia de acordo com a espécie do animal e com o meio no
qual ele vive. No caso do camaleão, a mudança de cor pode ser uma estratégia de caça ou de
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
defesa. Ele tenta assumir a coloração do local onde se encontra para capturar insetos com sua
longa língua ou fugir de seus predadores.
 
Fonte: skeeze/Pixabay.
BOX 2. CAMALEÃO, QUEM É VOCÊ?
A retina do camaleão recebe a luz ambiente que incide sobre ela, as cores são interpretadas e
comparadas com a luminosidade refletida no ambiente. Hormônios são liberados e têm como
alvo o tegumento do camaleão. No tegumento, os hormônios induzirão a movimentação de
seus pigmentos, fazendo com que a coloração do tegumento passe a ter um padrão de
distribuição de cores que seja próximo do encontrado na paisagem. Desta forma, graças a esta
habilidade, é impossível que um camaleão se torne cor de rosa diante do verde da folhagem,
embora esta combinação seja de bom gosto sob o ponto de vista visual e musical.
O camaleão muda de cor porque consegue controlar a quantidade de pigmentos nos
cromatócitos da sua pele. Seus olhos se movimentam de maneira independente e, por isso,
são capazes de captar a luminosidade. Nas projeções citoplasmáticas dos cromatócitos,
existem "microtúbulos" que carregam o pigmento do núcleo para as extremidades, fazendo
com que no tegumento do camaleão possa ter áreas com cores e tonalidades diferentes,
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
necessárias para construir uma textura que permita a sua camuflagem. É importante mencionar
que não é verdade que os camaleões não mudam de cor tão rápido.
CARACTERÍSTICAS DO TEGUMENTO DOS
RÉPTEIS
Nos répteis, a queratinização da epiderme é muito mais extensa comparado às demais
espécies. As glândulas cutâneas são menos numerosas e suas escamas não é de origem
dérmica. Em vez disso, a escama é formada por dobras da epiderme, sendo, portanto, uma
escama epidérmica. As junções entre as escamas epidérmicas adjacentes geram uma
articulação flexível (fig. 27).
 
Fonte: Flickr.
 Figura 27 - Características da epiderme dos répteis.
Escamas epidérmicas nos répteis: entre as escamas existe uma área mais fina de epiderme,
uma “articulação”, que dá flexibilidade à pele.
Em determinados répteis, como cobras e alguns lagartos, ocorre o desprendimento de toda a
camada cornificada da epiderme. Esse fenômeno de renovação, denominado de muda ou
ecdise, resulta na eliminação de partes extensas da epiderme superficial (fig. 27). Repare que
a camada a ser eliminada é desprovida de coloração, confirmando que a troca se restringe à
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
camada epidérmica (fig. 28). Nas cobras, o início da ecdise pode ser facilmente identificado
quando esses animais passam a apresentar uma opacidade dos olhos (fig. 28).
 
Fonte: Pikist.
 Figura 28 - Muda ou ecdise em uma cobra.
Diferente de mamíferos e aves que eliminam partes da camada epidérmica em flocos, a troca
da camada epidérmica em répteis é feita por completo, sendo toda a extensão da camada
eliminada.
Durante a perda da camada epidérmica antiga, as células do estrato basal entram em mitose e
produzem uma nova geração de células epidérmicas interna. Quando a muda começa, o
estrato basal duplica os estratos granuloso e córneo, empurrando-os sob as camadas antigas
(fig. 27). Leucócitos se acumulam na zona da divisão entre as camadas epidérmicas para
promover a separação da epiderme nova da antiga externa, sugerindo que células
inflamatórias desempenham papel importante para a separação e a perda da camada
superficial antiga da pele.
CARACTERÍSTICAS DO TEGUMENTO DAS
AVES
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
Semelhante à epiderme dos répteis, a epiderme das aves compreende o estrato basal e o
estrato córneo e, entre eles, estão as camadas de transição e intermediária. As escamas
epidérmicas presentes no segmento cutâneo dos pés das aves são consideradas uma herança
reptiliana. Da mesma maneira, as penas das aves são consideradas uma evolução das
escamas epidérmicas dos répteis. Uma pena é basicamente uma bainha de queratinócitos
maduros ou mortos, cheiade fendas.
As penas se desenvolvem a partir dos folículos das penas, invaginações da epiderme que se
aprofundam na derme subjacente. A raiz do folículo da pena, associada à cavidade pulpar
dérmica, começa a formar a pena (fig. 29). Semelhante aos répteis, nas aves também ocorre a
muda das penas, suas especializações epidérmicas. A pena velha cai (muda) e o começo de
uma nova pena (fig. 29), o filamento da pena (ou pena sanguínea), logo cresce do folículo
como uma consequência da proliferação celular na base do folículo.
 
