Buscar

Introdução à Biologia Molecular T1

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 56 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 56 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 56 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

DESCRIÇÃO
A construção história da Biologia Molecular e seu emprego no estudo das moléculas presentes
nas células responsáveis pela manutenção da vida, como o DNA, o RNA e as proteínas.
PROPÓSITO
Compreender como o RNA e o DNA foram descobertos e a importância destas moléculas para
as células procariontes e eucariontes.
OBJETIVOS
MÓDULO 1
Descrever a história da Biologia Molecular, a origem da vida e a organização gênica nos
organismos
MÓDULO 2
Reconhecer alguns dos mecanismos de regulação da expressão gênica nos procariotos e
eucariotos
INTRODUÇÃO
A Biologia Molecular é a área da Biologia que estuda as moléculas presentes nas células
responsáveis pela manutenção da vida. Vamos iniciar nosso aprendizado sobre,
possivelmente, as moléculas mais importantes para a existência da vida na Terra: Os ácidos
nucleicos RNA e DNA. Você sabia que até mesmo os vírus, microrganismos intracelulares
obrigatórios apresentam ácidos nucleicos? Não existe sequer um ser vivo que não tenha
moléculas de RNA ou DNA.
Vamos explorar um breve histórico sobre como começaram os estudos da Biologia Molecular,
passando pela provável origem da vida na Terra, conhecendo as estruturas e composições dos
ácidos nucleicos e observando como é dada a organização deste material em diferentes seres
vivos. Aprenderemos alguns dos mecanismos de regulação gênica dos procariotos e os
eucariotos e por fim noções de epigenética.
Vamos juntos?
MÓDULO 1
 Descrever a história da Biologia Molecular, a origem da vida e a organização gênica
nos organismos
HISTÓRICO DA BIOLOGIA MOLECULAR
Nosso histórico começa em 1869 com um bioquímico suíço chamado Johannes Friedrich
Miescher (Figura 1). Em seus estudos, ele buscava determinar quais os componentes químicos
que existem dentro dos glóbulos brancos (leucócitos), presentes no pus de feridas, que, de
modo geral, possuem um núcleo grande e bem definido. No interior desse núcleo, ele observou
uma grande quantidade de um composto ácido que continha átomos de nitrogênio e fósforo,
nomeando-o de nucleína por estar localizado no núcleo. Mal ele sabia da importância desta
descoberta!
GLÓBULOS BRANCOS
Os glóbulos brancos receberam esse nome devido as características físicas do sangue
após a centrifugação, que apresentam uma camada fina de células brancas, compostas
pelos leucócitos.
 
Fonte: Wikimedia
 Figura 1: Friedrich Miescher.
javascript:void(0)
Diversos outros cientistas continuaram investigando o tal composto nucleína, entre eles
Albrecht Kossel, que em 1880 demonstrou que na nucleína existiam diferentes bases
nitrogenadas. Richard Altmann em 1889 conseguiu purificar a nucleína e nomeou o purificado
de ácido nucleico. Com o tempo, os ácidos nucleicos foram ainda mais estudados, pareciam
muito importantes já que praticamente todas as células possuíam esse material. Foram
descobertas quatro diferentes bases nitrogenadas, as bases púricas: adenina e guanina e as
bases pirimídicas: citosina e timina, todas com um glicídio desoxirribose (Figura 2).
 
Fonte: Wikimedia
 Figura 2: Nucleotídeo, contendo a base nitrogenada, o fosfato e a pentose.
Essas bases podiam estar ligadas entre si, sempre obedecendo a um padrão, onde a adenina
se associava à timina por 2 ligações de hidrogênio e a guanina se associava à citosina por 3
ligações, sendo esta interação a mais estável devido à maior quantidade de ligações (Figura 3).
 
Fonte: Wikimedia
 Figura 3: Bases nitrogenadas e suas interações por ligação de hidrogênio. 
O grupamento R nas riboses consiste em um OH e nas desoxirriboses de um H.
Entretanto, havia um fato curioso: a presença de uma base diferente, chamada de uracila, em
alguns desses materiais. Essa base apresentava uma ribose no lugar da desoxirribose e se
ligava à timina no lugar da adenina. As moléculas que continham desoxirribose foram
nomeadas de ácido desoxirribonucleico (ADN), em inglês Deoxyribonucleic Acid, o famoso
DNA. As moléculas com ribose como glicídio foram nomeadas de ácido ribonucleico (ARN),
em inglês Ribonucleic Acid, conhecido como RNA (Figura 4).
RIBOSE
Aldopentose (apresenta um grupo funcional aldeído), com cinco átomos de carbono
(pentose) e um grupamento hidroxila (-OH) na posição 2.
javascript:void(0)
 
Fonte: Wikimedia
 Figura 4: Todas as bases nitrogenadas.
Vamos agora juntar todos os conceitos estabelecidos para entendermos como é a estrutura do
DNA e do RNA. Um nucleotídeo é um conjunto formado por uma base nitrogenada, que
pode ser uma purina ou pirimidina. Dentre as purinas, temos a adenina e a guanina; entre
as pirimidinas, temos a citosina e a timina, no caso de uma molécula de DNA, e o uracil(a),
no caso de uma molécula de RNA. A ligação entre as bases é realizada entre a molécula de
açúcar, de uma ribose para o RNA ou uma desoxirribose para o DNA, com o grupamento
fosfato da base adjacente, na ligação conhecida como ligação fosfodiéster (Figura 5).
 
Fonte: Wikimedia
 Figura 5: Ligação fosfodiéster entre nucleotídeos da mesma fita de DNA.
A estrutura do DNA se encontra em fita dupla. A união entre as duas fitas se dá por ligações de
hidrogênio entre as bases nitrogenadas, como demonstrado na Figura 3.
FIGURA 3
 
Fonte: Wikimedia
 Figura 3: Bases nitrogenadas e suas interações por ligação de hidrogênio. 
O grupamento R nas riboses consiste em um OH e nas desoxirriboses de um H.
Vamos voltar para a nossa história. Em 1953, uma dupla de cientistas, James Watson e Francis
Crick, publicou um artigo na revista Nature chamado de Molecular Structure of Nucleic Acids.
Eles eram contrários às ideias que existiam na época a respeito da estrutura do DNA. Entre os
modelos antigos, o que mais se destacou foi o de Linus Pauling; ele acreditava que o DNA era
interligado pelos grupamentos fosfatos, formando uma coluna. Watson e Crick, baseados em
uma foto tirada por Rosalind Franklin, propuseram uma nova estrutura para essa molécula. A
estrutura era uma dupla hélice, com as bases nitrogenadas purinas se ligando às pirimidinas no
centro da hélice espiralada, sendo muito parecida com a que usamos até hoje (Figura 6).
javascript:void(0)
javascript:void(0)
javascript:void(0)
DNA DE LINUS PAULING
 
Fonte: Wikimedia
FOTO
Foto tirada utilizando difração de raios X, técnica onde um feixe de raios atravessa uma
molécula cristalizada e mancha um filme atrás, revelando assim uma imagem por onde
esses raios X foram difratados. É semelhante aos nossos raios X atuais de ossos, mas
com pequenas moléculas.
 
