Buscar

Resumo - Ciência dos Materiais

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 32 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 32 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 32 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Itamar Nunes 
Cap. I 
1 INTRODUÇÃO 
A produção e transformação de materiais em bens acabados, constituem uma das mais 
importantes atividades de uma economia moderna. Um produto, para ser 
manufaturado, requer uma etapa de planejamento de seu processo de produção. Nesta 
etapa são selecionados diversos materiais, de acordo com custos e, principalmente, 
com as necessidades técnicas exigidas. A elaboração dessa etapa exige que o 
responsável pela mesma tenha noção das estruturas internas dos materiais, pois o 
conhecimento das mesmas, aos níveis submicroscópicos, permite prever o 
comportamento do material em serviço, bem como possibilita programar e controlar 
suas propriedades e características. A produção e transformação de materiais 
em bens acabados, constituem uma das mais importantes atividades de uma economia 
ia moderna. Um produto, para ser manufaturado, requer uma etapa de planejamento 
de seu processo de produção. Nesta etapa são selecionados diversos materiais, de 
acordo com custos e, principalmente, com as necessidades técnicas exigidas. A 
elaboração dessa etapa exige que o responsável pela mesma tenha noção das 
estruturas internas dos materiais, pois o conhecimento das mesmas as, aos níveis 
submicroscópicos, permite prever o comportamento do material em serviço, bem 
como possibilita programar e controlar suas propriedades e características. A 
ciência dos materiais está associada à geração de conhecimento básico sobre a estrutura 
interna, propriedades e processamento de materiais como mostra a figura abaixo. Ela 
tem ainda com o objetivo, compreender a natureza dos materiais, estabelecendo 
conceitos e teorias que permitam relacionar a estrutura dos materiais com suas 
propriedades e comportamento. A ciência dos materiais está associada à geração de 
conhecimento básico sobre a estrutura interna, propriedades e processamento de m 
materiais. Ela tem ainda como objetivo, compreender a natureza dos materiais, 
estabelecendo conceitos e teorias que permitam relacionar a estrutura dos materiais 
com suas propriedades e comportamento. 
 
 
1.1 CLASSIFICAÇÃO DOS MATERIAIS 
Por conveniência, a maioria dos materiais de engenharia é classificada em três 
classes principais, quais sejam: materiais metálicos, materiais poliméricos (plásticos) 
e materiais cerâmicos. Esta classificação é baseada principalmente no tipo de estrutura 
atômica. Em adição a estes três tipos, um estudo m ais abrangente deve incluir 
um outro tipo, que exibe, atualmente, grande importância tecnológica: os materiais 
compósitos, semicondutores e biomateriais. 
1.1.1 MATERIAIS METÁLICOS 
Os materiais metálicos são substâncias inorgânicas compostas por um ou mais 
elementos metálicos e podem , também, conter elementos não-metálicos. Exemplos 
de materiais metálicos: aço, cobre, alumínio, níquel e titânio. Elementos não-
metálicos como carbono, nitrogênio e oxigênio podem estar contidos em materiais 
metálicos. Os metais têm uma estrutura cristalina, na qual os átomos os estão 
arranjados de m aneira ordenada. Eles, em geral, são bons condutores térmicos e 
elétricos. Quase todos os metais são mecanicamente resistentes, dúcteis e muitos 
mantém esta resistência mesmo em altas temperaturas. 
1.1.2 MATERIAIS POLIMÉRICOS (PLÁSTICOS) 
A maioria dos materiais poliméricos consiste de cadeias moleculares orgânicas 
(carbono) de longa extensão. Estruturalmente, a maioria destes materiais não é 
cristalina, porém alguns exibem uma mistura de regiões cristalinas e não-cristalinas. A 
resistência mecânica e ductilidade dos materiais poliméricos variam enormemente. 
Devido à natureza da estrutura interna, a maioria dos plásticos conduz eletricidade e 
calor de maneira extremamente precária. Isto permite que os mesmos sejam 
frequentemente utilizados como isolantes, tendo grande importância na confecção de 
dispositivos e equipamentos eletrônicos. Em geral, os materiais poliméricos têm 
baixo peso específico e apresentam temperatura de decomposição relativamente baixa. 
1.1.3 1.1.3. MATERIAIS CERÂMICOS 
Os cerâmicos são materiais inorgânicos constituídos por elementos metálicos e não-
metálicos unidos por m meio de ligações químicas. Estes m materiais podem ser 
cristalinos, não-cristalinos ou uma mistura de ambos. A maioria dos cerâmicos 
apresenta alta dureza e elevada resistência m mecânica, mesmo em altas t 
temperaturas. Entretanto, tais materiais são, normalmente, bastante frágeis. Uma 
gama bastante ampla de novos materiais cerâmicos está sendo desenvolvida, tendo 
como objetivo diversas aplicações, como é o caso de peças para motores de combustão 
interna. Neste caso, este material tem a vantagem do baixo peso, resistência e 
dureza elevados, alto resistência ao calor e propriedades isolantes. O fato de ser 
um bom isolante térmico, bem como ser resistente ao calor, permite que os materiais 
cerâmicos tenham importante papel na construção de fornos usados na indústria 
metalúrgica. Uma aplicação recente, que retrata com fidelidade o potencial dos 
materiais cerâmicos, é o uso dos mesmos na construção do ônibus espacial 
americano. A estrutura deste veículo é de alumínio revestida por milhares de 
pastilhas cerâmicas. Estas pastilhas dão proteção térmica ao ônibus durante e a 
subida e por ocasião da reentrada do mesmo na atmosfera. 
1.2 1.2. Propriedades dos materiais- Conceitos de básicos. 
1.2.1 Principais Propriedades Mecânicas: 
• Ductibilidade: capacidade do material em deforma ar plasticamente sem ruptura 
, quando submetido a esforço de tração. É expressa em porcentagem . 
• Maleabilidade: á a capacidade do material em deforma ar plasticamente sem 
ruptura , quando submetido a esforço de compressão. 
• Tenacidade: é a medida da energia necessária para fraturar um corpo de prova 
padrão. 
• Modulo de Elasticidade (YOUNG) : É a relação entre a tensão(s) aplicada e a 
deformação elástica(e) que ela produz. Está relacionado diretamente com as 
forças das ligações Inter atômicas (entre átomos). Indica a rigidez do m material. 
• Limite de resistência à tração ou tensão de deformação (se): representa a tensão 
a partir da qual o m material sofre deformação plástica. É uma das mais 
importantes propriedades de engenharia, pois são utilizados em cálculos de 
estruturais. Limite de resistência à ruptura (sr): representa a tensão a partir da 
qual o material sofre ruptura. 
• Resiliência: Corresponde à capacidade do material de absorver energia quando 
este é deformado elasticamente. Materiais resilientes são aqueles que têm alto 
limite de elasticidade e baixo módulo de elasticidade (como os materiais 
utilizados para molas). 
• Materiais Frágeis: capacidade do material resistir à abrasão superficial. 
• Material não frágeis: é a medida da resistência de um material à deformação 
plástica (permanente). 
• Resistência à flexão: é definida com a tensão máxima que um corpo de 
prova suporta antes de romper quando sujeito a um esforço de flexão. 
Utilizado para avaliar a resistência mecânica de materiais cerâmicos, 
principalmente para revestimentos e telhas. 
• Resistência à compressão: É definida com a tensão máxima antes da ruptura, 
que um corpo de prova pode resistir quando submetido a esforços de 
compressão. Este ensaio é utilizado principalmente para avaliar a 
resistências de tijolos, blocose concreto. 
• Fluência: limite de resistência à deformação em temperaturas elevadas. 
• Fadiga: limite de resistência à fratura de materiais submetidos a 
carregamentos cíclicos. 
1.2.2 Propriedades Térmicas: 
• Capacidade térmica: ela representa a quantidade de energia necessária para 
aumentar a temperatura. 
 
