Buscar

TEMA 2 - Dinâmica dos Fluidos (Fenômenos de Transporte)

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 76 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 76 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 76 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

DESCRIÇÃO
Classificações de escoamentos, cálculo da vazão, energia e perda de carga.
PROPÓSITO
Apresentar as características que diferenciam os diversos tipos de escoamentos e os conceitos de vazão e conservação da
massa, além do efeito da perda de carga, bombas e turbinas no comportamento da energia ao longo de tubulações.
PREPARAÇÃO
Antes de iniciar este conteúdo, tenha em mãos: papel, caneta e uma calculadora, ou use a calculadora de seu
smartphone/computador.
OBJETIVOS
MÓDULO 1
Classificar os escoamentos
MÓDULO 2
Aplicar os conceitos de vazão
MÓDULO 3
Calcular a pressão ao longo de tubulações
DINÂMICA DOS FLUIDOS
O especialista Gabriel de Carvalho Nascimento fala sobre a dinâmica dos fluidos.
MÓDULO 1
 Classificar os escoamentos
OS TIPOS DE ESCOAMENTO
O especialista Gabriel de Carvalho Nascimento fala sobre os tipos de escoamento
INTRODUÇÃO
Quando precisamos resolver um problema de fluidodinâmica é fundamental classificar o escoamento corretamente para selecionar
a estratégia mais adequada para sua solução, buscando a metodologia mais simples que contemple os efeitos relevantes.
Os escoamentos podem se diferenciar quanto a diversos aspectos, entre eles:
REGIME TEMPORAL
VARIAÇÃO NO ESPAÇO
INFLUÊNCIA DA VISCOSIDADE
TURBULÊNCIA
COMPRESSIBILIDADE
CONTORNOS
Neste módulo, veremos detalhes sobre cada uma das classificações mais relevantes.
CLASSIFICAÇÃO DOS ESCOAMENTOS
REGIME TEMPORAL
Regime temporal é o escoamento de uma massa fluida que pode ser avaliado com base no campo de velocidade, definido por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em que
,
e
são as componentes do vetor velocidade nas direções
,
e
→
V =
→
V (x, y, z, t)=
→
u (x, y, z, t)  î +
→
v (x, y, z, t) ĵ +
→
w (x, y, z, t) k̂
→u
→v
→w
x
y
, respectivamente.
Uma das avaliações que devemos fazer é se o escoamento varia ou não ao longo do tempo, ou seja, se as grandezas físicas (ex.:
velocidade, pressão e temperatura) dependem da variável tempo. Sendo assim, é possível classificá-lo em:
Permanente ou estacionário (steady)
Quando as grandezas não variam ao longo do tempo, ou seja, para qualquer grandeza
Transiente ou transitório (transient)
Quando há variação de grandezas ao longo do tempo, ou seja, 
 DICA
Apesar de ser necessário que todas as grandezas se mantenham constantes para determinar se o escoamento é permanente,
para maioria dos escoamentos, basta avaliar a velocidade.
EXERCÍCIO RESOLVIDO 1
Classifique os escoamentos definidos pelos campos abaixo entre permanente (estacionário) e transiente (transitório):
a)
b)
c)
d)
e)
RESOLUÇÃO
Conforme vimos, a classificação quanto ao regime temporal é feita com base na influência do tempo nas grandezas físicas. Isso
significa que, se houver a variável tempo
na expressão que fornece o campo de velocidades, o escoamento é transiente, caso contrário, permanente. Sendo assim:
a) Transiente, pois há a variável tempo em
z
∂η/∂t = 0 
η( →V , p,T , ρ. . . )
∂η/∂t ≠ 0
→V = (aye−bt) î
→V = î
(y2 + z2)2
a
→V = ax2 î + bxy ĵ + cyk̂
→V = (ae−by) î + bx2 ĵ
→V = (ax + t) î + bx2 ĵ
(t)
b) Permanente
c) Permanente
d) Permanente
e) Transiente, pois há a variável tempo em
VARIAÇÃO NO ESPAÇO
Todos os escoamentos ocorrem nas três direções (x, y e z). No entanto, quando representamos matematicamente as grandezas
físicas, é possível que uma ou duas direções sejam desconsideradas. Essa simplificação facilita o modelo matemático e a sua
solução, além da visualização do escoamento através de gráficos, como as linhas de corrente.
 