Fonte: Wikimedia
 Figura 6: Foto de raios X tirada por Rosalind Franklin, 
responsável pelas conclusões de Watson e Crick.
Com a estrutura do DNA resolvida e com o conhecimento sobre a química dessas moléculas,
faltava agora entender a atuação e a organização delas nas células e porque eram tão
importantes. Ao longo dos anos, o conhecimento sobre o DNA e o RNA vem crescendo. Hoje,
com técnicas de sequenciamento do DNA, podemos, por exemplo, ver rapidamente se algum
indivíduo possui propensão a determinado câncer analisando a sua sequência de DNA.
Estamos começando a ter mais segurança na edição genética, e um dia poderemos curar
doenças que ainda nem se manifestaram.
Atualmente, podemos quantificar esse material genético que expressamos para diagnosticar
doenças, como a COVID-19, e modificar outros organismos para que produzam nossas
proteínas. É dessa forma que algumas das insulinas vendidas na farmácia são produzidas.
Existem inúmeras possibilidades decorrentes do desenvolvimento da Biologia Molecular.
A ORIGEM DA VIDA
A origem da vida sempre despertou curiosidade. Ao longo dos anos, existiram diversas teorias,
algumas se provaram erradas e outras se mantêm até hoje.
javascript:void(0)
Você imagina como a vida começou? Vamos conhecer um pouco dessas teorias?
Sabemos que átomos podem fazer ligações de maneira espontânea desde que estejam em um
ambiente favorável e tenham afinidade um pelo outro, ou seja, ao se ligarem encontram uma
estabilidade,assim são construídas as moléculas. Dentre as teorias existentes, uma delas, a
teoria de Oparin e Haldane, era justamente a ideia da formação espontânea de pequenas
moléculas orgânicas, as quais, com o tempo, passaram a se organizar de maneira cada vez
mais complexa até se replicarem e evoluírem, formando as células primitivas.
Em 1953, Stanley Miller tentou provar que era possível existir a criação espontânea de
moléculas orgânicas na Terra, desde que o ambiente fosse favorável. Ele fez um
experimento simulando como possivelmente era a atmosfera primitiva da Terra, cerca de 4
bilhões de anos atrás. No seu experimento, tinham moléculas, como gás hidrogênio, metano e
vapor de água, que eram bastante comuns no ambiente primitivo. Esses gases, na presença
de uma descarga elétrica, como um raio, ligavam-se formando diversas moléculas orgânicas,
dentre elas os aminoácidos alanina, glicina e ácido aspártico (Figura 07).
Fonte: Wikimedia
 Figura 7: Experimento de Miller.
A teoria de Oparin e Haldane continuou ganhando relevância à medida que novos estudos
foram realizados, dentre eles os estudos do geólogo Michael Russell. Russell demonstrou que
existem fontes de águas termais no fundo dos oceanos aquecidas pelo manto da Terra, que
jorram água alcalina. Essas fontes são ricas em minérios de ferro, níquel e enxofre dissolvidos.
A reação desses minérios com o gás carbônico, hidrogênio reativo e moléculas de água é
capaz de produzir compostos orgânicos, como hidrocarbonetos e até mesmo nucleotídeos!
Uma das descobertas mais incríveis sobre essas fontes termais são as reações químicas que
lá ocorrem e como a geração dessas moléculas orgânicas acontece. As fontes termais são
ricas em minerais, sendo assim, possuem um elemento que pode ser oxidado, como o ferro. O
elétron oriundo da oxidação é carregado pelos núcleos metálicos desses minerais até chegar
ao aceptor final de elétrons, este pode ser o monóxido ou o dióxido de carbono, que vai ser
reduzido gerando a energia necessária para a confecção das moléculas orgânicas.
Você já ouviu falar de um mecanismo parecido com esse anteriormente? Onde um elétron
percorre uma cadeia até chegar ao seu aceptor gerando energia?
Exatamente! É de maneira muito semelhante a esta que diversos seres vivos produzem
energia como nós! Esse mecanismo ocorre durante a fosforilação oxidativa nas mitocôndrias,
etapa metabólica da nossa respiração celular. Isso mostra um elo entre todos os nossos
ancestrais, fortalecendo a hipótese de que a vida se originou dessas fontes de águas termais
há muitos anos.
No entanto, ainda temos diversas perguntas para serem respondidas. Nos dias atuais, essa é a
teoria melhor aceita para a origem da vida (Figura 8).
 
Fonte: Wikimedia
 Figura 8: Fonte termal vulcânica, a possível origem da vida.
A teoria da panspermia surgiu a partir da observação de compostos orgânicos presentes em
meteoritos e ganhou força a partir de 1997 com a análise do Meteorito de Muchinson (Figura
9). Os pesquisadores encontraram diversos aminoácidos e adenina, presente no nosso DNA,
que datavam de aproximadamente 7 bilhões de anos, sendo assim mais antigos que nosso
próprio planeta, que possui cerca de 4,5 bilhões de anos. Apesar de muito interessante, essa
teoria não possui evidências científicas suficientes para explicar a origem da vida no nosso
planeta, diferente da teoria de Oparin e Haldane.
 
Fonte: Wikimedia
 Figura 9: Fragmento de meteorito.
FRAGMENTO DE METEORITO
Tradução - “Este é um fragmento do meteorito que caiu em Muchinson, na Austrália, em
1969. O meteorito de Muchinson e outros como ele são chamados de condritos
carbonáceos e foram datados por radiometria. Acreditamos que são remanescentes do
nascimento do sistema solar.
Nestas rochas extraterrestres incrivelmente antigas, cientistas encontraram minerais,
traços de aminoácidos e outros compostos orgânicos. A forma com que estes materiais
foram criados os torna mais antigos que o próprio planeta Terra. É possível que os
condritos carbonáceos sejam a fonte de compostos orgânicos responsável por dar origem
a vida na Terra.
javascript:void(0)
Entretanto, é muito interessante imaginar que, em outros lugares do Universo, existem
compostos orgânicos e quem sabe até mesmo vida. Essas amostras extraterrestres
evidenciaram também que é possível a criação de matéria orgânica, incluindo bases presentes
no DNA e no RNA.
Em um mundo onde existiam alguns nucleotídeos, aminoácidos e hidrocarbonetos, essas
moléculas começaram a interagir entre si, formando cadeias cada vez mais complexas,
ligações entre diferentes nucleotídeos formaram os primeiros RNAs e ligações entre diferentes
aminoácidos formaram os oligopeptídeos. A interação entre os oligopeptídeos e o RNA leva a
benefícios mútuos, gerando, por exemplo, estabilidade na estrutura de ambos, originando
maiores quantidades de determinadas estruturas. Imagine essas diversas interações por
milhares e milhares de anos, é natural que, com o tempo, estruturas mais complexas se
formem e se mantenham.
Hoje em dia, temos o conhecimento que tanto o RNA quanto pequenos peptídeos conseguem
realizar reações químicas com diversas funções (neurotransmissores, hormônios, regulação
gênica etc). Recentemente, foi descoberto que o RNA seria capaz até mesmo de se
autorreplicar, gerando outras moléculas de RNA também capazes de se autorreplicarem, assim
a evolução poderia acontecer ainda mais rápido, isso é o chamado “Mundo RNA”.
Naquele mesmo ambiente, existiam outros compostos orgânicos, como os primeiros lipídeos
oriundos dos hidrocarbonetos formados.
Você já jogou um pouco de óleo na água? Sabe que não se misturam certo?
Isso se dá a partir da característica anfipática dos lipídeos que, em um ambiente aquoso,
tendem a formar micelas, estruturas circulares formadas naturalmente devido à forma que
interagem com a água, expondo a parte hidrofílica e escondendo a parte hidrofóbica da
água.
HIDROFÍLICA
Polares, que tendem a interagir com a água. “Hidro” deriva de água e “fílica” deriva de
amizade.
javascript:void(0)
javascript:void(0)
HIDROFÓBICA
Apolares, que não interagem com a água. “Fóbica” deriva de medo.
 ATENÇÃO
Nem todos os lipídeos possuem características anfipáticas, portanto nem todos são capazes de
formar estruturas de micelas. Dos lipídeos anfipáticos, o mais importante na formação da
membrana celular é o fosfolipídeo.
Desse modo, esses lipídeos formavam grandes micelas, originando “membranas” celulares
rudimentares com moléculas de RNA em seu interior, surgindo as primeiras células primitivas,
com material genético com capacidade replicativa. Hoje em dia, grande parte dos seres vivos
ainda possui seu material genético disperso no citoplasma, chamamos esses organismos de
procariontes ou procariotos (Figura 10).
É importante ressaltar que, ao longo dos anos, o mundo RNA evoluiu, o DNA, constituído de
uma dupla fita, é mais estável que o RNA. Sendo assim, possui uma maior confiabilidade para
armazenar informações de um determinado ser vivo e tem as informações responsáveis pela
manutenção da vida. O DNA passa pelo processo de transcrição que dá origem a um RNA
mensageiro (RNAm), este pode ser traduzido e passa a ser uma proteína, unidade que vai
realizar as funções que a célula precisa, como catalisar reações, servir para replicar o DNA,
formar estruturas etc.
 
Fonte: Nature
 Figura 10: Como poderiam ser as primeiras células vivas da Terra.
ENTENDENDO MELHOR COMO A VIDA
PODE TER SURGIDO
ORGANIZAÇÃO DO MATERIAL GENÉTICO EM
PROCARIOTOS
Os procariotos são os organismos mais antigos da Terra. Todos são unicelulares e não
possuem um núcleo organizado, ou seja, o seu material genético, o DNA, não é separado
por uma membrana nuclear, chamada de carioteca, muito parecido com as primeiras células
encontradas no nosso planeta. Esses organismos são os mais simples e toda a sua expressão
gênica é diferente da nossa. Nós, seres humanos, pertencemos ao grupo dos eucariontes,temos o material genético separado do citoplasma pela carioteca (Figura 11).
EXPRESSÃO GÊNICA
Expressão gênica é o processo em que uma informação contida no DNA é transcrita e
traduzida para a formação de proteínas. A proteína é a expressão da informação
presente no DNA.
javascript:void(0)
 
Fonte: Wikipedia
 Figura 11: Núcleo disperso nas células procariontes e núcleo compartimentado pela
carioteca nas células eucariontes.
Antes de falar da organização do material genético dos procariotos, vamos conhecer alguns
conceitos básicos para lembrarmos de certas nomenclaturas:
 
Fonte: Blue Andy/Shutterstock
O GENE
É um segmento codificante do DNA, ou seja, de fato, será transcrito e traduzido.
 
Fonte: Sergei Drozd/Shutterstock
O GENOMA
Contém toda a informação hereditária, todo DNA que será passado da célula mãe para a
células filha, incluindo os genes e as sequências não codificantes.
 