Fonte: Wikimedia.
 Figura 29 - O desenvolvimento da pena.
A pele das aves tem poucas glândulas. A glândula uropigial, localizada na base da cauda,
secreta um produto lipídico e proteico, com função lubrificante e impermeabilizante que as aves
coletam nos lados do bico e esfregam nas penas. A glândula de sal, localizada na cabeça de
algumas aves, é bem desenvolvida nas aves marinhas. Sua função é excretar o excesso de sal
obtido, já que as aves marinhas normalmente ingerem seu alimento com a água do mar.
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
 
Fonte: Wikimedia.
 Figura 30 - A glândula uropigial das aves.
Em A, podemos ver a localização da localização da glândula uropigial em uma ave jovem, sob
três ângulos diferentes. Em B, vemos uma ave manipulando a secreção da glândula uropigial
com seu bico.
CARACTERÍSTICAS DO TEGUMENTO DOS
MAMÍFEROS
Como em outros vertebrados, as duas camadas principais da pele dos mamíferos são a
epiderme e a derme, que se unem e formam uma interface através da membrana basal.
Abaixo, fica a hipoderme, ou fáscia superficial, composta de tecido conjuntivo e gordura.
Abaixo, fica a hipoderme, ou fáscia superficial, composta de tecido conjuntivo e gordura. 
A epiderme pode ser localmente especializada, apresentando pelos, unhas ou glândulas.
As células epiteliais da epiderme são queratinócitos e pertencem ao sistema de queratinização
que forma a camada superficial cornificada morta da pele. As células queratinizadas da
superfície são continuamente esfoliadas e substituídas por células que surgem primariamente
da camada mais profunda da epiderme, o estrato basal. As células dentro desse estrato se
dividem por mitose, produzindo algumas que permanecem para manter a população de células
tronco e outras que são empurradas para fora. À medida que se deslocam para níveis mais
altos, elas passam por estágios de queratinização exibidos como camadas sucessivas distintas
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
na direção da superfície: estrato espinhoso, estrato granuloso, estrato lúcido e estrato córneo.
O processo de queratinização é mais distinto em regiões do corpo onde a pele é mais espessa,
como nas solas dos pés ou nos coxins. Em outras partes, essas camadas, em especial o
estrato lúcido, podem ser menos evidentes.
Os queratinócitos são o tipo celular mais proeminente da epiderme. Outros tipos são
reconhecidos, embora suas funções sejam conhecidas com menos clareza. As células de
Langerhans (reveja a fig. 03) são estreladas e dispersas isoladamente por todas as partes
superiores do estrato espinhoso, sendo lhes atribuído um papel nas ações do sistema imune.
Também é postulado que as células de Merkel (reveja a fig. 03), originárias da crista neural e
associadas a nervos sensoriais próximos, respondam à estimulação tátil, atuando como
receptores de estímulos mecânicos (mecanorreceptores).
A derme dos mamíferos tem uma camada dupla. A camada papilar externa emite projeções
digitiformes, denominadas papilas dérmicas, na epiderme sobrejacente. A camada reticular
mais profunda inclui tecido conjuntivo fibroso arranjado de maneira irregular e que ancora a
derme à fáscia subjacente. Vasos sanguíneos, nervos e músculo liso ocupam a derme, mas
não chegam à epiderme. A derme dos mamíferos produz ossos dérmicos, os quais contribuem
para o crânio e a cintura escapular e só raramente alcançam as escamas dérmicas da pele.
 