Imagem: Atif Masood/Wikimedia commons/licença (CC BY 3.0)
 Linhas de corrente em um escoamento – simulação CFD
Para determinar qual a dimensionalidade do problema, basta avaliar quantas direções têm influência nas grandezas físicas (ex.:
,
e
):
UNIDIMENSIONAL (1D)
Há variação apenas ao longo de um eixo (ex.: x), então dois eixos podem ser desconsiderados (ex.: y e z).
→V = (aye−bt) î
→V = (ax + t) î + bx2 ĵ
→V
p
T
BIDIMENSIONAL (2D)
Há variação apenas ao longo de dois eixos (ex.: x e y), então apenas um pode ser desconsiderado (ex.: z).
TRIDIMENSIONAL (3D)
Há variação ao longo de todos os eixos, então todos devem ser considerados.
Assim como no regime temporal, normalmente basta avaliar o campo de velocidades para definir a dimensionalidade do problema.
 ATENÇÃO
A classificação da dimensionalidade é feita com base na quantidade de variáveis espaciais (x, y e z) de que
depende.
 EXEMPLO
O campo de velocidade definido por
tem apenas uma componente (em z, conforme o vetor unitário
), porém ele varia ao longo de dois eixos (x e y). Portanto, trata-se de um escoamento bidimensional.
EXERCÍCIO RESOLVIDO 2
Classifique a dimensionalidade dos escoamentos definidos pelos campos do exemplo anterior:
a)
b)
c)
d)
→V
→V = (x + y) k̂
→k
→V = (aye−bt) î
→V = î
(y2 + z2)2
a
→V = ax2 î + bxy ĵ + cyk̂
e)
RESOLUÇÃO
Sendo a dimensionalidade avaliada com base na quantidade de variáveis dimensionais que influenciam na velocidade, então:
a) 
b) 
c) 
d) 
e) 
INFLUÊNCIA DA VISCOSIDADE
Um dos principais objetivos de se classificar os escoamentos é verificar quais aspectos não são relevantes e quais simplificações
são aceitáveis. Entre esses aspectos está a influência das tensões viscosas, o que classifica o escoamento em:
Viscoso
A viscosidade
tem influência significativa, logo a tensão cisalhante
deve ser considerada.
Não viscoso ou invíscido
A viscosidade é desprezível, assim a tensão cisalhante pode ser desconsiderada, ou seja,
. Nesse caso, o fluido é chamado de ideal.
TENSÃO CISALHANTE
É um tipo de tensão gerado por forças aplicadas em sentidos iguais ou opostos, em direções semelhantes, mas com
intensidades diferentes no material analisado.
O número de Reynolds é um adimensional que mede a razão entre forças inerciais, representadas pela quantidade de movimento
(produto de massa pela velocidade), e forças viscosas, representadas pela viscosidade:
→V = (ae−by) î + bx2 ĵ
→V = (ax + t) î + bx2 ĵ
→
V =(aye−bt) î → 1D (y)
→
V = î → 2D (y e z)
( y2+z2 )
2
a
→
V = ax2 î + bxy ĵ + cyk̂ → 2D (x e y)
→
V =(ae−by) î + bx2 ĵ → 2D (x e y)
→
V =(ax + t) î + bx2 ĵ → 1D (x)
μ
τ
τ = 0
javascript:void(0)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Na qual:
: (kg/m³) massa específica
: (m/s) velocidade da corrente livre
: (m) comprimento (ou largura) de referência
: (kg/m.s) viscosidade
Como a viscosidade
está no denominador, quando a influência dela for significativa, o valor de
será baixo. Em escoamento ao redor de esfera, por exemplo, isso ocorre para . No entanto, um valor elevado de
não necessariamente indicará escoamento invíscido
, pois mesmo sendo relativamente baixa, a tensão cisalhante pode ter uma influência importante.
O maior exemplo do efeito secundário da tensão cisalhante baixa é o desprendimento das linhas de corrente, o que é
caracterizado pela esteira formada atrás de um corpo no caminho do escoamento. Na figura seguinte, a esteira é evidenciada pela
ausência das linhas de corrente ao lado direito da esfera (após o vento passar por ela).
Re =
ρV L
μ
ρ
V
L
μ
(μ)
Re
Re < 1
Re
(τ = 0)
 
Imagem shutterstock.com
 Esteira do escoamento após passar por uma esfera
Em aerofólios (ex.: asa de avião), a geometria é propositalmente desenhada para reduzir ao máximo a esteira. Veja:
 