Fonte: vchal/Shutterstock
O CROMOSSOMO
É uma estrutura formada por uma molécula de DNA altamente compactada e associada a
proteínas auxiliadoras, que ajudam a compactar e descompactar o DNA para facilitar o acesso
de outras proteínas a essa região, por exemplo.
Os procariotos possuem apenas um cromossomo linear ou circular que contém todo o seu
material genético, chamado de DNA cromossomal. Além do cromossomo, eles também
podem possuir elementos genéticos móveis (EGM), os responsáveis por transmitir algumas
características genéticas a outros indivíduos vizinhos a fim de conferir alguma vantagem ou
desvantagem.
O cromossomo dos procariotos possui uma quantidade de DNA que pode variar entre 0,16 a
13 Mpb. Apenas para termos um exemplo, o DNA da bactéria E. coli possui cerca de 4,6 Mpb
contido em uma célula de 2 μm! Esse volume só é possível devido ao alto grau de
condensação do DNA. A condensação é feita através da formação de grandes alças na
molécula de DNA, que originam alças menores, possibilitando que o DNA ocupe um menor
volume na célula. As alças são formadas com o auxílio das proteínas DNA girase e
topoisomerase l, a região formada por este único cromossomo condensado é chamada de
nucleoide (Figura 12).
javascript:void(0)
MPB
É a sigla para mega pares de base, sendo mega 106. Pb: indica pares de bases
 
Fonte: Fonte: O autor
 Figura 12: Compactação do DNA procarionte.
Os EGMs são partes fundamentais do DNA dos procariotos, mesmo não pertencendo ao
cromossomo e possuem diversas funções que serão detalhadas posteriormente. É importante
saber que existem diferentes tipos de EGMs, vamos estudar os três principais: plasmídeos,
bacteriófagos e os transposons.
Os plasmídeos são moléculas circulares de DNA fita dupla, independentes do cromossomo e
possuem capacidade de replicação autônoma. Seu tamanho é de cerca de 1 a 35 kpb. Cada
célula pode conter diversos ou nenhum plasmídeo, com uma ou várias cópias. Os plasmídeos
são considerados elementos de herança extracromossômica, já que possuem replicação
autônoma, independentemente do cromossomo. Eles também não são vitais, não causam
malefícios à célula hospedeira, geralmente, possuem informações que serão aproveitadas para
produção de toxinas, pilinas, adesinas e diversos outros tipos de proteínas que podem conferir
algum tipo de vantagem para a célula hospedeira. Justamente por isso, podem ser chamados
também de elementos genéticos acessórios (Figura 13).
javascript:void(0)
KPB
Quilo de pares de base, em que o K representa 103.
 
Fonte: Wikimedia
 Figura 13: Plasmídeo e DNA bacteriano.
Os plasmídeos não são normalmente sintetizados, e sim adquiridos através de um fenômeno
chamado conjugação bacteriana, onde uma bactéria transfere os seus plasmídeos para outra
e mantém uma cópia destes para si. Os plasmídeos são de grande importância na Biologia
Molecular pela facilidade de manuseio e replicação. São utilizados como vetores onde uma
sequência de interesse é inserida no plasmídeo, o qual é difundido entre os indivíduos de
determinada colônia de bactérias. As bactérias, ao se replicarem, possibilitam originar uma
grande quantidade de cópias da sequência de interesse. A partir disso, podemos purificar esse
material e usar para os mais diversos fins.
 EXEMPLO
Uma das formas de obtenção e produção de insulina é utilizando os plasmídeos como vetores.
Os bacteriófagos podem se inserir no DNA cromossomal e se replicar junto com o organismo.
Após a inserção, os genes contidos no bacteriófago são expressos e podem codificar fatores
javascript:void(0)
de virulência e toxinas entre outras proteínas. Eles são perigosos porque podem transformar
uma bactéria não patogênica em uma bactéria patogênica. Alguns até mesmo podem produzir
capsídeo viral e se multiplicar diversas vezes, iniciando um ciclo lítico que termina na eclosão
da célula hospedeira (Figura 14).
CICLO LÍTICO
Processo em que um vírus insere o material genético em uma célula e se multiplica
exponencialmente, formando novos vírus e resultando no rompimento de dentro para fora
da membrana celular, liberando grande carga viral.
BACTERIÓFAGOS
São vírus que infectam bactérias, injetando o seu material genético.
javascript:void(0)
 
Fonte: Axel_Kock/Shutterstock
 Figura 14: Bacteriófago.
Os transposons são pequenas sequências de DNA que serão inseridas de forma aleatória no
DNA do organismo hospedeiro, formando novos trechos de genoma, evento chamado de
transposição e catalisado por enzimas chamadas de transposases. As transposases são
capazes de cortar o DNA na região do transposon, liberando essas sequências, que se
difundem pela célula. Os transposons são identificados a partir de mudanças fenotípicas nas
bactérias. Como quase todo o DNA bacteriano é codificante, essas inserções podem causar
algumas alterações funcionais no procarioto, como a perda de atividade enzimática.
CODIFICANTE
DNA codificante é o termo utilizado para o DNA que de fato será transcrito e traduzido.
DNA não codificante é o termo utilizado para todo o DNA que não será transcrito.
Existem três principais subgrupos de transposons:
As sequências de inserção (chamadas de IS, do inglês Insertion Sequence)
javascript:void(0)
Os transposons compostos (simbolizados pela sigla Tn)
Transposons complexos ou elementos TnA
Os ISs são os transposons mais simples, podem se inserir tanto no cromossomo quanto nos
plasmídeos, possuem cerca de 700 a 2.500 pb e são nomeados pela sigla IS, seguido de um
número, por exemplo IS3 ou IS37. Eles contêm os genes responsáveis pelo próprio mecanismo
de transposição, que codificam as transposases e possuem sequências muito parecidas em
suas extremidades para que a sua respectiva transposase corte essa região, liberando o IS
para ser reinserido em um outro sítio. A transposição acontece no momento de abertura da
dupla fita de DNA, que antecede a replicação, onde o transposon é inserido na fita de DNA e
replicado junto com o DNA do procarioto (Figura 15).
 
Fonte: Wikimedia
 Figura 15: Estrutura esquemática do ISs.
O segundo subgrupo é formado pelos transposons compostos (Tn), são chamados de
transposons compostos porque são formados por duas sequencias de ISs em suas
extremidades. Os Tn podem conferir vantagens a bactérias como, por exemplo, o caso do Tn9,
que gera resistência ao antibiótico cloranfenicol.
Os transposons complexos (TnA), o último subgrupo, possuem cerca de 500 pb. Ao invés de
ISs em suas extremidades, possuem pequenas sequências indicando o local de corte pela
transposase. Os TnA induzem a replicação do procarioto com objetivo de se multiplicarem.
É importante destacar que os EGMs possibilitam que as bactérias troquem informação genética
de maneira muito rápida. Desse modo, caso apareça algum desses elementos como, por
exemplo, a capacidade de gerar resistência a um antibiótico, logo todas as bactérias daquela
colônia também ganham essa mesma resistência. Essas características foram fundamentais
para a evolução e manutenção da vida dos organismos procariontes.
ORGANIZAÇÃODO MATERIAL GENÉTICO EM
EUCARIOTOS
Conforme já aprendemos, a maior diferença entre procariotos e eucariotos é a presença da
carioteca, uma membrana nuclear que engloba o material genético, isolando o citoplasma, no
conjunto chamado de núcleo. O núcleo permite um maior nível de organização celular e
modifica a organização e a estrutura gênica.
Para começarmos a entender o nível de complexidade da organização do material genético em
eucariotos, vamos a algumas contas básicas.
Todo o genoma humano possui cerca de 3.2 Gpb, enquanto isso a espécie Polychaos dubium,
um pequeno parasita unicelular eucarionte, possui 670 Gpb, ou seja, cerca de 200 vezes maior
que o nosso. A esse fenômeno damos o nome de paradoxo do valor C, onde a complexidade
do organismo não está associada ao tamanho do seu material genético, uma vez que nós
seres humanos somos mais complexos que este parasita. O paradoxo do valor C pode ser
explicado pela maneira com que o DNA é codificado e processado.
Outro fator relevante é o nível de compactação do DNA. Vamos agora fazer um comparativo
entre duas células que já conhecemos os valores de pares de base existentes: a humana, com
3,2 Gpb, e a E. coli, com 4,6 Mpb.
O DNA humano é contido em um diâmetro de cerca de 5 a 10 μm, enquanto na E. coli esse
valor é de 2 μm, ou seja, um DNA 700 vezes maior ocupando um espaço quase semelhante ao
da bactéria. Isso é possível graças a uma diferente forma de estruturação e compactação do
DNA.
O genoma dos eucariotos é compactado em cinco níveis diferentes. No primeiro, todo DNA,
que possui 2 nm, é acoplado a proteínas chamadas histonas, essa estrutura é conhecida como
nucleossomo. O nucleossomo possui 11 nm e se compacta formando uma estrutura
solenoide de 30 nm. Essas histonas ficam bem juntas formando uma estrutura ainda mais
densa como se fossem fibras. Nos terceiros e quartos níveis de compactação, são formadas
alças dos solenoides (parecidas com as alças dos procariotos), as quais possuem 300 e 700
nm, respectivamente. No último grau de compactação, ocorre a formação de uma alça ainda
javascript:void(0)
maior, 1.400 nm, que dá origem à estrutura chamada de cromátide cromossômica. Duas
cromátides unidas por uma estrutura chamada de centrômero formam o cromossomo. O
conjunto de cromossomos, ou seja, o DNA e as proteínas acessórias, principalmente, as
histonas, formam a cromatina. O cromossomo também possui em suas extremidades os
telômeros, que são estruturas fundamentais para a estabilidade do cromossomo e indicadores
da idade celular, uma vez que um pequeno trecho desse telômero é perdido devido à forma
com que o DNA replica (Figura 16).
GPB
Giga de pares de base, onde G representa 109.
 
