Buscar

RESUMO 4 MATERIAIS CERÂMICOS - ciencias dos materiais

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 8 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 8 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

MATERIAIS CERÂMICOS
Os materiais cerâmicos são materiais inorgânicos e não-metálicos. A maioria das cerâmicas consiste em compostos que são formados entre elementos metálicos e elementos não-metálicos, para os quais as ligações interatômicas ou são totalmente iônicas ou são predominantemente iônicas com alguma natureza covalente. O termo "cerâmica" vem da palavra grega keramikos, que significa "matéria-prima queimada", indicando que as propriedades desejáveis desses materiais são normalmente atingidas através de um processo de tratamento térmico a alta temperatura conhecido por ignição. 
Até aproximadamente os últimos cinquenta anos; os materiais mais importantes que se enquadram nessa categoria eram conhecidos por "cerâmicas tradicionais", e eram aqueles para os quais a matéria prima primária é a argila; os produtos considerados cerâmicas tradicionais são a louça, a porcelana, os tijolos, as telhas e os azulejos e, ainda, os vidros e as cerâmicas de alta temperatura. Recentemente, houve um progresso significativo em relação à compreensão da natureza fundamental desses materiais e dos fenômenos que ocorrem neles e que são responsáveis pelas suas propriedades únicas. Consequentemente, uma nova geração desses materiais foi desenvolvida, e o termo "cerâmica" tomou um significado muito mais amplo. Em um determinado nível ou outro, esses novos materiais possuem um efeito consideravelmente dramático sobre as nossas vidas; as indústrias de componentes eletrônicos, de computadores, de comunicação, a indústria aeroespacial e uma gama de outras indústrias dependem do uso desses materiais.
ESTRUTURAS CERÂMICAS
Uma vez que as cerâmicas são compostas por pelo menos dois elementos, e frequentemente mais do que isso, as suas estruturas cristalinas são em geral mais complexas do que as dos metais. A ligação atômica nesses materiais varia desde puramente iônica até totalmente covalente; muitas cerâmicas exibem uma combinação desses dois tipos de ligação, sendo o nível do caráter iônico dependente das eletronegatividades dos átomos.
CERÂMICAS A BASE DE SILICATO
Os silicatos são materiais compostos principalmente por silício e oxigênio, os
dois elementos mais abundantes na crosta terrestre; consequentemente, a maior
parte dos solos, rochas, argilas e areia se enquadram na classificação de silicatos.
Em vez de se caracterizar as estruturas cristalinas desses materiais em termos de
células unitárias, torna-se mais conveniente usar vários arranjos de um tetraedro
composto por Cada átomo de silício está ligado a quatro átomos de
oxigênio, os quais estão localizados nos vértices do tetraedro; o átomo de silício está
posicionado no centro do tetraedro. Uma vez que essa é a unidade básica dos
silicatos, ela é tratada normalmente como uma entidade carregada negativamente.
Fonte: Livro Introdução ao Material Cerâmico – Oxford 1970.
Frequentemente, os silicatos não são considerados como iônicos, pois as ligações
interatômicas Si-O exibem um caráter covalente significativo, o que toma essas
ligações direcionais e relativamente fortes. Independente da natureza da ligação Si-
O, existe uma carga de - 4 associada a cada tetraedro uma vez que cada um
dos quatro átomos de oxigênio exige um elétron extra para atingir uma estrutura
eletrônica estável. Várias estruturas de silicatos surgem das diferentes maneiras segundo as quais as unidades de SiO podem ser combinadas em arranjos
unidimensionais, bidimensionais e tridimensionais.
SÍLICA
Quimicamente, o material mais simples à base de silicato é o dióxido de silício, ou sílica (SiO2). Estruturalmente, ela consiste em uma rede tridimensional que é
gerada quando todos os átomos de oxigênio localizados em vértices, em cada
tetraedro, são compartilhados por tetraedros adjacentes. Dessa forma, o material é
eletricamente neutro e todos os átomos possuem estruturas eletrônicas estáveis. Sob
essas circunstâncias, a razão entre o número de átomos de silício e o número de
átomos de O é de 1 :2, como indicado pela fórmula química. Se esses tetraedros forem
arranjados de maneira regular e ordenada, forma-se uma estrutura cristalina. Existem
três formas cristalinas polimórficas principais para a sílica: quartzo, cristobalita e tridimita. As suas estruturas são relativamente complicadas e comparativamente
abertas; isto é, os átomos não estão densamente compactados. Como consequência, essas sílicas cristalinas possuem densidades relativamente baixas.
VIDROS A BASE DE SÍLICA
A sílica também pode ser constituída na forma de um sólido não cristalino ou