Fonte A: Wikimedia. B: Flickr.
 Figura 31 - Seção da pele, da narina do cavalo.
E, epiderme; CCE, camada córnea da epiderme; 2, camada profunda da epiderme; 3, camada
papilar da derme; 4, ducto excretor de uma glândula sudorípara; 5, glomérulo ou tubo enrolado
do mesmo; 6, folículo piloso; 7, glândula sebácea; 8, bainha interna do folículo piloso; 9, bulbo
do cabelo; 10, massa de tecido adiposo.
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
Vasos sanguíneos e nervos entram na derme. Folículos pilosos e glândulas se projetam para
dentro a partir da epiderme. Em geral, a derme é composta por tecido conjuntivo fibroso,
disposto irregularmente, que costuma estar impregnado com fibras elásticas que conferem
certa capacidade de estiramento e retorno ao formato original. À medida que uma pessoa
envelhece, essa elasticidade é perdida, deixando a pele flácida.
A pigmentação do tegumento em mamíferos apresenta grande variedade mesmo em
intraespécie, com padrões de cores que podem diferenciar raças e etnias. A figura 34
demonstra uma esquematização que explica as diferenças existentes entre a cor da pele de
humanos africanos, asiáticos, europeus e seus descendentes. Nos africanos e seus
descendentes, os melanossomas são de tamanho grande, enquanto nos asiáticos seu
tamanho é intermediário e nos europeus seu tamanho é diminuto. Além disso, os
melanossomas da pele escura são mais amplamente dispersos (fig. 32B). Há também uma
modulação endócrina desempenhada pelas melanocortinas, que é responsável por intensificar
a produção de pigmentos marrom/ preto na derme (fig. 32A).
 
Fonte: Wikimedia.
 Figura 32 - Bioquímica e histologia das diferentes cores de pele dentre as etnias.
32A- A ativação do receptor de melanocortina 1 (MC1R) promove a síntese de eumelanina às
custas da feomelanina, embora a oxidação da tirosina pela tirosinase (TYR) seja necessária
para a síntese dos dois tipos de pigmentos. A proteína de transporte associada à membrana
(MATP) e a proteína de diluição de olhos rosados (P) são componentes da membrana
melanossomal que contribuem para a extensão da síntese de pigmentos nos melanossomas. 
32B- Há um gradiente de tamanho e número de melanossomas na pele escura, intermediária e
clara. Além disso, os melanossomas da pele escura são amplamente dispersos.
Os pelos são filamentos delgados de queratina. A base de um pelo é a raiz. O restante de seu
comprimento constitui uma haste sem vida. A superfície externa da haste forma uma cutícula
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
escamosa, abaixo da qual está o córtex piloso e no centro fica a medula do pelo. A haste do
pelo projeta-se acima da superfície da pele, mas é produzida dentro de um folículo piloso
enraizado na derme. A superfície da epiderme continua abaixo na derme, para formar o folículo
piloso. Em uma base expandida, o folículo recebe um pequeno tufo na derme, a papila pilosa,
que parece estar envolvida na atividade estimulante das células da matriz da epiderme, mas
ela própria não contribui diretamente para a haste do pelo.
Uma cobertura espessa de pelos, a pelagem, é composta por pelos de guarda e por inferiores
mais próximos da pele. Os pelos de guarda, ásperos e maiores, são mais evidentes na
superfície externa da pelagem. A pelagem inferior fica sob os pelos de guarda e, em geral, é
muito mais fina e curta. Ambos funcionam em grande parte como um modo de isolamento. Na
maioria dos animais marinhos, a pelagem inferior é reduzida ou inexistente, sendo evidente
apenas os pelos de guarda.
Por fim, nem todo pelo surgido do tegumento apresenta-se como proteção contra traumas
mecânicos ou contra a perda de calor corporal. Pelos como as vibrissas, que estão localizadas
principalmente na face dos mamíferos, apresentam-se como órgãos sensoriais importantes
para a execução de um respostas motoras de ajuste fino.
A seguir, conheça mais os últimos estudos sobre concentração de sódio no tegumento,
associado com alterações na pressãoarterial
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
Agora que terminamos o nosso conteúdo elaboramos algumas questões para você verificar o
seu nível de entendimento sobre o assunto. Se tiver alguma dúvida, não tenha receio de voltar
ao conteúdo e revisá-lo.
VERIFICANDO O APRENDIZADO
1. SÃO EXEMPLOS DE ESTRUTURAS CÓRNEAS FORMADAS
BASICAMENTE POR ALFA-QUERATINAS:
A) chifres e cornos.
B) cascos do cavalo e bico das aves.
C) calosidade do cotovelo.
D) plumagem e pelagem.
2. AS ESCAMAS PODEM SER DE CINCO TIPOS: GANOIDE, COSMOIDE,
PLACOIDE, CICLOIDE E CTENOIDE. ASSINALE A ÚNICA ALTERNATIVA
QUE APRESENTA ANIMAIS COM ESCAMAS PLACOIDES.
A) iguana e crocodilos.
B) baiacu e tilápia.
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
C) tubarões e arraias.
D) pés das aves e cabeça das serpentes.
GABARITO
1. São exemplos de estruturas córneas formadas basicamente por alfa-queratinas:
A alternativa "C " está correta.
 