Fonte: Wikimedia
 Figura 16: Compactação do DNA em eucariotos.
O grau de compactação do DNA eucarionte pode variar de acordo com a fase do ciclo celular
que se encontra, pois a cromatina se organiza de diferentes formas, obedecendo à
necessidade de expressão gênica. Quando o DNA está menos condensado (um estado mais
aberto), pode ser exposto a toda a maquinaria de transcrição e/ou replicação existente, e a
cromatina se encontra em um estado de eucromatina.
Quando o DNA está bastante condensado, a célula não consegue expressar ou replicar tal
região, e ele se encontra no estado de heterocromatina.
Há ainda a heterocromatina constitutiva, formada por trechos que nunca serão transcritos
(Figura 17).
 SAIBA MAIS
Normalmente, chama-se estado de eucromatina/heterocromatina porque não é algo fixo. Logo,
o mesmo trecho pode ficar ora em estado de eucromatina ora em de heterocromatina. Porém,
não é errado chamar apenas de eucromatina ou heterocromatina.
 
Fonte: Wikipedia
 Figura 17: Transcrição do DNA descompactado.
Os eucariotos possuem também um DNA extracromossomal, presente nas mitocôndrias e
nos cloroplastos (nas células vegetais) e completamente independentes do DNA cromossomal.
Existem teorias de que essas organelas eram outros organismos que acabaram sendo
inseridos nas células eucariontes e lá permaneceram, pois o ambiente era favorável. Em troca
do ambiente seguro, eles geravam energia para as células hospedeiras, formando uma relação
de simbiose.
SIMBIOSE
Associação entre duas ou mais espécies diferentes com vantagens mútuas, onde todas
se ajudam.
VERIFICANDO O APRENDIZADO
1. ESTUDAMOS AS TEORIAS DO SURGIMENTO DA VIDA E AS
CARACTERÍSTICAS ESTRUTURAIS DAS MOLÉCULAS QUE COMPÕEM O
GENOMA. SOBRE ESSES ASSUNTOS, LEIA AS AFIRMATIVAS ABAIXO E
RESPONDA. 
 
I. A TEORIA DE OPARIN E HALDANE ERA A MAIS ACEITA ATÉ A
DESCOBERTA DO METEORO DE MURCHINSON, A PARTIR DE ENTÃO A
TEORIA MAIS ACEITA FOI A DA PANSPERMIA. 
II. A TEORIA MAIS ACEITA ATUALMENTE PARA A ORIGEM DA VIDA NA
TERRA É DERIVADA DA TEORIA DE OPARIN E HALDANE, ONDE A VIDA
SURGIU DE FORMA ESPONTÂNEA A PARTIR DE PEQUENAS
MOLÉCULAS ORGÂNICAS. 
III. O RNA E O DNA SÃO MOLÉCULAS CAPAZES DE ARMAZENAR
INFORMAÇÃO GENÉTICA, ENTRETANTO O DNA É MAIS ESTÁVEL E SE
CONSOLIDOU NESTA FUNÇÃO. 
IV. O MUNDO RNA DEPENDIA DE ORGANISMOS COMPLEXOS. 
 
ESTÃO CORRETAS AS AFIRMATIVAS:
javascript:void(0)
A) I e II
B) I e III
C) II e III
D) II, III e IV
2. VIMOS AS PRINCIPAIS DIFERENÇAS NA ORGANIZAÇÃO DAS
CÉLULAS PROCARIONTES E EUCARIONTES. SOBRE A ORGANIZAÇÃO
NOS EUCARIOTOS, COMO VOCÊ ESPERA QUE ESTEJA ORGANIZADO O
DNA DE UMA CÉLULA PRONTA PARA SE REPLICAR?
A) DNA completamente enovelado em estado de eucromatina.
B) DNA parcialmente desenovelado, em estado de heterocromatina.
C) DNA desenovelado, em estado de eucromatina.
D) DNA desenovelado em estado de heterocromatina.
GABARITO
1. Estudamos as teorias do surgimento da vida e as características estruturais das
moléculas que compõem o genoma. Sobre esses assuntos, leia as afirmativas abaixo e
responda. 
 
I. A teoria de Oparin e Haldane era a mais aceita até a descoberta do meteoro de
Murchinson, a partir de então a teoria mais aceita foi a da panspermia. 
II. A teoria mais aceita atualmente para a origem da vida na Terra é derivada da teoria de
Oparin e Haldane, onde a vida surgiu de forma espontânea a partir de pequenas
moléculas orgânicas. 
III. O RNA e o DNA são moléculas capazes de armazenar informação genética, entretanto
o DNA é mais estável e se consolidou nesta função. 
IV. O mundo RNA dependia de organismos complexos. 
 
Estão corretas as afirmativas:
A alternativa "C " está correta.
 
Vamos analisar caso a caso. Apesar de surpreendente, a teoria da panspermia (vida vinda do
espaço) não apresenta evidências o suficiente. A teoria de Operin e Haldane se baseia na
criação da vida através de moléculas orgânicas criadas de forma espontânea em um ambiente
favorável que, com o tempo, formaram moléculas cada vez mais complexas. Essa teoria vem
ganhando cada vez mais força com novas descobertas. Os eucariotos e procariotos utilizam
moléculas de DNA para armazenar sua informação genética, a dupla fita de DNA é mais
estável que o RNA. O “mundo-RNA” é uma teoria que surgiu com a possibilidade de o RNA
autorreplicar.
2. Vimos as principais diferenças na organização das células procariontes e eucariontes.
Sobre a organização nos eucariotos, como você espera que esteja organizado o DNA de
uma célula pronta para se replicar?
A alternativa "C " está correta.
 
Para a maquinaria de replicação ter acesso ao DNA, ele precisa estar exposto. No caso da
replicação, todo o material genético será copiado para dar origem a uma nova célula filha,
portanto todo o DNA precisa estar desenovelado, no estado de eucromatina. Heterocromatina
seria com o DNA enovelado, dessa forma, o DNA não teria como ser replicado.
MÓDULO 2
 Reconhecer alguns dos mecanismos de regulação da expressão gênica nos
procariotos e eucariotos
INTRODUÇÃO
Todos os seres vivos estão em um ambiente sujeito a constantes alterações. Às vezes, podem
faltar nutrientes, ou a temperatura fica muito alta. Existem inúmeras possibilidades e nossos
genes precisam responder a essas variações. Se faltar nutriente, o indivíduoque melhor
conseguir economizar recursos, vai sobreviver; já aqueles que continuarem usando
normalmente tendem a morrer. Portanto, há uma seleção natural daqueles que conseguem se
adaptar rapidamente ao novo meio em detrimento dos que não têm essa habilidade.
Você sabe que isso tem a ver com a capacidade dos mecanismos de regulação gênica?
Poupar recursos depende que determinados genes que gastam muita energia fiquem menos
ativos, mais condensados. Já genes responsáveis pelo armazenamento de recursos, como os
que expressam as proteínas promotoras da formação do glicogênio, ficam mais ativos, ou seja,
descompactados, para que a maquinaria de transcrição possa acessá-los. É importante
ressaltar que existem ainda os genes que são essenciais para a manutenção da vida,
chamados de genes constitutivos. Não podemos simplesmente economizar energia
expressando uma menor quantidade desses genes, caso contrário, há uma alta possibilidade
de isso levar à morte.
Vamos agora entender os ajustes finos e as diferentes estratégias entre procariotos e
eucariotos com relação à regulação da expressão gênica, começando pelos organismos
procariontes.
MECANISMOS DE REGULAÇÃO GÊNICA EM
PROCARIOTOS
A regulação da expressão em procariotos pode acontecer em diferentes pontos, com maior
custo energético, durante a estabilização da proteína, que é o produto da fase de tradução,
ou durante a transcrição, com menor custo de energia, pois ainda não ocorreu a tradução do
RNAm (RNA mensageiro).
A transcrição ocorre a partir do acoplamento da RNA polimerase em uma sequência de DNA,
chamada de região promotora. Todos os genes (sequências de DNA codificantes) possuem
uma região promotora. Essa região pode inclusive favorecer uma maior ou menor expressão
gênica, fazendo um controle negativo ou positivo, dependendo da ligação de determinadas
proteínas conhecidas como fatores transcricionais, que inibem ou ativam a expressão
gênica.
Vamos ver um exemplo mais concreto desse conceito de regulação baseado em fatores
transcricionais repressores (controle negativo) ou efetores (controle positivo). Uma
regulação negativa pode acontecer de algumas formas. Um fator repressor se liga à região
promotora e impede que a RNA polimerase acople na fita de DNA, inibindo a transcrição. Além
disso, um fator repressor pode se ligar a um fator efetor, impedindo a sua atuação e diminuindo
a expressão de determinado gene. O mesmo conceito pode ser aplicado inversamente, um
fator efetor se liga à região promotora aumentando a transcrição ou pode se ligar a um fator
repressor e impedir a inibição do gene (Figura 18).
 