• Dilatação ou expansão Térmica: representa a variação dimensional de um 
material, quando este é submetido a um resfriamento ou aquecimento. 
 
• Condutividade Térmica: É o fenômeno pelo qual calor é transportado das regiões 
de maior temperatura para as regiões de menor temperatura. A propriedade que 
caracteriza a habilidade de um material transferir calor é a condutividade térmica 
(k). 
• Difusividade térmica 
 
• Choque térmico 
 
• Propriedades Elétricas: Condutividade elétrica (s): indica a facilidade com 
que um material conduz corrente elétrica, é o inverso da resistividade ( r). 
A unidade da condutividade é (Wm ) 
 
• Rigidez dielétrica: indica em que grau o material é isolante, ela é uma medida 
da tensão máxima que um material pode suportar antes de perder suas 
características de isolante. 
• Termoeletricidade: é a propriedade que apresenta um material em gerar uma 
corrente elétrica quando submetido a gradientes de temperaturas. A tensão 
produzida depende do tipo de material e da diferença de temperatura. 
• Piezeletricidade: in dica a capacidade de um material produzir um a 
polarização (energia elétrica) quando aplicam os uma força. 
 
Cap. II 
2 LIGAÇÕES ATÔMICAS 2 - INTRODUÇÃO 
Os materiais sólidos são formados por átomos que são unidos por forças elétricas, 
formando o que chamamos de ligações químicas. Estas interações elétricas podem 
ser obtidas de diversas formas, formando diferentes tipos de ligações. O 
comportamento de um material pode ser eficientemente previsto a partir da análise 
do mesmo aos níveis subatômico, atômico e microscópico. Assim, torna-se necessário 
examinar o mesmo, no tocante aos átomos que constituem o material, bem como o 
comportamento eletrônico dos mesmos. A estrutura de qualquer material é 
diretamente dependente dos tipos de átomo envolvidos e das ligações atômicas que 
eles formam. A base de qualquer unidade estrutural em ciência e engenharia de 
materiais é o átomo. O átomo consiste basicamente de três partículas subatômicas: 
prótons, elétrons e nêutrons. No centro do átomo localiza-se o núcleo, que tem 
diâmetro próximo a 10-14 m. Este núcleo é envolvido por uma nuvem de elétrons 
de densidade variável, que resulta em um diâmetro atômico final de 10-10m. No 
núcleo, onde residem prótons e nêutrons, está a quase totalidade da massa atômica. 
A massa de um próton é igual a 1,673x10-24g e sua carga elétrica é de +1,602x10-19 
Coulomb (C). O nêutron é pouco m ais pesado que o próton e tem massa igual a 
1,675x10-24g, porém é eletricamente neutro. O elétron tem massa de 9,109x10-28g 
e carga igual a -1,602x10-19 Coulomb. Portanto, a quase totalidade do volume 
atômico concentra-se na nuvem de elétrons, porém, está colabora com apenas uma 
pequena parte da massa final do átomo. Os elétrons, particularmente os mais 
externos, determinam a maioria das características elétricas, mecânicas, químicas e 
térmicas dos átomos e assim, o conhecimento básico do mesmo é necessário no 
estudo dos materiais. A estrutura interna dos materiais é resultado da agregação de 
átomos obtida através de forças de ligação Inter atômicas. Esta agregação, em função 
das características de tais ligações, pode resultar no estado solido, liquido ou gasoso. 
 
 
2.1 Energia de Ligação 
Porque os átomos se unem: Por que ao se unir os átomos diminuem a energia interna. 
 
 
• Relação entre energia de ligação e algumas propriedades: Resistência 
mecânica: aumenta com a força máxima e com a profundidade do poço da 
curva de energia de ligação. Pontos de fusão e de ebulição: aumentam com 
a profundidade do poço da curva de energia de ligação. 
• Coeficiente de expansão térmica: diminui com a profundidade do poço da 
curva de energia de ligação. 
 