Nos vertebrados, a epiderme produz dois tipos de queratinócitos – um contendo a forma alfa
(mole) e outro contendo a forma beta (dura) de queratina. A alfa queratina está presente nas
camadas epidérmicas com maior flexibilidade, enquanto a beta queratina é mais comum em
especializações, como as escamas duras, as garras, os bicos e as penas.
2. As escamas podem ser de cinco tipos: ganoide, cosmoide, placoide, cicloide e
ctenoide. Assinale a única alternativa que apresenta animais com escamas placoides.
A alternativa "C " está correta.
 
São características de peixes cartilaginosos como os tubarões, cações e arraias. São de
origem dérmica e epidérmica e constituídas por uma polpa. São encontrados vasos sanguíneos
e nervos, semelhante à composição dos dentes da boca dos tubarões. O número de escamas
varia com a idade (ou tamanho) dos elasmobrânquios.
MÓDULO 3
 Descrever as características anatomofisiológicas do sistema endócrino
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
 
Fonte: Nerthuz/Shutterstock.
Se o tegumento é responsável por perceber e interagir com o meio externo, o sistema
endócrino age na regulação e no controle das funções do organismo. Os níveis de atividade no
corpo são regidos por dois sistemas de controle principais: sistema nervoso e sistema
endócrino. Ambos frequentemente atuam em conjunto e são responsáveis pela coordenação
das atividades entre órgãos para restabelecer a homeostase.
O sistema endócrino é constituído por:
Glândulas endócrinas;
Mensageiros químicos humorais ou hormônios, produzidos pelas glândulas Tecidos- alvo
dos hormônios.
 
 Atenção! Para visualização completa da tabela utilize a rolagem horizontal
As glândulas endócrinas estão localizadas em todo corpo. Os hormônios são transportados
pelo sangue e, embora todos os hormônios circulem juntos, suas ações são específicas, pois
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
nem todos os tecidos respondem aos hormônios de maneira significativa.
As glândulas endócrinas são tão variadas quanto os tecidos alvo que controlam. Glândulas
endócrinas e seus produtos controlam a reprodução, o metabolismo, a osmorregulação, o
desenvolvimento embrionário, o crescimento, a metamorfose e a digestão. A seguir,
analisaremos a distribuição dessas glândulas e os hormônios que produzem em vertebrados.
HIPÓFISE
A glândula hipófise, ou pituitária, é encontrada em todos os vertebrados. A denominação
hipófise é utilizada mais recentemente, sendo inspirada por critérios anatomofuncionais, pois
sua posição abaixo (hipo , significa abaixo) do hipotálamo indica a topografia anatômica,
enquanto seu efeito estimulador sobre outras glândulas (-fise, refere se a crescimento) refere-se
à sua principal função. A hipófise é uma glândula endócrina com cerca de 1 cm de diâmetro
alojada na sela túrcica ou fossa hipofisária do osso esfenoide, na base do cérebro. Está
localizada abaixo do hipotálamo e posteriormente ao quiasma óptico, sendo ligada ao
hipotálamo pela haste pedúnculo hipofisário ou infundíbulo, estando envolta pela dura-máter
(exceto o infundíbulo).
Apesar de seu tamanho pequeno, a hipófise exerce efeitos essenciais na maioria das
atividades do corpo. A hipófise é considerada uma "glândula maestra", pois secreta hormônios
que controlam ou regem o funcionamento de muitas outras glândulas, sendo grande parte das
funções da hipófise reguladas pelo hipotálamo.
A hipófise é dividida em adeno-hipófise e neuro-hipófise. A adeno-hipófise é subdividida em
três regiões distintas: a pars distalis, a pars tuberalis e a pars intermedia. Em todos os
vertebrados, a pars distalis constitui a principal porção da adeno-hipófise e a fonte de uma
variedade de células produtoras de hormônios. A neuro-hipófise consiste em terminais dos
neurônios que se projetam, em sua grande maioria, do núcleo supraóptico do hipotálamo.
Um sistema circulatório do tipo porta curto existe entre a adeno-hipófise e a eminência média,
uma região hipotalâmica onde neurônios liberam seus neurotransmissores. Esses
neurotransmissores são levados até as células da adeno-hipófise através do sistema porta-
hipofisário.
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
 