Fonte: O autor
 Figura 18: Regulação da expressão gênica negativa (esquerda) e positiva (direta).
Antes de continuarmos, vamos relembrar a jornada que se inicia na molécula de DNA até a
formação de uma proteína. Um complexo proteico chamado RNA polimerase (existem
diferentes subtipos de polimerases, para fins didáticos, vamos considerar apenas como RNA
polimerase) acopla na região promotora de um gene e começa a construção de um RNAm.
Nos procariotos, a região codificante é chamada de operon e é composta por mais de um gene,
geralmente, com função final relacionada (de uma mesma via metabólica), ou seja, todos os
genes de um determinado operon irão formar proteínas com funções de alguma forma
vinculadas umas às outras, como veremos em breve. O RNAm oriundo da transcrição de um
operon é formado por mais de um gene e é chamado de RNAm policistrônico.
De modo diferente, nos eucariotos, todas as regiões promotoras estão associadas a apenas
um gene, logo o RNAm final possui informações apenas deste gene, sendo chamado de
RNAm monocistrônico; apesar do RNAm dos eucariotos ser formado por apenas um gene,
ele precisa ser processado para continuar a sua jornada (Figura 19).
 
Fonte: O autor
 Figura 19: Diferenças no RNAm de eucariontes e procariontes. 
UTR é uma sigla do termo inglês untranslated region que significa região não codificante.
Após a formação e o processamento do RNAm nos eucariotos, ele precisa sair do núcleo para
encontrar o ribossomo. Nos procariotos, por não possuir carioteca, o RNAm encontra-se no
citoplasma, e um RNAt (RNA transportador) é responsável por levar o RNAm contendo as
informações do DNA para o ribossomo, local onde irá iniciar a tradução. O processo de
tradução inicia a partir de um código de leitura presente no RNAm (conhecido como códon) e
segue com a leitura das bases de três em três nucleotídeos até um determinado ponto onde
teremos um códon de parada (Stop códon). Um conjunto de 3 bases de nucleotídeos
traduzidas corresponde a 1 aminoácido, e a união dos aminoácidos origina uma cadeia
polipeptídica, que é modelada por proteínas conhecidas como chaperonas, dando origem a
uma proteína funcional.
Vamos entender mais a fundo como o ribossomo traduz 3 bases de nucleotídeos em um
aminoácido verificando o exemplo a seguir:
Quando um ribossomo identifica os nucleotídeos UUA, insere um aminoácido a leucina a
cadeia peptídica que está sendo formada. Os códons e seus respectivos aminoácidos são os
mesmo para qualquer organismo, o código genético é universal.
 ATENÇÃO
Todos os seres vivos compartilham o mesmo código de códons. Esse é mais um indício da
teoria da evolução, segundo a qual todos nós viemos de um mesmo ancestral comum.
Agora, podemos continuar falando sobre a regulação gênica dos procariotos. Para facilitar a
compreensão, vamos ver um exemplo prático: a regulação do operon Lac da bactéria
Escherichia coli.
Esse operon é responsável pelo metabolismo da lactose, um açúcar importante para a nutrição
dessas bactérias. O operon Lac é composto de diferentes trechos, em sequência, temos:
P1, Promotor 1 (promotor do gene I)
Gene I (gene repressor)
O2, Operador 2 (operador secundário)
P2, Promotor 2 (promotor dos genes Z, Y e A)
O1, Operador 1 (operador secundário)
Gene Z
O3, Operador 3 (operador secundário)
Gene Y
Gene A
Os promotores são responsáveis por iniciar a transcrição do gene adjacente. Os operadores
são regiões regulatórias, onde podem ativar ou reprimir a transcrição do operon. Nesse caso, o
O1 é um sítio em que o repressor Lac se liga e O2 e O3 são operadores secundários. Os
operadores sempre se localizam próximos aos genes que regulam. Temos ainda os três genes
estruturais LacZ (gene Z), LacY (Gene Y) e LacA (Gene A), que codificam as enzimas β-
galactosidase, permease e transacetilase e o Gene 1, que codifica o inibidor do próprio
operon, este possui uma região promotora exclusiva para ele (Figura 20).
Β-GALACTOSIDASE
Quebra de galactose em glicose e lactose.
PERMEASE
Facilita a entrada de galactose na bactéria.
javascript:void(0)
javascript:void(0)
javascript:void(0)
TRANSACETILASE
Transferência de acetil-CoA no metabolismo da lactose.
 
Fonte: O autor
 Figura 20: Operon Lac.
Por ser um recurso muito valioso, as células tentam tornar o consumo de energia o mais
eficiente possível.
Na ausência de lactose, não existem motivos para que os genes Z, Y e A sejam expressos,
uma vez que são ligados ao metabolismo da lactose, mas a expressão do gene I é constitutiva,
ou seja, ele é sempre expresso mesmo quando não tem presença de lactose intracelular. O
gene I dá origem a uma proteína repressora do promotor 2 (repressor Lac) que se liga à região
do O1, inibindo a expressão de Z, Y e A, mesmo que a RNA polimerase acople em P2 os
genes não são expressos.
A lactose não atua diretamente no operon Lac, entretanto, quando algumas moléculas de
galactose entram na célula, as poucas enzimas β-galactosidase conseguem converter a
galactose em alolactose; essa se liga ao repressor Lac, favorecendo uma mudança
conformacional da proteína, que leva à desassociação entre o repressor e o operador 1,
liberando o funcionamento da RNA polimerase, que transcreve os genes Z, Y e A (Figura 21).
ALOLACTOSE
A alolactose é um isômero da lactose responsável justamente por induzir a expressão do
operon Lac.
javascript:void(0)Fonte: O autor
 Figura 21: Esquema de regulação do operon Lac mediado pela lactose. Pol: RNA
polimerase, mRNA lac: mRNA mensageiro lactose.
Outra forma de regulação é a dependente de glicose, cuja presença inibe o operon Lac, pois a
célula deve priorizar o metabolismo da glicose antes dos outros carboidratos. Quando os
níveis de glicose estão baixos, ocorre a ativação do operon Lac, a indução é feita por uma
pequena molécula efetora, o cAMP (AMP cíclico), e uma proteína regulatória chamada de CRP
(sigla para cAMP receptor protein, ou seja, proteína receptora de cAMP, CRP, também pode
ser chamada de CAP, catabolite activator protein).
Vamos entender como isso acontece?
Na ausência de glicose, a concentração de cAMP aumenta e essa molécula se liga ao CRP
(CAP), formando o complexo CRP-cAMP (ou CAP-cAMP). O complexo se liga ao DNA em
uma região operadora dependente de CAP-cAMP próxima ao operador 3, ativando a
transcrição dos genes Z, Y e A, para a metabolização da lactose. Na presença de glicose,
os níveis de cAMP diminuem e não é formado o complexo CAP-cAMP, logo o operon Lac
fica inibido. É importante destacar que, quando os níveis de glicose estão altos, a presença de
lactose, não leva à expressão dos genes Z, Y, A, devido à ausência do indutor CAP-cAMP.
Esse fato é justificado pela necessidade do consumo de glicose antes da lactose (Figura 22).
 
Fonte: O autor
 Figura 22: Regulação do operon Lac mediado por glicose. 
cAMP: AMP cíclico; CAP: proteína receptora de cAMP; Pol: RNA Polimerase; 
ATP: adenosina trifosfato; P: região promotora.
A regulação gênica do metabolismo de lactose para as bactérias E. coli é de grande
importância para a sobrevivência. Elas se adaptam ao meio e à presença de diferentes
nutrientes, consumindo-os de modo inteligente. Estudar o operon Lac nos possibilita entender
os principais métodos de regulação gênica em procariotos, pois ele engloba fatores
repressores e efetores em diferentes estratégias e meios nutricionais. Agora, podemos ir
adiante e aprender sobre a regulação gênica nos eucariotos.
OPERONS
MECANISMOS DE REGULAÇÃO GÊNICA EM
EUCARIOTOS
Os organismos eucariontes podem ser multicelulares, com cada célula com funções diferentes
e atuando em locais diferentes. Entretanto, todas as células possuem o mesmo DNA.
Vamos considerar a estrutura e a organização dos procariotos, seres unicelulares cujo material
genético quase todo é codificante, têm os operons gerando RNAm policistrônico (não existem
operons em organismos eucariontes), proteínas interligadas de uma mesma via metabólica
sendo expressas, regulações básicas de ativação ou repressão genética e os promotores. As
células procariontes funcionam muito bem ao pensar que são unidades individuais, buscando a
sobrevivência.
De modo diferente, se considerarmos os organismos multicelulares, eles possuem um maior
nível de complexidade e, ao mesmo tempo, o percentual de gene codificante e não codificante
é muito menor. Nos humanos, cerca de 2% do DNA é codificante. É um pouco contraintuitivo
pensar que um organismo mais complexo, onde todas as células, mesmo com funções
variadas, possuam o mesmo DNA, e este ainda por cima tem proporcionalmente uma menor
porcentagem de genes codificantes. Vamos a um exemplo?
Ao pensarmos em especialização celular, uma célula do seu intestino precisa absorver e
transportar nutrientes com muita eficiência. Já uma célula da sua pele tem que se multiplicar
mais, conferir resistência e acumular queratina. No entanto, ambos os tipos celulares têm os
mesmos genes, praticamente todo o DNA é igual! Mas como isso é possível?
O segredo desse paradoxo é a regulação gênica e o processamento do RNAm.
Para podermos transcrever uma fita de DNA, primeiro, temos o acoplamento da RNA
polimerase na fita dupla. Esse DNA precisa estar acessível à maquinaria de transcrição, logo
em um estado descompactado.
 ATENÇÃO
Durante todo o texto, utilizaremos o termo “maquinaria de transcrição”, o qual é mais correto,
uma vez em que, nos eucariotos, apenas a RNA polimerase sozinha é incapaz de iniciar a
transcrição, ela necessita do auxílio de fatores gerais de transcrição adicionais.
A compactação e descompactação do DNA em eucariotos são dadas pelas proteínas histonas,
sendo um tipo de regulação gênica. As histonas ditam a compactação da cromatina e são
moduladas por pequenas alterações químicas em sua estrutura, sendo elas: metilação (adição
de grupamentos metila favorecem a compactação do DNA pelas histonas, impossibilitando a
atuação da maquinaria transcricional) e a acetilação (a adição de grupamentos acetil
favorecem a descompactação do DNA, possibilitando a atuação da maquinaria de transcrição.
Esse mecanismo é catalisado pelas proteínas histona acetil transferase (HAT) e é reversível)
(Figura 23). Assim, uma das maneiras de regular o que vai ser expresso é dependente do
padrão de acetilação/metilação de histonas.
 