2.2 Ligações Químicas 
Basicamente, os átomos podem atingir uma configuração denominada de estável 
(menor energia) a partir de três maneiras, quais sejam: ganho de elétrons, perda 
de elétrons ou compartilhamento de elétrons. A facilidade em ganhar elétrons 
caracteriza o átomo como elemento eletronegativo; a facilidade em perder elétrons 
o caracteriza como sendo um elemento eletropositivo. Existem também os átomos 
que não apresentam facilidade em perder ou ganhar elétrons. Estas características 
atômicas resultam na existência de três tipos de ligações atômicas, denominadas 
como primárias ou fortes, que são: 
 
Uma outra classe de ligações, denominadas de ligações fracas, pode ser encontrada 
em algumas substâncias. Estas ligações contribuem para a atração entre moléculas 
e são classificadas como forças de Van Der Walls (ligação secundaria). Estas 
moléculas são atraídas, pois nelas podem os ter polarização induzida ou permanente. 
Quanto maior esta polarização mais forte é a força de ligação entre as moléculas. 
2.3 LIGAÇÃO IÔNICA: 
Envolve a transferência de elétrons de um átomo para outro. 
 
Para o cloreto de sódio, tanto o cátion Na+ quanto o ânion Cl- ficam com seus 
orbitais externos completos. 
2.3.1 LIGAÇÃO IÔNICA 
características: 
• Metal + não-metal; 
• Envolve a transferência de elétrons de um átomo para outro; 
• Resulta da interação eletrostática entre um íon positivo e um íon negativo; 
• A ligação é não-direcional; 
• É a ligação predominante nos materiais cerâmicos; 
• Os materiais são duros e quebradiços; 
• Bons isolantes térmicos e elétricos nos sólidos, m as em soluções aquosas e 
no estado de fusão são bons condutores elétricos. 
 
2.4 LIGAÇ ÃO COVALENTE 
Na ligação covalente está envolvido o compartilhamento de par(es) de elétron(s) 
entre os átomos ligantes. 
2.4.1 Covalente (normal): 
cada um dos átomos participa da ligação com um elétron para a formação do par 
eletrônico compartilhado; 
2.4.2 Covalente dativa: 
apenas um átomo estabelece a ligação com o outro átomo compartilhando seus 
elétrons de valência para a formação do par eletrônico. Na formação das ligações 
químicas (covalente e covalente dativa) entre os átomos de oxigênio com o enxofre 
(átomo central) todos o s átomo s adquirem a estabilidade eletrônica, ou seja, ambos 
ficam com a última camada eletrônica totalmente preenchida, semelhante à 
distribuição eletrônica de um gás nobre. 
2.5 PROPRIEDADES GERAIS DOS COMPOSTOS COVALENTES 
 
Compostos Covalentes que formam moléculas (E: Cl2, HCl) 
 
• Na molécula, existem forças covalentes qeu mantêm os átomos unidos; 
• No estado sólido, as moléculas são mantidas por forças de Van der Waals 
fracas (mais fraca do que a atração eletrostática dos íons); 
• Em virtude disto, para fundir ou evaporar compostos covalentes precisa-se 
d e energia (DH) suficiente apenas para rom per as forças de Van der Waals. 
 Em virtude da fraca atração intermolecular, os compostos covalentes se apresentam 
como: 
• Líquidos, com baixo ponto d e ebulição, ou gases à temperatura ambiente; 
• Compostos sólidos que possuem baixa dureza e baixo ponto defusão. 
• Isolantes: não conduzem corrente elétrica. 
 
Compostos Covalentes formam estrutura (Ex: SiC, C -Diamante) 
Os átomos são mantidos unidos por ligações covalentes(fortes), formando estruturas 
cristalinas. 
Em virtude da alta energia da ligação covalente, os compostos covalentes apresentam 
como: 
• Compostos sólidos que possuem alta dureza e alto ponto de fusão. 
 
2.6 LIGAÇÃO METÁLICA 
Esse tipo de ligação é normalmente encontrado em metais e envolve a interação 
de elementos eletropositivos. A ligação metálica é resultado da ação entre elétrons livres 
(nuvem eletrônica) e íons positivos. Estes elétrons livres são originários da última 
camada de valência, fracamente presos ao átomo, e que estão livres dentro da 
estrutura metálica. A figura abaixo mostra as ligações metálicas observadas em metais. 
 
 
Características e propriedades dos compostos formados por ligações metálicos: 
 
Os átomos de um metal estão unidos através da nuvem eletrônica, formando 
estrutura cristalina compactas. 
 
 
 
2.7 LIGAÇÕES SECUNDÁRIAS 
Até agora, tem os considerado apenas a ligação primaria entre átomos, e vimos como 
ela depende da interação entre os elétrons de valência. A força motora para a ligação 
atômica primaria é a diminuição de energia que sofre os elétrons ligantes. Contratando 
com as ligações primarias, as ligações secundarias são relativamente fracas, com 
energias de apenas cerca 4 a 40Kj/mol. A força motora para as ligações secundárias 
é a atração entre dipolos elétricos que existem nos átomos e moléculas. Em geral, há 
dois tipos principais de ligações secundárias entre átomos ou moléculas, envolvendo 
dipolos elétricos: dipolos flutuantes (ou induzidos) e dipolos permanentes. É costume 
designar coletivamente estas ligações secundárias dipolares por ligações de Van der 
Waals. Dipolos Induzidos São forças de ligação muito fracas entre elementos de gás 
nobre, os quais possuem camadas completas de elétrons de valência. Estas ligações 
surgem por causa da forma assimétrica da distribuição de cargas eletrônicas destes 
átomos, a qual origina dipolos elétricos. Em qualquer instante, há um a elevada 
possibilidade de existir maior carga elétrica de um lado do átomo do que do outro. 
Por isso, num dado átomo, a nuvem de carga elétrica sofrendo alterações no tempo, 
criando um dipolo flutuante. Os dipolos formados nos átomos podem originar atração 
entre si, de que resultam fracas ligações Inter atômicas não direcionais. 
2.7.1 Dipolos permanentes 
São forças de ligação mais fortes que as ligações por dipolos induzidos que se 
desenvolvem entre moléculas formadas por ligações covalentes, quando estas 
moléculas formam dipolos permanentes. 
 