Fonte: Wikimedia.
 Figura 33 - A glândula hipófise e seus vasos sanguíneos.
1: quiasma óptico; 2: veia portal hipofiseal; 3: pars tuberalis da adeno-hipófise; 4: pars distalis
da adeno-hipófise; 5: veia hipofiseal; 6: neuro-hipófise; 7a: artéria hipofiseal superior; 7b: artéria
hipofiseal inferior; 8: tronco infundibular; 9: plexo capilar primário; 10: células magnocelulares
neurossecretórias; 11: núcleo supraóptico do hipotálamo; 12: núcleu paraventricular do
hipotálamo; 13: pars intermedia da adeno-hipófise.
NEURO-HIPÓFISE
A neuro-hipófise é formada exclusivamente pelos terminais de neurônios provenientes do
hipotálamo. Esses neurônios são denominados de células neurossecretoras e seus produtos
liberados pelos terminais axonais são conhecidos como neuro-hormônios.
Ela possui um extenso suprimento sanguíneo a partir da circulação geral do corpo, que é
separado do suprimento para a adeno-hipófise, permitindo que as suas secreções ocorram
exclusivamente através da parte nervosa da hipófise.
Veja na imagem abaixo dois exemplos do funcionamento da neuro-hipófise.
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
 
Fonte: Wikimedia.
 Figura 34 -A neuro-hipófise é formada por terminais das células neurossecretórias.
Diagrama do corpo pituitário de um cão. Em A e em B, respectivamente, antes e após o corte
da haste hipofisária.
A
B
Em A, as células neurossecretórias nos núcleos paraventricular e supraóptico do hipotálamo
enviam os grânulos secretores contendo vasopressina e ocitocina pelos axônios até a neuro-
hipófise, onde são armazenadas nas terminações de axônios inchadas, antes de serem
secretados nos vasos sanguíneos circundantes.
Em B, após o corte da haste hipofisária, a neurossecreção se acumula na parte proximal dos
axônios e o suprimento anteriormente acumulado na neuro-hipófise se esgota após um tempo
e não é reabastecido.
Na neuro-hipófise dos mamíferos, foram identificados dois neuro-hormônios sintetizados pelas
células neurossecretoras do hipotálamo. Um desses hormônios é a vasopressina ou hormônio
antidiurético (ADH). O principal estímulo para a secreção da vasopressina é o aumento da
osmolaridade (hiperosmolaridade).
Assim, quando ocorre aumento da osmolaridade plasmática, ocorrerá também aumento da
osmolaridade intersticial nos núcleos supraóptico (SON) do hipotálamo, resultando em
aumento da atividade neuronal e da secreção de vasopressina.
javascript:void(0)
javascript:void(0)
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
OSMOLARIDADE (HIPEROSMOLARIDADE)
Concentração Osmótica, antes conhecida como Osmolaridade é a medida de
concentração de soluto, definida como o número de Osmoles (Osm) de soluto por litro de
solução (Osm/L). A osmolaridade de uma solução geralmente é expressa como Osm/L
(Osmolar).Enquanto a Molaridade é a quantidade de moles de soluto por unidade da
solução, osmolaridade é a quantidade de Osmoles (ou Osm) de partículas de soluto por
unidade de volume da solução.
Osmolaridade é diferente de Molaridade, porque alguns compostos podem se dissociar
quando estão em solução, enquanto outros não podem.
Compostos iônicos, como sais, podem se dissociar em seus íons constituintes quando
em solução, de forma que não há uma relação um-pra-um (função) entre as duas
medidas.
OSMOLARIDADE PLASMÁTICA
A osmolaridade plasmática (do sangue humano) pode ser calculada pela equação:
Osmolaridade Calculada = 2xNa + Glicose + Ureia 
Como a ureia atravessa livremente a membrana celular, ela não afeta a tonicidade do
plasma.
A medição laboratorial é feita em osmolalidade, não em osmolaridade. Entretanto, como
são aproximadamente iguais em soluções diluídas, na prática clínica, são valores
intercambiáveis.
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
 