Fonte: Wikipedia
 Figura 23: Acetilação de histonas mediada por histona acetil transferase (HAT).
Voltando ao exemplo dado anteriormente, as células do seu intestino certamente possuem
trechos do DNA menos compactados do que as células da sua pele. Esses trechos irão
expressar proteínas responsáveis pela absorção dos nutrientes. Nas células da pele, os
mesmos trechos irão estar com as suas respectivas histonas metiladas, ou seja, mais
compactadas.
Determinados fatores transcricionais podem promover a acetilação e a metilação das histonas
de maneira direcionada, gerando especializações celulares. Em resumo, o padrão de histonas
do seu DNA é um dos fatores que faz com que diferentes células tenham funções diferentes.
Outro mecanismo de inibição da expressão gênica é dado pela metilação do próprio DNA, mais
especificamente na posição 5 do anel de citosina, que dificulta a interação com a RNA
polimerase, impedindo a transcrição (Figura 24).
 
Fonte: Wikimedia
 Figura 24: Citosina metilada na posição 5 do anel pirimidina. A metilação é a adição de um
grupo metil (CH3) de forma covalente. Enzima responsável DNA metiltransferase (DNMT).
As citosinas metiladas formam as chamadas ilhas CpG ou ilhas CG (ilhas citosina- guanina);
essa metilação não é reparada pela maquinaria de reparo celular, não sendo transcrita e
traduzida, constituindo assim partes não codificantes. No entanto, essa metilação pode ser
passada para as células filhas no processo de replicação durante a multiplicação celular,
garantido a sua hereditariedade. Elas se localizam, principalmente, próximas do sítio de início
da transcrição de genes constitutivos.
Nos eucariotos, ainda levando em consideração a regulação da transcrição, existem ainda as
sequências reguladoras, bastante semelhante aos operadores dos procariotos. No entanto, nos
eucariotos, essas sequências podem estar localizadas a milhares de pares de base de
distância do promotor.
Até agora vimos alguns fatores de regulação associados à transcrição do DNA, mas a
expressão gênica dos eucariotos pode ser regulada em diversos outros pontos, como: no
processamento pós-transcricional, na degradação do RNAm, na tradução, no processamento
pós-traducional e na degradação e transporte da proteína gerada.
Como sabemos, os eucariotos são organismos bastante complexos, existem milhares de
diferentes interações. A cada dia, os cientistas descobrem novos conceitos e novas formas de
regulação gênica. Por isso, vamos focar em algumas das regulações mais relevantes, como o
splicing alternativo e a maturação do RNAm, a nível de processamento pós-transcricional, e
nos recém-descobertos miRNA (microRNA) e siRNA (small interference RNA), para
degradação do RNAm.
Agora, já sabemos por que todas as células, mesmo possuindo o mesmo DNA, têm
especializações diferentes. Entretanto, falta ainda entender a proporção de DNA codificante e
não codificante. Temos apenas 2% de DNA codificante, será que é suficiente para dar conta de
toda complexidade de um organismo multicelular? A respostaé sim. Afinal, estamos vivos, não
é?
A chave para entender esse dilema está no splicing alternativo. Cada célula possui um
padrão de splicing (conjunto de informação de como vai realizar esse processo) de acordo com
suas funções, originando assim proteínas diferentes a partir do mesmo gene. Após a
transcrição do gene, é formado um pré-RNAm, o qual é processado por um complexo de RNA
e proteínas chamado de spliciossomo, onde, dependendo do padrão de splicing celular no
momento da transcrição, alguns trechos do pré-RNAm são considerados éxons e outros são
considerados íntrons. Os trechos íntrons são removidos do pré-RNAm e os trechos éxons são
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
ligados pelo spliciossomo, gerando um pré-RNAm formado apenas com éxons, de acordo com
o padrão de splicing (Figura 25).
MAQUINARIA DE REPARO
A maquinaria de reparo é fundamental para a manutenção do DNA. É capaz de consertar
pares de base que foram colocados em lugares errados, reparar danos causados à fita,
reajustar ligações erradas etc. Ela serve para minimizar as mutações, impedindo erros na
replicação.
ÉXONS
Trechos do pré-RNAm que serão aproveitados para o RNAm maduro.
ÍNTRONS
Trechos do pré-RNAm que serão removidos do RNAm maduro.
SPLICING ALTERNATIVO.
O termo inglês splicing significa emendar, e “alternativo” se refere ao fato de serem
íntrons e éxons, logo, são emendados de forma alternada.
 
Fonte: Nature.
 Figura 25: Diferentes isoformas do RNAm.
Um mesmo gene pode dar origem a uma enorme quantidade de diferentes RNAm e, por
consequência, proteínas diferentes. Desse modo, os eucariotos conseguem com uma
quantidade relativamente baixa de genes codificantes gerar um número muito elevado de
diferentes proteínas.
Junto ao splicing alternativo, o pré-RNAm também precisa passar por um processamento, que
o torna capaz de sair do núcleo para chegar ao ribossomo onde será traduzido. O pré-RNAm
passa por duas etapas, uma adição do cap 5’, dada pela ligação de um nucleotídeo alterado, e
o GMP metilado (Guanosina monofosfato metilada), na ponta 5’ do RNAm, por uma ligação
trifosfato. O cap 5’ é fundamental para o reconhecimento do RNAm maduro, a exportação do
RNAm para fora do núcleo e o endereçamento do RNAm em direção ao ribossomo. Ele
promove a ligação na organela, além de também ter ação protetora.
 VOCÊ SABIA
A palavra cap significa boné e, nesse caso, pode ser traduzida para capacete 5’. Por isso, o
nome cap 5’ ou capacete 5’, uma vez que esse nucleotídeo alterado, protege a perda de
informação contida no RNAm oriunda da degradação pela ação de ribonucleases e fosfatases.
A segunda etapa do processamento do RNAm é uma adição de uma cauda chamada de
“poliA” na extremidade 3’ do RNA. A cauda tem esse nome por ser formada de 80 a 250
resíduos de adenina. A cauda também serve para proteger o RNAm de degradação enzimática
durante todo o processo de locomoção em direção ao ribossomo, a cauda poliA é clivada por
endonucleases quando o RNAm encontra o ribossomo.
Uma vez com a adição do cap 5’ e da cauda poliA, o RNAm se torna maduro e pode ser
traduzido pelo ribossoma no citoplasma. A regulação desse processo se dá pela remoção de
uma dessas adições. Caso a célula não precise mais de determinada proteína, sinalizações
regulatórias são enviadas para o núcleo, onde são removidas e o RNAm agora “não maduro” é
degradado (Figura 26).
 
Fonte: Fonte: Wikimedia
 Figura 26: Processamento do RNAm.
A última regulação genética que iremos estudar é a mediada por pequenos RNAs: os miRNAs
e os siRNA.
Os miRNAs apresentam cerca de 19 a 28 pb (pares de base), são endógenos e formados a
partir do pareamento imperfeito de uma fita dupla de RNA (double stranded RNA, conhecido
como dsRNA). Esse pareamento gera uma estrutura em forma de grampo de cabelo,
conhecida como hairpin, que é clivada por uma endonuclease dicer (endonucleases são
proteínas que cortam a fita de RNA ou DNA de forma precisa) formando os miRNAs.
Os siRNAs, com cerca de 22 a 23 pb, são exógenos (oriundos do RNA viral) ou endógenos
(oriundos de retrotransposons) e formados a partir de um pareamento perfeito de uma
dsRNA. Também são clivados pela endonuclease dicer, gerando esses fragmentos de siRNA.
A regulação é dada pela ligação entre o miRNA ou siRNA no RNAm induzindo a degradação
deste ou impedindo sua tradução (Figura 27).
RETROTRANSPOSONS
Componentes genéticos com capacidade de autorreplicação, convertendo RNA em DNA.
Estão presentes em eucariotos, porém, sua possível origem é viral. Os retrotransposons
ao longo da evolução se estabeleceram no genoma eucarionte.
 