• Sólidos cristalinos, de alto ponto de fusão e ebulição; 
• São bons condutores de calor e energia; 
• Possuem elevada plasticidade e dutibilidade; 
• São bons condutores de calor e energia; 
• Possuem elevada plasticidade e ductibilidade; 
• Formam estruturas opacas. 
Cap. III 
 
3 ESTRUTURA CRISTALINA 
 
3.1 INTRODUÇÃO 
 
Dependendo da composição química ou do processo de fabricação os átomos na 
solidificação ou em tratamentos térmicos podem se arranjar de maneira ordenada 
(estrutura cristalina) ou desordenada (estrutura vítrea). 
 
Estrutura cristalina: compostos por átomos, moléculas ou íons arranjados de uma 
forma periódica em 3 dimensões. As posições que são ocupadas seguem uma 
ordenação que se repete ao longo de grandes distâncias Distância entre planos de 
átomos iguais. Materiais Vítreos (amorfos): compostos por átomos, moléculas ou íons 
que não apresentam uma ordenação de longo alcance. Distância entre planos atômicos 
diferentes 
3.2 ESTRUTURA CRISTALINA 
A estrutura física dos materiais sólidos depende fundamentalmente do arranjo 
estrutural de seus átomos, íons ou moléculas. A grande maioria dos materiais 
comumente utilizados em engenharia, particularmente os metálicos, exibe um arranjo 
geométrico de seus átomos bem definido, constituindo uma estrutura cristalina. Os 
materiais cristalinos, independentes do tipo de ligação encontrada no mesmo, 
caracterizam-se por apresentar um agrupamento ordenado de seus átomos, íons ou 
moléculas, que se repete nas três dimensões. Os arranjos atômicos em um sólido 
cristalino podem ser descritos usando, como referência, os pontos de intersecção de 
uma rede de linhas nas três dimensões. Em um cristal ideal, o arranjo destes pontos 
em torno de um ponto particular deve ser igual ao arranjo em torno de qualquer 
outro ponto da rede cristalina. Dessa maneira, é possível descrever um conjunto de 
pontos ou posições atômicas repetitivo, denominado de célula unitária. Uma célula 
unitária é também definida como a menor porção do cristal que ainda conserva as 
propriedades originais do mesmo. Através da adoção de valores específicos, como 
parâmetros axiais e ângulos interaxiais, pode-se obter células unitárias de diversas 
naturezas. O estudo da estrutura interna dos materiais necessita da utilização de 7 
arranjos atômicos básicos, que podem representar as estruturas de todas as 
substâncias cristalinas conhecidas. 
 
Estes 7 arranjos atômicos básicos definem 7 sistemas cristalinos. Partindo desses 
sistemas, A. J. Bravais derivou 14 células unitárias, que permitem descrever qualquer 
estrutura cristalina possível. 
 
3.3 ESTRUTURA CRIS TALINA DOS MATERIAIS 
 
Fatores que definem o arranjo mais estável dos átomos de um cristal: 
• Preservar a neutralidade elétrica; 
• Satisfazer o caráter direcional das ligações covalentes; 
• Minimizar a repulsão íon-íon; 
• Ajustar os átomos do modo mais compacto possível; 
• Relação entre tamanho de átomos; 
3.3.1 Materiais Metálicos 
As Ligações metálicas por não a presentarem caráter direcional, não impõe restrições 
a átomos vizinhos e também por se formados por átomos iguais ou semelhantes, 
cristalizam-se em estruturas simples e compactas. Os metais se cristalizam nas 
seguintes estruturas: H hexagonal Compacta, Cúbica de Face C entrada e Cúbica de 
Corpo Centrado 
3.3.1.1 Estrutura Cúbica de Corpo Centrado-CCC 
Neste arranjo estrutural existe um átomo em cada vértice de um cubo e um outro átomo 
no centro do mesmo, como mostra a figura abaixo. Esta estrutura pode ser encontrada no 
tungstênio, tântalo, bário, nióbio, lítio, potássio, vanádio, cromo, etc. 
 
3.3.1.2 Estrutura Cúbica de Face Centrado-CFC 
Este arranjo caracteriza-se por exibir os mesmos átomos nos vértices encontrados nos 
outros dois arranjos cúbicos e mais 1 átomo em cada face do cubo. A estrutura cúbica de 
face centrada é a estrutura do alumínio, cálcio, níquel, cobre, prata, ouro, platina, chumbo, 
etc. Neste caso existe um total de quatro átomos no interior da célula unitária. 
 
3.3.1.3 Características da estrutura CFC 
Relação entre raio e aresta da célula unitária: 
 
R- raio atômico a- aresta da célula unitária. 
Número de Átomos por célula unitária: 4 átomos 
Fator de empacotamento atômico (F.E.)= 0,74 ou 74% 
3.3.2 Estrutura Hexagonal Compacta 
A estrutura hexagonal compacta é formada por dois hexágonos sobrepostos e um 
plano intermediário de 3 átomos. Nos hexágonos, novamente, existem 6 átomos nos 
vértices e um outro no centro. A estrutura cristalina hexagonal compacta pode ser 
observada na figura abaixo. Neste caso, o parâmetro "a" é diferente do parâmetro 
"c". Os ângulosbasais são novamente iguais a 120° e os verticais de 90°. A 
estrutura HC pode ser observada no berílio, berquélio, lítio, magnésio, cádmio, 
cobalto, etc. O número de átomos que efetivamente encontram-se dentro de uma 
célula unitária HC é igual a 6. 
 