vidro, com um elevado grau de aleatoriedade atômica, o que é uma característica dos
líquidos; tal material é conhecido por sílica fundida ou sílica vítrea. Como ocorre com
a sílica cristalina, a estrutura tetraédrica de é a unidade básica; além dessa
estrutura, existe uma desordem considerável. Outros óxidos (por exemplo, B203 e GeO2) podem também formar estruturas vítreas (e estruturas poliédricas de óxidos); esses materiais, bem como o SiO2, são conhecidos como formadores de rede. Os vidros inorgânicos comuns que são usados para recipientes, janelas, e assim por diante, são vidros à base de sílica, aos quais foram adicionados outros óxidos, tais como CaO e Na2O. Esses óxidos não formam redes poliédricas. Ao contrário, os seus cátions são incorporados no interior e modificam a rede de por essa razão, esses aditivos óxidos são conhecidos como modificadores de rede.
Ainda outros óxidos, como o TiO2 e o Al203, que não sejam formadores de rede, substituem o silício e se tornam parte da rede, estabilizando-a; esses óxidos são
conhecidos como intermediários. De um ponto de vista prático, a adição desses
modificadores e intermediários diminui o ponto de fusão e a viscosidade de um vidro, tornando mais fácil a sua conformação a temperaturas mais baixas.
OS SILICATOS
Para os vários minerais à base de silicato, um, dois ou três dos átomos de
oxigênio nos vértices dos tetraedros de são compartilhados por outros
tetraedros para formar algumas estruturas consideravelmente mais complexas.
Algumas dessas estruturas, que estão representadas na Fig. 16, possuem fórmulas
e assim por diante; também são possíveis estruturas de cadeia única. Cátions carregados positivamente, como Ca2+, Mg2+ e Ali+, servem a dois propósitos. Em primeiro lugar, eles compensam as cargas negativas das unidades de modo tal que é atingida uma neutralidade de cargas; em segundo lugar, esses cátions ligam ionicamente entre si os tetraedros de SiO4
Fonte: Livro Introdução ao Material Cerâmico – Oxford 1970
Tipos de Silicatos
· Silicato simples: Dentre esses silicatos, aqueles mais estruturalmente
simples envolvem tetraedros isolados;
· Silicatos em Camadas: Uma estrutura bidimensional em lâminas ou
camadas pode também ser produzida pelo compartilhamento de três
íons oxigênio em cada um dos tetraedros.	
CARBONO
O carbono é um elemento que existe em várias formas polimórficas e
também no estado amorfo. Esse grupo de materiais não se enquadra, na
realidade, dentro de qualquer um dos esquemas de classificação tradicionais
para metais, cerâmicas e polímeros. Entretanto uma das formas da Grafita
polimórficas, é algumas vezes classificada como uma cerâmica e, além disso, a
estrutura cristalina do diamante, uma outra forma polimórfica do carbono, é
semelhante àquela apresentada pela blenda de zinco. O tratamento dos materiais feitos de carbono se concentrará nas estruturas e nas características
da grafita, do diamante e dos novos fullerenos, além dos usos atuais e potenciais
desses materiais.
DIAMANTE
A temperatura e pressão atmosférica ambientes, o diamante é um polimorfo
metaestável do carbono. A sua estrutura cristalina é uma variação da blenda de zinco, onde os átomos de carbono ocupam todas as posições (tanto do Zn como do S), como
está indicado na célula unitária. Dessa forma, cada átomo de carbono se liga a quatro outros átomos de carbono, e essas ligações são totalmente covalentes. Isso é chamado, de maneira apropriada, de estrutura cristalina cúbica do diamante, e também é encontradapara outros elementos do Grupo IV A na tabela periódica [por exemplo, germânio, silício e estanho esfarelado abaixo de 13ºC (55ºF)]
Fonte: Livro Introdução ao Material Cerâmico – Oxford 1970.
As propriedades físicas do diamante o tornam um material extremamente
atrativo. Ele é extremamente duro (o material mais duro conhecido) e possui uma
condutividade elétrica muito baixa; essas características são devidas à sua estrutura
cristalina e às fortes ligações interatômicas covalentes. Além disso, ele possui uma
condutividade térmica anormalmente alta para um material não-metálico, é oticamente
transparente nas regiões visível e infravermelha do espectro eletromagnético, e possui
um elevado índice de refração. Monocristais de diamante relativamente grandes são usados como pedras preciosas. Industrialmente, os diamantes são utilizados para
triturar ou cortar outros materiais mais moles. Desde a metade da década de 1950, foram desenvolvidas técnicas para produção de diamantes sintéticos, as quais foram
refinadas até o ponto em que, nos dias de hoje, urna grande proporção dos materiais
com qualidade industrial é feita artificialmente pelo homem, além de algumas daquelas