Fonte: Wikimedia
 Figura 27: Mecanismo de ação do miRNA e siRNA.
Os siRNA e miRNA foram recentemente descobertos e possuem um papel muito importante no
controle da expressão gênica em eucariotos. No entanto, ainda estamos tentando entender
melhor como funcionam, embora suas aplicações médicas pareçam ser muito promissoras.
Imagine, por exemplo, uma pessoa que tenha o metabolismo alterado para produzir grandes
quantidades de colesterol endógeno. Ela pode ter diversos problemas de saúde oriundos do
alto colesterol. No futuro, talvez seja possível construir siRNAs específicos para silenciar a
expressão de HMG-CoA redutase, principal enzima da síntese de colesterol endógeno, abrindo
possibilidades para uma nova terapia genética.
javascript:void(0)
EPIGENÉTICA
A genética é o estudo dos genes, das características hereditárias de determinados organismos,
guardadas nas moléculas de DNA. A epigenética é o estudo das características que vão acima
dos genes, pois “epi” deriva do radical grego que indica a posição superior. Essa ciência estuda
as variações nos traços fenotípicos pela ação de fatores externos ou ambientais que afetam a
expressão gênica de modo reversível. A compreensão da epigenética pode nos ajudar a
estabelecer relações entre a forma com que vivemos e o surgimento de determinadas doenças.
Relembrando o que estudamos anteriormente, como um neurônio sabe que tem que ser um
neurônio e não um osteoblasto durante o desenvolvimento embrionário?
A resposta está nos fatores de transcrição específicos de cada linhagem celular que leva a
especialização destas células para a sua forma final e nas marcas epigenéticas no DNA. As
marcas epigenéticas são características do material genético que possibilitam ou não sua
expressão, seja por metilação do DNA, modificação de histonas (metilação ou acetilação) ou
presença de mi e siRNA, que degradam o RNAm.
A epigenética é tudo que está acima dos genes e estuda alterações na expressão gênica que
não alteram a estrutura primária da sequência de nucleotídeos. Na verdade, explora
modificações no DNA decorrentes da interação do indivíduo com o ambiente.
 EXEMPLO
Um indivíduo fumante consome grandes quantidades de nicotina, cuja molécula modifica o
padrão metilação em diversos genes. Então, os genes que, em condições normais, não
estariam sendo expressos passam a ser. E quais são as consequências dessa alteração na
expressão gênica?
É difícil precisar todas as alterações causadas por determinada substância no nosso
organismo, temos milhares de diferentes células expressando diferentes proteínas. Entretanto,
a comunidade científica estuda incansavelmente as diversas modificações genéticas causadas
por alimentos, comportamentos, drogas etc.
Agora, ainda utilizando o caso da nicotina como exemplo, é sabido que o cigarro faz mal à
saúde e, segundo estudos, podem reduzir em cerca de 14 anos a expectativa de vida de
adultos fumantes. Apenas nos Estados Unidos, o cigarro tem algum tipo de relação com a
morte de 400 mil pessoas por ano. As consequências de fumar incluem câncer, doenças
cardiovasculares e respiratórias. Muitas grávidas continuam fumando durante a gestação,
sendo a causa de morte infantil evitável mais importante. O cigarro consumido pelas mães
atrasa o desenvolvimento neural e cardiopulmonar do embrião. Essascrianças também
tendem a ter uma maior frequência de doenças respiratórias como asma (Figura 28). No
entanto, estudos recentes mostram que mães fumantes podem não só ter os filhos com asma,
como também os netos, mesmo que as filhas não fumem. Além disso, foram encontrados
alguns mecanismos epigenéticos nos filhos e netos de fumantes.
 
Fonte: Lightspring/Shutterstock
 Figura 28: Cigarro.
Os conceitos sobre hereditariedade genética evoluíram com o passar dos anos, não apenas os
genes são responsáveis por transmitir as informações dos pais para os filhos, mas também os
padrões epigenéticos são fundamentais, os quais podem ser passados através de gerações.
Marcações no DNA e nas histonas (acetilações e metilações) modificam o padrão de
expressão genética, principalmente, no período de desenvolvimento embrionário, causando
uma reprogramação gênica.
As modificações epigenéticas ocorrem não apenas pela exposição recorrente a determinadas
substâncias químicas, mas também devido a fatores ambientais e comportamentais. O
holocausto durante a Segunda Guerra Mundial deixou marcas visíveis e invisíveis tanto nos
que sofreram o horror nazista quanto em seus filhos e netos. As marcas invisíveis foram
reveladas nos cromossomos, que representam um tipo de memória biológica do nosso
organismo. Os sobreviventes do holocausto tinham pesadelos frequentes, ansiedade,
depressão, dificuldade de ressocialização, entre outros distúrbios psicológicos. De alguma
maneira, esses traumas se internalizaram e foram passados adiante, pois os descendentes da
guerra tendem a ser mais vulneráveis ao stress e propensos a desordens mentais, evento
conhecido como transmissão transgeracional de trauma (TTT). A TTT também já foi descrita na
literatura a partir de indivíduos que sofreram abusos, refugiados, vítimas de tortura etc. (Figura
29).
 
Fonte: J Walters/Shutterstock
 Figura 29: Soldado com stress pós-traumático.
A compreensão da TTT trouxe avanços na vida de diversas crianças e adultos que passaram
por eventos traumáticos, permitindo o diagnóstico e tratamento precoce das consequências do
trauma, uma espécie de medicina epigenética. É importante lembrarmos que os mecanismos
epigenéticos são maleáveis e podem ser alterados durante a nossa vida, dependendo de
fatores químicos e socioambientais, que nos leva a boas perspectivas de tratamento.
Diversas outras associações epigenéticas têm sido testadas. Compreender os ajustes finos
desses mecanismos pode gerar uma revolução na maneira com que enxergamos a medicina e
a genética.
Podemos citar alguns exemplos, como: pessoas que sofreram fome durante os anos iniciais de
suas vidas possuem um menor risco de câncer colorretal; crianças que passaram por trauma
tendem a desenvolver depressão quando adultos devido a uma hipermetilação do gene NR3C1
(responsável pela expressão de receptores ligados ao stress); associação de metilação do
DNA, formando ilhas CpG em determinadas regiões, é correlacionada com maior prevalência
de diabetes tipo 2 e obesidade em populações árabes, dentre outros estudos.
A terapia genética, com o uso de miRNA, siRNA e edição genética parece muito promissora,
mas ainda são estudos preliminares e temos muitos mistérios a desvendar (Figura 30).
 
Fonte: LuckyStep/Shutterstock
 Figura 30: Terapia genética.
VERIFICANDO O APRENDIZADO
1. ESTUDAMOS AS REGULAÇÕES GÊNICAS NOS PROCARIOTOS E
VIMOS QUE EXISTEM OPERONS, QUE SÃO TRECHOS RESPONSÁVEIS
POR ALGUMA FUNÇÃO BIOLÓGICA. LEIA AS AFIRMATIVAS ABAIXO E
RESPONDA. 
 
I. CONSIDERANDO O OPERON LAC, A EXPRESSÃO DO GENE I É
CONSTITUTIVA, UMA VEZ QUE NÃO TEMOS LACTOSE SEMPRE NO MEIO
INTRACELULAR. 
II. EM PROCARIOTOS, OS GENES COM FUNÇÕES DE UMA MESMA VIA
METABÓLICA ESTÃO LOCALIZADOS PRÓXIMOS UNS AOS OUTROS EM
UM OPERON E TRANSCREVEM PARA UM RNAM MONOCISTRÔNICO. 
III. O RNAM MONOCISTRÔNICO É CAPAZ DE SER TRADUZIDO EM
DIFERENTES PROTEÍNAS DE UMA MESMA VIA METABÓLICA. 
IV. O OPERON LAC TEM SEU FUNCIONAMENTO REPRIMIDO NA
PRESENÇA DE GLICOSE, MESMO QUE COM ALTAS CONCENTRAÇÕES
DE LACTOSE. 
 
ESTÃO CORRETAS AS AFIRMATIVAS:
A) I, II e III
B) II e III
C) II, III e IV
D) I e IV
2. A EPIGENÉTICA ESTUDA COMO COMPONENTES EXTERNOS E
AMBIENTAIS MODIFICAM NOSSO GENOMA ATRAVÉS DE
DETERMINADAS MARCAÇÕES. SÃO EXEMPLOS DE MARCADORES
EPIGENÉTICOS QUE PODEM MODIFICAR A EXPRESSÃO DE GENES: 
 
I. METILAÇÃO DO DNA, METILAÇÃO DE HISTONAS E PRESENÇA DE
MIRNAS. 
II. ACETILAÇÃO DO DNA, SPLICING ALTERNATIVO E PRESENÇA DE
MIRNAS. 
III. UBIQUITINAÇÃO DE PROTEÍNAS, METILAÇÃO DE HISTONAS E
NICOTINA. 
IV. METILAÇÃO DO DNA, STRESS E PRESENÇA DE MIRNAS. 
 