 
 
3.4 ALOTROPIA 
Diversos elementos, bem como compostos químicos apresentam mais de uma forma 
cristalina, dependendo de condições como pressão e temperatura envolvidas. Este 
fenômeno é denominado de alotropia ou polimorfismo. Metais de grande importância 
industrial como o ferro, o titânio e o cobalto apresentam transformações alotrópicas 
em temperaturas elevadas. A variação alotrópica encontrada em cristais de ferro 
pode ser considerada como um clássico exemplo de polimorfismo. Esta variação 
alotrópica é muito importante em processos metalúrgicos, pois permite a mudança 
de certas propriedades do aço (Fe + C), através de tratamentos térmicos. 
O ferro apresenta os arranjos CCC e CFC na faixa de temperaturas que vai da 
temperatura ambiente até a temperatura de fusão do mesmo (1539°C). O ferro a 
existe de -273 a 912°C e tem estrutura cristalina CCC. Entre 768 e 912°C, o ferro a 
deixa de ser magnético e, algumas vezes, é chamado de ferro b. O ferro g existe 
de 912 a 1394°C e tem estrutura CFC. O ferro d existe de 1394 a 1539°C, 
apresentando, novamente, estrutura CCC. A diferença entre as estruturas CCC do 
ferro a e do ferro d reside no valor do parâmetro de rede dos dois casos. Na 
faixa de temperaturas mais baixa, o parâmetro de rede é menor. 
Um outro exemplo clássico de polimorfismo é a variação alotrópica do carbono. 
Este elemento é encontrado como diamante, que é o material mais duro na natureza 
e no grafite, um material de baixíssima dureza, que pode ser usado como 
lubrificante. O diamante é duro porque todas as suas ligações são covalentes. Por 
outro lado, a grafite tem ligações covalentes apenas em alguns planos. Estes planos 
são agregados a outros planos através de forças secundárias e assim, é fácil provocar 
o deslizamento dos mesmos. 
 
3.4.1 Estrutura Cristalina do s Materiais Cerâmicos 
 
A estrutura dos materiais cerâmicos pode ser extremamente complexa à medida que 
um número elevado de átomos, com diferentes funções, pode formar a mesma. Tal 
estrutura, como de outros materiais (metálicos e poliméricos) é determinada pela 
natureza das ligações atômicas presentes, bem como das características dos 
elementos envolvidos em tais ligações. Na maioria dos materiais cerâmicos, a 
estrutura é resultado da quantidade relativa de ligações iônicas e covalentes presentes. 
As parcelas iônica e covalente dependem basicamente da eletronegatividade dos 
átomos envolvidos. 
O caráter iônico ou covalente define, em parte, o tipo de estrutura que o composto 
cerâmico exibe. Como na maioria dos compostos cerâmicos o caráter iônico é 
predominante, a estrutura dos mesmos é determinada por dois fatores fundamentais. 
No caso de compostos iônicos simples, do tipo AB, o arranjo dos íons é definido 
pelos seguintes fatores: 
a. A relação entre os raios do cátion e do ânion; 
b. A necessidade de existir um balanço de cargas no sólido iônico. 
Como os sólidos iônicos exibem tendência a formar estruturas altamente compactas, o 
limite de tal compactação é dado pela relação entre raios iônicos e pelo balanço 
eletrostática dos íons envolvidos. Além disso, para que a ligação iônica ocorra é 
necessário que os cátions e ânions estejam em contato. 
Assim, para o caso de um a estrutura onde os íons são iguais, é fácil perceber que 
o número de coordenação será igual a 12 ( estruturas CFC ou HC). S e os íons são 
diferentes, o N .C. dependerá da relação entre seus r aios r/R, onde r é o raio do cátion 
e R do ânion. Quando as dimensões dos íons são comparadas, observa-se que os 
ânions são, geralmente, maiores que os cátions. Este fato está relacionado à força 
que o núcleo exerce em relação a eletrosfera. 
Com a perda de elétrons (gerando cátions), os elétrons restantes são atraí dos em 
direção ao núcleo de maneira mais forte, o que reduz o raio iônico. O fenômeno 
oposto, ou seja, o aumento do raio iônico ocorre com o ganho de elétrons e a 
formação de ânions. A tabela abaixo exibe valores do raio iônico de alguns cátions 
e ânions formadores de estruturas cerâmicas simples. 
 
 
 
3.5 CRISTALOGRAFIA E DETERMINAÇÃO DE ESTRUTURAS CRISTALINAS 
3.5.1 Posições, Direções e Planos em Cristais 
Frequentemente, é necessário identificar posições, direções e planos em um cristal. 
Isto é particularmente importante no caso de metais e suas ligas, que apresentam 
propriedades que variam com a orientação cristalográfica. Por exemplo, a existência 
de determinados conjuntos de planos e direções definidos como compactos, 
desempenham importante papel durante a deformação plástica de metais. A 
existência de propriedades dependentes da orientação cristalográfica resulta na 
necessidade de se determinar posições, direções e planos em um cristal. 
3.5.2 Posições em Cristais Cúbicos 
A localização de posições atômicas em uma célula unitária de um cristal cúbico é 
obtida pelo uso de um sistema de eixos cartesiano. Em cristalografia, o eixo x é a 
direção perpendicular ao plano do papel, o eixo y é a direção à direita do papel 
e o eixo z é a direção para cima, como mostra a figura abaixo. As direções negativas 
destes eixos são opostas às direções mencionadas. As posições atômicas em uma 
célula unitária são definidas pelo uso de unidades de distâncias ao longo dos eixos 
x, y e z. Por exemplo, as coordenadas das posições atômicas em uma célula CCC 
são mostradas na figura abaixo. As posições dos átomos nos oito vértices do cubo 
têm as coordenadas: (0, 0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,1), (1,1,0), (1, 0,1) e (0,1,1). 
 
3.5.3 Direções em Cristais Cúbicos 
No sistema cúbico, as direções cristalográficas são obtidas a partir das componentes 
da direção em questão, tomadas nos três eixos cartesianos. Para indicar 
esquematicamente uma direção em uma célula unitária, desenha-se um vetor que 
parte da origem e atinge a posição definida pelas coordenadas consideradas. Assim, 
para se obter uma direção em um cristal, deve-se observar que: 
a. Os eixos cristalinos são utilizados como direções básicas; 
b. As coordenadas de um ponto são medidas em relação ao parâmetro de cada 
eixo e assim, não representam valores reais de distância; 
c. A direção [222] é idêntica à direção [111] e dessa forma, a combinação dos menores 
números inteiros deve ser utilizada; 
d. As direções negativas são indicadas com um traço sobre o índice; 
e. Uma direção é representada por índices entre colchetes. 
Por exemplo, considerando a figura abaixo, as coordenadas do vetor OR, que passa 
pela origem são (1,0,0). Assim, a direção do mesmo passa a ser [100]. As 
coordenadas do vetor OT são (1,1,1) e sua direção é dada por [111]. 
 