peças com qualidade de pedra preciosa. As propriedades mecânicas, elétricas e óticas das películas de diamante se aproximam daquelas do diamante bruto. Essas propriedades desejáveis foram e continuarão a ser exploradas de modo a criar produtos novos e melhores. Por exemplo, as superfícies de perfuratrizes, matrizes, mancais e facas, além de outras ferramentas, têm sido revestidas com películas de diamante com o objetivo de aumentar a dureza superficial desses materiais; algumas lentes e redomas podem ser tornadas mais resistentes, enquanto as suas propriedades de transparência ainda são mantidas pela aplicação de revestimentos à base de diamante; tais revestimentos também têm sido aplicados em tweeters de alto-falantes e a micrômetros de/ alta precisão. Aplicações potenciais para essas películas de diamante incluem a aplicação à superfície de componentes de máquinas, tais como engrenagens, cabeças e discos de gravação ótica, e como substratos para dispositivos semicondutores
GRAFITA
Um outro polimorfo do carbono é a grafita; ela possui uma estrutura cristalina muito diferente daquela apresentada pelo diamante, e também é mais estável do que o diamante à temperatura e pressão atmosférica ambientes. A estrutura da grafita é composta por camadas de átomos de carbono em um arranjo hexagonal; dentro das camadas, cada átomo de carbono está ligado a três átomos vizinhos coplanares através de fortes ligações covalentes. O quarto elétron de ligação participa em uma fraca ligação do tipo de van der Waals entre as camadas. Como consequência dessas fracas ligações Inter planares, a clivagem Inter planar é fácil, o que dá origem às excelentes propriedades lubrificantes da grafita. Ainda, a condutividade elétrica é relativamente alta em direções cristalográficas paralelas às lâminas hexagonais. Outras propriedades desejáveis da grafita são as seguintes:
elevada resistência e boa estabilidade química a temperaturas elevadas e em
atmosferas não-oxidantes, elevada condutividade térmica, baixo coeficiente de
expansão térmica e alta resistência a choques térmicos, elevada adsorção de gases
e boas usinabilidade. A grafita é usada frequentemente como elemento de
aquecimento em fornos elétricos, como eletrodos para soldagem a arco, em cadinhos
metalúrgicos, em moldes de fundição para ligas metálicas e cerâmicas, para materiais
refratários e isolamentos de alta temperatura, em bocais de foguetes, em reatores de
reação química, para contatos elétricos, escovas e resistores, como eletrodos em
baterias e em dispositivos de purificação do ar.
FULLERENOS
Uma outra forma polimórfica do carbono foi descoberta em 1985. Ela existe
como uma forma molecular discreta, e consiste em um aglomerado esférico oco
contendo sessenta átomos de carbono; uma única molécula é representada por C60.
Cada molécula é composta por grupos de átomos de carbono que estão ligados uns
aos outros de modo a formar configurações geométricas tanto hexagonais (com seis
átomos de carbono), como pentagonais (com cinco átomos de carbono). Uma dessas
moléculas, consiste em 20 hexágonos e 12 pentágonos, arranjados de tal modo que não existe o caso em que dois pentágonos compartilham um mesmo lado; a superfície molecular exibe dessa forma a simetria de uma bola de
futebol. O material composto por moléculas de C60 é conhecido por
buckminste,fullereno, em homenagem a R. Buckminster Fuller, inventor do domo
geodésico. Cada molécula de C60 é simplesmente uma réplica molecular de tal domo, que é conhecido pelo nome abreviado de "bola de bucky" (buckyball). O termo
fullereno é usado para identificar a classe dos materiais que são compostos por esse
tipo de molécula.
Fonte: Livro Introdução ao Material Cerâmico – Oxford 1970.
O diamante e a grafita são o que pode ser chamado de sólidos de rede
cristalina, no sentido em que todos os átomos de carbono formam ligações principais
com átomos adjacentes ao longo de toda a extensão do sólido. De maneira contrária, os átomos de carbono no buckminsterfullereno se ligam uns aos outros de modo a
formar essas moléculas esféricas. No estado sólido, as unidades de C60 formam uma
estrutura cristalina e se compactam em um arranjo cúbico de faces centradas.
Como um sólido cristalino puro, esse material é eletricamente isolante.
Entretanto, com uma adição adequada de impurezas, esse material pode ser tornado
altamente condutor e semicondutor. Como uma observação final, foram descobertas
recentemente outras formas moleculares diferentes daquelas apresentadas pelos
aglomerados esféricos; essas outras formas incluem estruturas tubulares e poliédricas
em escala nanométrica. Antecipa-se que com desenvolvimentos adicionais os
fullerenos irão se tornar materiais tecnologicamente importantes.

Continue navegando

Outros materiais