Fonte: O autor.
 Figura 35 - O sensor da osmolaridade nos neurônios do SON são canais para cátions da
família TRPV.
Em um elegante experimento executado no laboratório do Professor Charles W. Bourque,
foram registradas atividades elétricas dos neurônios do SON (potenciais de ação) antes e após
os neurônios terem sido estimulado com solução hiperosmótica.
Após a estimulação, a frequência dos neurônios aumentou, indicando também um aumento da
secreção da vasopressina. Animais knockout (que tiveram gene deletado) para os canais
TRPV-1 (trpv1 -/-) perdem a sensibilidade à solução hiperosmótica e deixam de responder ao
estímulo.
Esses resultados obtidos comprovaram que os canais TRPV-1 são as proteínas de membrana
dos neurônios do SON, responsáveis por perceber as mudanças de osmolaridade que
resultaram em maior ou menor secreção da vasopressina. Os neurônios do OVLT também
possuem os canais TRPV-1 e são neurônios osmosensores que contribuem para a secreção
da vasopressina.
A vasopressina também pode ter a sua secreção aumentada quando há queda do volume
sanguíneo (hemorragia por exemplo) ou queda da pressão arterial (hipotensão).
Nessas situações, o sistema renina angiotensina aldosterona (SRAA) é ativado.
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
A angiotensina II estimula a secreção da vasopressina;
A vasopressina atua sobre o músculo liso das paredes das arteríolas periféricas,
causando um efeito vasopressor (vasoconstrição);
Por conta disso, a resistência ao fluxo sanguíneo aumentará a pressão arterial (fig.36).
 
 Atenção! Para visualização completa da tabela utilize a rolagem horizontal
Se um organismo sofrer uma perda considerável de sangue (hemorragia), sensores de pressão
existentes nas artérias carótidas detectam declínios da pressão arterial e estimulam a secreção
aumentada de vasopressina por meio de controle reflexo do hipotálamo (fig. 36).
 EXEMPLO
Quando um animal sofre desidratação, os neurônios neurossecretores do hipotálamo liberam
vasopressina na neuro-hipófise, onde o hormônio é captado no sangue e transportado até os
rins. A vasopressina atua em seus receptores V1 nas paredes das células dos ductos coletores
renais, tornando os altamente permeáveis à água. Assim, a água flui dos túbulos para o líquido
intersticial hiperosmótico e produz uma urina concentrada. Na ausência da vasopressina, as
paredes dos ductos coletores permanecem impermeáveis à água, e uma menor quantidade de
água é reabsorvida, e a urina produzida é diluída e volumosa.
Veja na imagem as explicações acima:
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
 