3.5.4 Planos em Cristais s Cúbicos 
Em determinadas situações é necessário definir planos atômicos dentro de uma 
estrutura cristalina. Para identificar planos cristalinos em cristais cúbicos, o sistema 
de notação dos índices de Miller deve serutilizado. Os índices de Miller de um plano 
cristalino são definidos como sendo os inversos das coordenadas de interceptação do 
plano com os eixos x, y e z. O procedimento básico para determinar os índices de 
Miller para um cristal cúbico são: 
 
a. Escolha de um plano que não passe pela origem (0,0,0); 
b. Determinação dos pontos de interceptação do plano com os eixos x, y e z; 
c. Obtenção dos inversos das interceptações; 
d. Obtenção dos menores números inteiros para representar o plano; 
e. A apresentação dos índices obtidos entre parênteses. 
 
Genericamente, as letras h, k e l são usadas para indicar os índices de Miller de 
um plano, o que resulta em (hkl). A figura abaixo mostra três dos mais importantes 
planos das estruturas cúbicas. Considerando o plano indicado na figura abaixo nota-
se que o mesmo intercepta x em 1, y em infinito e z também em infinito. 
 
Tomando os inversos pode-se obter os índices de Miller, que resulta em (100). 
Como estes índices não envolvem frações, os mesmos são usados para representar o 
referido plano. Considerando o plano da figura acima., observa-se que o mesmo 
intercepta os eixos em 1, 1 e ¥. Os inversos fornecem 1, 1 e 0, que resultam em (110). 
Finalmente, o plano apresentado pela figura acima intercepta os eixos em 1, 1 e 
1, que resulta nos índices de Miller (111). Quando é necessário representar um 
conjunto de planos equivalentes dentro de um cristal, são utilizadas as famílias de 
planos. Uma família de planos, como a dos que passam pelas faces do cubo ou 
(100), (010), (001), etc., é representada pela notação {100}. Da mesma forma, a 
família de planos que dividem o cubo em duas partes iguais é dada por {110}. 
Planos em Cristais Cúbicos Em determinadas situações é necessário definir planos 
atômicos dentro de uma estrutura cristalina. Para identificar planos cristalinos em 
cristais cúbicos, o sistema de notação dos índices de Miller deve ser utilizado. Os 
índices de Miller de um plano cristalino são definidos como sendo os inversos das 
coordenadas de interceptação do plano com os eixos x, y e z. O procedimento 
básico para determinar os índices de Miller para um cristal cúbico são: 
 
a. Escolha de um plano que não passe pela origem (0,0,0); 
b. Determinação dos pontos de interceptação do plano com os eixos x, y e z; 
c. Obtenção dos inversos das interceptações; 
d. Obtenção dos menores números inteiros para representar o plano; 
e. Apresentação dos índices obtidos entre parênteses. 
 
Genericamente, as letras h, k e l são usadas para indicar os índices de Miller de 
um plano, o que resulta em (hkl). A figura acima mostra três dos mais importantes 
planos das estruturas cúbicas. 
 
3.5.5 Análise de Estruturas Cristalinas 
 
Grande parte do conhecimento adquirido sobre estruturas cristalinas é resultado da 
utilização de técnicas de difração de raios-X. Estas técnicas permitem obter 
informações detalhadas sobre dimensões, presença de d efeitos e orientação da rede 
cristalina. O uso do raios-X no estudo de cristais deve-se ao f ato de que está 
radiação tem comprimento de onda próximo aos valores de distâncias entre planos 
cristalinos. A utilização de raios-X iniciou-se logo em seguida a sua descoberta em 
1895, por Roentgen. A pesar de, naquela época, a natureza desta radiação não ser 
conhecida em detalhes (razão do nome "raios-X"), o raios-X foi então, aplicado em 
estudos da e estrutura interna de materiais opacos ( radiografia) devido ao s eu alto 
poder de penetração. Desde aquela época, esta radiação era conhecida por propagar-
se em linha reta, sensibilizar filmes fotográficos e apresentar velocidade de 
propagação definida. Os raios-X empregados em técnicas de difração são ondas 
eletromagnéticas com comprimento de onda na faixa de 0,05 a 0,25nm (0,5 a 2,5 
Å). Como comparação, o comprimento de onda da luz visível é da ordem de 600nm 
(6. 000 Å). 
 
Cap. VI 
4 IMPERFEIÇÕES DA ESTRUTURA CRISTALINA 
 
4.1 INTRODUÇÃO 
Durante a solidificação, os Materiais sofrem o rearranjo de seus átomos que 
determina a estrutura cristalina dos mesmos. Dependendo do modo com que o 
líquido se transforma em sólido, podem ocorrer defeitos no empilhamento e 
organização dos átomos, resultando em imperfeições estruturai s. O tipo e a 
quantidade destas imperfeições afetam decisivamente algumas propriedades e o 
comportamento dos materiais cristalinos. Com exceção de alguns poucos produtos 
conformados por sinterização (metalurgia do pó), todos os produtos metálicos passam 
necessariamente pelo processo de solidificação, em algum estágio de sua fabricação. 
Em geral, o processo de solidificação pode ser dividido em duas etapas: 
 
a. Formação de embriões de cristais estáveis dentro do líquido ou etapa de 
nucleação, como mostra figura abaixo; 
b. Transformação dos núcleos em cristais, ou etapa de crescimento. 
 