ESTÃO CORRETAS AS SENTENÇAS:
A) I e II
B) I
C) III e IV
D) II
GABARITO
1. Estudamos as regulações gênicas nos procariotos e vimos que existem operons, que
são trechos responsáveis por alguma função biológica. Leia as afirmativas abaixo e
responda. 
 
I. Considerando o operon Lac, a expressão do gene I é constitutiva, uma vez que não
temos lactose sempre no meio intracelular. 
II. Em procariotos, os genes com funções de uma mesma via metabólica estão
localizados próximos uns aos outros em um operon e transcrevem para um RNAm
monocistrônico. 
III. O RNAm monocistrônico é capaz de ser traduzido em diferentes proteínas de uma
mesma via metabólica.
IV. O operon Lac tem seu funcionamento reprimido na presença de glicose, mesmo que
com altas concentrações de lactose. 
 
Estão corretas as afirmativas:
A alternativa "D " está correta.
 
O operon Lac é responsável por expressar as proteínas da via metabólica de degradação da
lactose, quando esta não está presente o gene I é expresso para não ter gasto fútil de energia.
O RNAm dos eucariotos, transcrito a partir de diferentes genes de uma mesma via, é chamado
de RNAm policistrônico e é capaz de ser traduzido em diferentes proteínas de uma mesma via
metabólica. A presença de glicose impossibilita a formação indutor CRP-cAMP, logo, não
ocorre a transcrição do operon Lac, mesmo quando temos a lactose.
2. A epigenética estuda como componentes externos e ambientais modificam nosso
genoma através de determinadas marcações. São exemplos de marcadores epigenéticos
que podem modificar a expressão de genes: 
 
I. Metilação do DNA, metilação de histonas e presença de miRNAs. 
II. Acetilação do DNA, splicing alternativo e presença de miRNAs. 
III. Ubiquitinação de proteínas, metilação de histonas e nicotina. 
IV. Metilação do DNA, stress e presença de miRNAS. 
 
Estão corretas as sentenças:
A alternativa "B " está correta.
 
Metilação da citocina, presente no DNA, na posição 5’ pode silenciar trechos do DNA. A
metilação das histonas torna a região condensada, impedindo a transcrição, e a presença de
miRNAs induz degradação do RNAm, impedindo a tradução. São três diferentes vias de
controle epigenético. A acetilação do DNA não é uma estratégia de controle de expressão
genética. A nicotina não pode ser considerada um marcador epigenético. O stress também
pode alterar controle de expressão gênica através de mudanças epigenéticas, porém ele
próprio não é um marcador epigenético.
CONCLUSÃO
CONSIDERAÇÕES FINAIS
Conhecemos como a Biologia Molecular foi estabelecida como ciência a partir da descoberta
do DNA e do RNA, explorando principalmente a sua estrutura e a sua função. Além disso,
vimos a teoria mais aceita, atualmente, para explicar como a vida surgiu no nosso planeta.
Aprendemos como o material genético nos eucariotos e procariotos e como esses grupos se
organizam e os diferentes mecanismos de regulação da expressão gênica. Por fim, todos os
conceitos aprendidos sobre os eucariotos foram concatenados para termos uma noção sobre o
que é a epigenética. A epigenética é uma ciência recente que estuda o comportamento de
todos os componentes que estão presentes influenciando o genoma e, por consequência,
influenciando na expressão gênica.
AVALIAÇÃO DO TEMA:
REFERÊNCIAS
AL MUFTAH, W. A. et al. Epigenetic associations of type 2 diabetes and BMI in an Arab
population.In: Clinical epigenetics, v. 8, n. 1, p. 13, 2016.
ALBERTS, B. Molecular biology of the cell. 2018.
AMBROS, V. The functions of animal microRNAs. Nature, v. 431, n. 7006, p. 350-355, 2004.
BETZ, F. Managing Science: Innovation, Technology, and Knowledge Management. 2011.
BORGES-OSÓRIO, M. R.; ROBINSON, W. M. Genética Humana. 3 ed. Artmed Editora, 2013.
COSTA, E. de B. O.; PACHECO, C. Epigenética: regulação da expressão gênica em nível
transcricional e suas implicações. In: Semina: Ciências Biológicas e da Saúde, v. 34, n. 2, p.
125-136, 2013.
DAHM, R. Friedrich Miescher and the discovery of DNA. In: Developmental biology, v. 278,
n. 2, p. 274-288, 2005.
DUBEY, R. C. D. K. ATB of microbiology. 1st edition, p.227-229. New Delhi: S. Chand &
Company, 2015.
GRINDLEY, N. D. F.; REED, R. R. Transpositional recombination in prokaryotes. In: Annual
review of biochemistry, v. 54, n. 1, p. 863-896, 1985.
HARTL, D.; RUVOLO, M. Genetics. Jones & Bartlett Publishers, 2012.
HICKMAN, A. B.; DYDA, F. Mechanisms of DNA transposition. In: Mobile DNA III, p. 529-
553, 2015.
HUGHES, L. et al. Early life exposure to famine and colorectal cancer risk: a role for
epigenetic mechanisms. In: PloS one, v. 4, n. 11, p. e7951, 2009.
JACOB, F.; MONOD, J. Genetic regulatory mechanisms in the synthesis of proteins. In:
Journal of molecular biology, v. 3, n. 3, p. 318-356, 1961.
JOAQUIM, L. M.; EL-HANI, C. N. A genética em transformação: crise e revisão do conceito
de gene. In: Scientiae studia, v. 8, n. 1, p. 93-128, 2010.
KELLERMANN, N. PF. Epigenetic transmission of holocaust trauma: can nightmares be
inherited. In: Isr J Psychiatry Relate Sci, v. 50, n. 1, p. 33-39, 2013.
LANE, N. The vital question: energy, evolution, and the origins of complex life. WW
Norton & Company, 2015.
LEHMAN, N. Cold-hearted RNA heats up life. In: Nature chemistry, v. 5, n. 12, p. 987-989,
2013.
LESLIE, F. M. Multigenerational epigenetic effects of nicotine on lung function. In: BMC
medicine, v. 11, n. 1, p. 1-4, 2013.
MARSHALL, M. First life: The dawn of evolution. In: New Scientist, v. 211, n. 2825, p. 32-35,
2011.
MELAS, P. A. et al. Genetic and epigenetic associations of MAOA and NR3C1 with
depression and childhood adversities. In: International Journal of
Neuropsychopharmacology, v. 16, n. 7, p. 1513-1528, 2013.
MILLER, S. L. et al. A production of amino acids under possible primitive earth
conditions. In: Science, v. 117, n. 3046, p. 528-529, 1953.
NELSON, D. L.; LEHNINGER, A. L.; COX, M. M. Lehninger principles of biochemistry.
Macmillan, 2008.
PARFREY, L. W.; LAHR, D. J. G; KATZ, L. A. The dynamic nature of eukaryotic genomes. In:
Molecular biology and evolution, v. 25, n. 4, p. 787-794, 2008.
SUMNER, A. T. Chromosomes organization and function. In: Blackwell Science Ltd. a
Blackwell Publishing company. United Kingdom, v. 1, p. 143-153, 2003.
VÁZQUEZ-SALAZAR, A.; LAZCANO, A. Early life: Embracing the RNA world. Current Biology,
v. 28, n. 5, p. R220-R222, 2018.
WATSON, J. D.; CRICK, F. H. C. Molecular structure of nucleic acids: a structure for
deoxyribose nucleic acid. Nature, v. 171, n. 4356, p. 737-738, 1953.
EXPLORE+
Para explorar mais os seus conhecimentos a respeito do assunto deste tema, recomendamos
as seguintes leituras:
Cientistas encontram possível sinal de vida em Vênus, matéria de divulgação científica da
revista Exame, escrita pela jornalista Tamires Vitorino. Nessa matéria, é abordada a
descoberta do gás fosfina metabólito bacteriano em Vênus, indicando possível sinal de
vida.
Michael Russell demonstrou que existem fontes de águas termais no fundo dos oceanos,
aquecidas pelo manto da Terra, que jorram água alcalina. Essas fontes são ricas em
minérios de ferro, níquel e enxofre dissolvidos. Para conhecer mais, leia o livro Questão
vital: Por que a vida é como é?, de Nick Lane e Talita Rodrigues.
Para conhecer um pouco mais sobre os avanços da epigenética na área biomédica, leia o
livro Epigenética aplicada à saúde e a doença de Elsner e Siqueira.
Para conhecer um pouco mais sobre a história da Biologia Molecular, visite a matéria do
Rogerio Meneghini Os genes e o gene, publicada na revista FAPESP.
Qual foi papel de Roselind Franklin no modelo da dupla hélice do DNA de Watson e
Crick? Para saber mais, visite o artigo As controvérsias a respeito da participação de
Rosalind Franklin na construção do modelo da dupla hélice, de Marcos Rodrigues da
Silva.
CONTEUDISTA
Eldio Gonçalves dos Santos
 CURRÍCULO LATTES
javascript:void(0);

Outros materiais