Fonte: Wikimedia.
 Figura 36 - Vias endócrinas e neural para a secreção da vasopressina.
O segundo hormônio encontrado na pars nervosa é a ocitocina. Os tecidos- alvo da ocitocina
são o miométrico, que é a camada de músculo liso do útero, as células mioepiteliais contráteis
da glândula mamária e os rins. No final da gestação, o nível de ocitocina no sangue aumenta,
conferindo-lhe um papel nas contrações uterinas durante o parto.
 EXEMPLO
O recém-nascido mamando inicia um reflexo por meio de nervos sensoriais, o que estimula os
neurônios neurossecretores do hipotálamo a liberar ocitocina em sua extremidade na pars
nervosa. A corrente sanguínea transporta o hormônio até as glândulas mamárias exócrinas, em
cujas paredes promove contrações das células mioepiteliais. Cerca de um minuto após o início
da amamentação, o leite começa a fluir do mamilo. Nos rins, a ocitocina aumenta a excreção
de sódio, sendo um hormônio auxiliador para o controle do volume dos líquidos corporais e da
pressão arterial.
ADENO-HIPÓFISE
Foram identificados sete hormônios principais na adeno-hipófise:
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
O hormônio do crescimento (GH);
O estimulante da tireoide ou tireotrofina (TSH);
O adenocorticotrófico (ACTH);
O luteinizante (LH);
O folículo estimulante (FSH);
A prolactina (PRL);
O estimulante dos melanóforos (MSH), liberado pela pars intermedia (fig. 37).
 
 Atenção! Para visualização completa da tabela utilize a rolagem horizontal
A liberação de todos os hormônios adeno-hipofisários é estimulada por fatores hipotalâmicos e
estimula a produção de hormônios em tecidos endócrinos periféricos. 
O controle da liberação dos hormônios adeno-hipofisários é realizado pelo mecanismo de
feedback negativo, onde os próprios hormônios periféricos exercerão um efeito inibitório sobre
a adeno-hipófise e/ou hipotálamo. Veja na imagem.
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
 
Fonte: O autor.
 Figura 37 - Células endócrinas da adeno-hipófise.
EIXO HIPOTÁLAMO- HIPÓFISE (GH)-SISTEMA
IGF
O hormônio do crescimento ou GH (growth hormone ) pode ter como alvo o fígado, que
responderá ao estímulo com a secreção de um fator de crescimento semelhante à insulina
(IGF-1, insulin-like growth factor ), que medeia alguns efeitos do GH sobre o crescimento e o
metabolismo.
É reconhecido que o GH produz efeitos somáticos (em todo o corpo), incluindo aumento da
síntese de proteínas, mobilização aumentada de ácidos graxos e diminuição da utilização de
glicose.
 ATENÇÃO
A falta do GH em animais jovens resulta em nanismo hipofisário, enquanto níveis excessivos
geram gigantismo hipofisário. A acromegalia é uma condição que ocorre em adultos, nos quais
a proliferação desproporcional de cartilagem resulta de um excesso de hormônio do
crescimento liberado depois da puberdade.
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
O mecanismo de feedback negativo que controla os níveis do GH depende da participação do
IGF-1 (fig. 37).
 
Fonte: Wikimedia.
 Figura 38 - Eixo GH-Sistema IGF: efeitos e feedback negativo.
EIXO HIPOTÁLAMO-HIPÓFISE-TIREOIDE (HPT)
O eixo hipotálamo-hipófise-tireoide faz parte do sistema neuroendócrino responsável pela
regulação do metabolismo e responde ao estresse.

O hipotálamo detecta baixos níveis circulantes do hormônio tireoidiano T4 (tetraiodotironina ou
tiroxina) e responde com o neuro-hormônio liberador de tireotropina (TRH).
O TRH estimula os tireotrofos da hipófise anterior a produzir hormônio estimulador da tireoide
(TSH).
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino


O TSH, por sua vez, estimula a tireoide a produzir hormônios tireoidianos até que os níveis no
sangue retornem ao normal.
Os hormônios tireoidianos T4 e T3 exercem controle de feedback negativo sobre a adeno-
hipófise, controlando a liberação de TSH da hipófise anterior, enquanto apenas o hormônio T4
controla a liberação de TRH pelo hipotálamo (fig. 39).

 
Fonte: O autor.
 Figura 39 - Eixo hipotálamo-hipófise-tireoide.
17/10/2021 15:58 Sistemas Nervoso, Tegumentar e Endócrino
A GLÂNDULA TIREOIDE
A glândula tireoide produz, armazena e libera dois hormônios tireoidianos separados que
regulam a taxa metabólica, a metamorfose, o crescimento e a reprodução em vertebrados. Em
todos os vertebrados, a

Continue navegando