A transformação líquido/sólido e a consequente formação da estrutura cristalina é 
observada na prática em duas situações diferentes, quais sejam: solidificação com 
nucleação e crescimento controlados e solidificação com nucleação e crescimento 
não-controlados. O primeiro caso envolve situações onde existe a necessidade de se 
produzir um sólido, onde a característica principal do mesmo é a qualidade do 
arranjo cristalino. Esta situação é geralmente encontrada na obtenção de insumos 
básicos para microeletrônica, onde a necessidade de monocristais perfeitos de silício, 
acineto de gálio, etc., é fundamental. 
 
4.2 Imperfeições Estruturais 
 
As estruturas cristalinas analisadas até aqui apresentam como característica básica, 
arranjos cristalinos muito bem definidos. Entretanto, os cristais observados na prática 
nunca são totalmente perfeitos, exibindo defeitos de diversas naturezas. Tais 
imperfeições afetam diretamente várias características dos materiais, como os 
parâmetros envolvidos na deformação plástica, na condutividade elétrica de 
semicondutores, na corrosão em metais e em processos de difusão atômica. As 
imperfeições presentes em estruturas cristalinas podem ser de três tipos básicos, quais 
sejam: 
 
• defeitos pontuais; 
• defeitos em linha; 
• defeitos de superfície. 
 
O tipo de defeito m ais simples é a vacância. As vacâncias são vazios pontuais 
causados pela ausência de átomos em algumas posições da rede cristalina, como 
mostra a figura abaixo. Este tipo de defeito pode ser produzido durante o processo 
de solidificação, como resultado de perturbações locais no crescimento do cristal. 
Uma outra causa destas imperfeições é o rearranjo atômico de um cristal já 
existente, devido à mobilidade de seus átomos. Nos metais, a concentração de vacâncias 
raramente passa de 1 para cada 104 átomos. As vacâncias podem ainda ser resultantes 
da deformação plástica, do resfriamento rápido e do bombardeamento da rede 
cristalina por partículas atômicas, como neutro. 
 
 
Em cristais iônicos, os defeitos pontuais exibem caráter mais complexo devido à 
necessidade de manter a neutralidade elétrica do sistema. Mesmo assim, pode-se 
observar defeitos estruturais, como o caso em que dois íons de cargas opostas 
perdidos dentro da estrutura entram em contato, criandouma vacância dupla. Este 
tipo de defeito é conhecido como imperfeição de Schottky. Quando um íon positivo 
se move para uma posição intersticial do cristal iônico, uma "vacância cátion" é criada, 
conhecida como imperfeição de Frenkel. Os defeitos de Schottky e Frenkel são 
mostrados na figura abaixo. A presença dos defeitos de Schottky e Frenkel em 
cristais iônicos aumenta a condutividade elétrica dos mesmos. 
 
Uma outra classe de defeitos são os átomos substitucionais e intersticiais estranhos 
à rede cristalina. Os átomos intersticiais são imperfeições causadas pela presença de 
átomos estranhos nos interstícios da rede cristalina e os átomos substitucionais são 
defeitos provocados pela existência de átomos estranhos nos próprios vértices da 
rede cristalina, em substituição aos átomos que ali deveriam estar se não existissem 
vacâncias. Defeitos dessa natureza podem modificar o comportamento de certas 
propriedades. Por exemplo, a presença de uma quantidade muito pequena de átomos 
estranhos à rede cristalina do silício pode afetar, de modo significativo, a 
condutividade elétrica do mesmo. Estes dois tipos de defeitos pontuais são 
frequentemente observados durante a formação das ligas metálicas, na forma de 
soluções sólidas. Na maioria das aplicações de engenharia, a necessidade de 
propriedades específicas, faz com que o uso de materiais metálicos nem sempre esteja 
restrito aos metais puros. Na verdade, apenas em um número bastante limitado de 
aplicações, os metais podem ser encontrados na forma pura ou quase pura. Por 
exemplo, o cobre de alta pureza (99,99%) é usado na confecção de fios elétricos 
devido a sua elevada condutividade elétrica. O alumínio superpuro (99,99%) é 
usado na fabricação de objetos decorativos, pois o mesmo permite obter uma 
superfície melhor acabada. Por outro lado, a maioria dos materiais metálicos usados 
em engenharia, estão combinados com outros metais ou não-metais. Estas 
combinações, denominadas de ligas metálicas, têm o objetivo de aumentar a 
resistência mecânica, a resistência à corrosão ou melhorar outras propriedades. Uma 
liga metálica, ou simplesmente uma liga, é a mistura de dois ou mais metais ou 
metais e não-metais. Estas ligas podem ter estruturas relativamente simples, como a 
de uma peça de bronze. O bronze é essencialmente uma liga binária (dois metais), 
contendo 70% em peso de Cu e 30% em peso de Zn. Por outro lado, certas ligas 
podem ser extremamente complexas como as superligas à base de níquel, 
denominadas comercialmente de Inconel 718 e usadas na confecção de peças de 
motores a jato. Estas ligas contêm nominalmente em torno de 10 elementos. Um 
outro exemplo de liga metálica pode ser observado no aço, onde as estruturas CFC e 
CCC do ferro abrigam átomos de carbono. Esta combinação permite obter um 
material extremamente versátil, com aplicações bastante diversificadas. 
O tipo mais simples de liga metálica é aquele que forma uma solução sólida. Uma 
solução sólida é um sólido que consiste de dois ou mais elementos atomicamente 
dispersos em uma estrutura monofásica. Em geral existem dois tipos de soluções 
sólidas: substitucional e intersticial. 
Nas soluções sólidas substitucionais formadas por dois elementos, os átomos do 
soluto podem ser substitutos dos átomos do solvente na rede cristalina. Neste caso, 
a estrutura do solvente não é alterada, sendo comum a distorção da rede cristalina, já 
que os átomos do soluto nem sempre exibem o mesmo diâmetro atômico dos átomos 
do solvente. 
A fração de átomos de um elemento que pode ser dissolvida em outro, é definida 
como solubilidade. O termo solubilidade significa a quantidade de um certo material 
A (soluto) que pode ser dissolvido em outro B (solvente) e varia de um valor 
muito pequeno, próximo de zero, até 100%. A solubilidade é dada em "% peso" 
e "% atômica". Assim, uma liga cobre-zinco com 20% em peso de zinco, possui, 
em 100 gramas da liga, 20 gramas de zinco e 80 gramas de cobre. Do mesmo modo, 
uma liga com 20% em átomos de zinco apresenta em cada 100 átomos de liga, 20 
átomos de zinco e 80 átomos de cobre. Como as densidades dos materiais são 
diferentes, é evidente que 20% de zinco em peso não correspondem a 20% de zinco 
em átomos. Para o caso de formação de uma solução sólida substitucional, a 
solubilidade de um elemento em outro será elevada, desde que as seguintes condições 
sejam satisfeitas: 
 
a. Os raios dos átomos dos dois elementos não devem diferir em mais de 15%; 
b. A estrutura cristalina dos dois elementos deve ser a mesma; 
c. Não deve existir diferença significativa entre a eletronegatividade dos dois 
elementos, assim compostos não serão formados; 
d. Os dois elementos devem ter a mesma valência. 
 
Na tabela abaixo observa-se que a facilidade de um elemento se dissolver em outro, 
é maior se o seu diâmetro for próximo do diâmetro do solvente, no caso o cobre. 
 
 
O soluto intersticial é o que fica nos "vãos" da matriz. Estes vãos ou vazios são 
chamados de interstícios. As soluções sólidas intersticiais são formadas quando um 
átomo é muito maior que o outro. Por exemplo, o ferro a 1000°C apresenta 
estrutura CFC com o maior vão de diâmetro igual a 1,0 Å. Assim estes "buracos" 
abrigam facilmente o hidrogênio (d=0,9 Å), o boro (d=0,92 Å) e com certa 
dificuldade, o carbono (d=1,5 Å). Entretanto, apesar dessa diferença, um máximo de 
2,08 % em peso de carbono pode ser dissolvido intersticialmente no ferro a 1148°C. 
 
4.3 Defeitos Lineares (Discordâncias) 
 
Os cristais podem apresentar defeitos alinhados e contínuos em sua estrutura, dando 
origem às imperfeições de linha. Os defeitos de linha, também chamados de 
discordâncias são defeitos que causam a distorção da rede cristalina em torno de uma 
linha e caracterizam-se por envolver um plano extra de átomos. Estas imperfeições 
podem ser produzidas durante a solidificação, na deformação plástica de sólidos 
cristalinos ou ainda como resultado da concentração de vacâncias. A presença deste 
defeito é a responsável pela deformação, falha e rompimento dos materiais. A 
quantidade e o movimento das discordâncias podem ser controlados pelo grau de 
deformação (conformação mecânica) e/ou por tratamentos térmicos, podendo desta 
forma endurecer os materiais metálicos. Os três principais tipos de defeitos em 
linha são conhecidos como: discordância em cunha, discordância em hélice e 
discordância mista. 
 
4.4 Defeitos de Superfícies 
 
Os cristais também apresentam defeitos que se estendem ao longo de sua estrutura, 
formando superfícies e denominados de imperfeições de superfície. Esse tipo de 
imperfeição cristalina pode ser de três tipos: 
• superfícies livres; 
• contornos de grão; 
• maclas. 
 
4.4.1 Superfícies Livres 
 
Apesar de serem consideradas o término da estrutura cristalina, as superfícies 
externas de um cristal são consideradas defeitos cristalinos, já que o número de 
vizinhos de um átomo superficial não é o mesmo de um átomo no interior do 
cristal (figura abaixo). Os átomos superficiais possuem vizinhos apenas de um lado, 
tem maior energia e assim, estão ligados aos átomosinternos mais fragilmente. 
 
4.4.2 Contornos de Grão 
 
Uma barra de cobre puro, embora contenha um único elemento, possui vários grãos, 
ou seja, regiões onde a estrutura cristalina tem a mesma orientação. Durante a 
solidificação, vários núcleos sólidos surgem no interior do líquido. Numa fase 
seguinte, denominada de crescimento, estes núcleos crescem e se juntam, formando 
nestas "juntas", uma região conhecida como contorno de grão. Como os diversos 
grãos não apresentam necessariamente a mesma orientação cristalográfica, o encontro 
dos mesmos cria superfícies de contato dentro do cristal. 
O tamanho de grão de um material policristalino é importante ser conhecido, já 
que o número de grãos tem papel significativo em muitas propriedades dos materiais, 
especialmente na resistência mecânica. Em baixas temperaturas, até metade da 
temperatura de fusão do material, os contornos de grão aumentam a resistência do 
material através da limitação do movimento de discordâncias. Em altas temperaturas 
pode ocorrer o escorregamento de contornos de grão, ou seja , o mecanismo de 
deformação plástica nestas temperaturas é o de fratura intergranular. Este mecanismo 
é um dos responsáveis pela queda da resistência mecânica do material em 
temperaturas elevadas. Na produção de peças submetidas a temperaturas mais 
próximas a de fusão do material, como é o caso de turbinas de avião, são utilizados 
processos de fundição com crescimento direcional e controlado. Isto permite obter 
um sólido com um número de grãos pequeno e indicado para temperaturas de trabalho 
elevadas. 
A figura abaixo mostra micrografias de aço baixo carbono, atacado com NITAL 
(H2NO3 e álcool) e o respectivo tamanho de grão segundo a ASTM. 
 
Como os contornos de grão são regiões onde os átomos estão fragilmente ligados 
uns aos outros, a ação de um ataque químico permite revelar o mesmo, pois nestes 
pontos é mais fácil "arrancar" os átomos, em comparação com regiões no interior do 
grão, como mostra a figura acima. 
 
O contorno grão tem átomos fragilmente interligados e assim, em tal local é mais 
fácil "arrancar" os átomos da estrutura cristalina em comparação com o interior do 
grão. 
A região do contorno de grão aparece mais escura no microscópio devido à menor 
capacidade de reflexão de luz da mesma.

Outros materiais