Imagem: Orion 8/Wikimedia commons/licença (CC BY 3.0)
 Linhas de corrente ao redor de uma asa
Quando a esteira é desprezível, o escoamento pode ser calculado com
, o que simplifica a solução matemática do problema. Posteriormente, a tensão cisalhante junto à superfície sólida pode ser
adicionada para obter a força de arrasto causada pelo “atrito”.
 RESUMINDO
Se o número de Reynolds for baixo (ex.: para esfera, ), o escoamento é classificado como viscoso.
Se
é elevado, a viscosidade pode ser desconsiderada para o cálculodo campo de velocidade apenas se não houver esteira. Porém, a
tensão cisalhante deverá ser avaliada junto à superfície sólida.
TURBULÊNCIA
τ = 0
Re < 1
Re
No número de Reynolds,
, a força inercial, proporcional a
, representa a tendência que o fluido tem de manter sua velocidade, enquanto a força viscosa, proporcional a
, representa o que procura resistir ao escoamento. Portanto, quanto menor o denominador (viscosidade), menos “controlado” é o
escoamento e maior é o valor de
. Esse é o caso dos escoamentos turbulentos, ao contrário dos laminares.
Para que valor de
, então, há uma mudança no comportamento do escoamento?
Depende do tipo de escoamento ao qual estamos nos referindo. A seguir, ilustraremos dois casos: escoamento no interior e no
exterior de tubulações.
O escoamento no interior de tubulações é um dos fenômenos de maior interesse na engenharia.
Classificação Imagem
Laminar
 
Imagem: Gabriel de Carvalho Nascimento
Transição
Turbulento
 
Imagem: Gabriel de Carvalho Nascimento
 Atenção! Para visualização completa da tabela utilize a rolagem horizontal
 Classificação de escoamento no interior de tubulações
Fluidos passando ao redor de cilindro, por sua vez, podem ser exemplificados por correntes marinhas em dutos submarinos,
corrente de rios em pilares de pontes e vento em edifícios.
Re =
ρV L
μ
ρVL
μ
Re
Re
Re
Re < 2300
2300 < Re < 4000
4000 < Re
Classificação Imagem
Esteira laminar
e permanente
Imagem: Gabriel de Carvalho Nascimento
Esteira laminar
e periódica
Imagem: Gabriel de Carvalho Nascimento
Transição
Esteira
turbulenta
 
Imagem: Gabriel de Carvalho Nascimento
 Atenção! Para visualização completa da tabela utilize a rolagem horizontal
 Classificação de escoamento ao redor de cilindros
Mesmo para outros formatos de corpos, os valores indicados na tabela podem servir como referência para ordem de grandeza que
indica escoamentos laminares ou turbulentos.
 EXEMPLO
Se o escoamento ao redor de um duto submarino tem
(muito maior que 40), você pode ter certeza de que o escoamento é turbulento.
Re
Re < 40
40 < Re < 150
150 < Re < 300
300 < Re
Re ≅50.000
 SAIBA MAIS
Normalmente, o engenheiro não tem dúvida se o escoamento é laminar ou turbulento, pois as condições mais comuns resultam
em
muito elevados.
Faça um teste, calculando o valor de Reynolds para escoamentos que venham à sua mente.
Saiba que o cálculo de
remete muito mais à ordem de grandeza do que a um valor exato. Assim, não se preocupe em fazer estimativas grosseiras para os
parâmetros necessários (velocidade e dimensão de referência).
COMPRESSIBILIDADE
A influência da compressibilidade no escoamento pode ser medida pelo número de Mach:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em que
é a velocidade de referência do escoamento e
é a velocidade do som no fluido.
Quanto maior o valor de
, maiores são os efeitos da compressibilidade. Quando o número de Mach é muito menor que 1
, o escoamento pode ser classificado como incompressível, ou seja, com massa específica
constante. Na prática, é comumente aceito considerar que 
Classificação
Incompressível
Compressível
Re
Re
Ma = V
c
V
c
Ma
(Ma ≪ 1)
ρ
Ma ≪ 1  ↔  Ma < 0, 3.
Ma
Ma < 0, 3
Ma > 0, 3
 Atenção! Para visualização completa da tabela utilize a rolagem horizontal
 Classificação de escoamento no interior de tubulações
Avaliando-se a condição limite
, temos:
Para a água
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Para o ar, nas CNTP
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
De maneira geral, líquidos resultam em escoamentos incompressíveis; enquanto gases, compressíveis, o que ocorre para o
escoamento no interior de tubulações de abastecimento de água e do ar ao redor de aviões, respectivamente.
 
Imagem: Shutterstock.com
(Ma = 0, 3 → V = 0, 3c)
V = 0, 3 ⋅ 1000 = 300m/s = 1. 080km/h.
V = 0, 3 ⋅ 340 = 102m/s = 367km/h.
 
Imagem: Pixabay.com
 Escoamento de água em tubulações (incompressível) e do ar ao redor de aviões (compressível)
Há exceções que valem ser citadas, como o corte de materiais com jatos de água a altíssima velocidade (cerca de 1400km/h) e a
refrigeração de ar por dutos (velocidade de 10 m/s). Veja:
 
Imagem: Shutterstock.com
 
Imagem: Shutterstock.com
 Corte de materiais com jatos d’água e dutos de ar-condicionado
LEIS BÁSICAS PARA SISTEMAS E VOLUMES DE
CONTROLE
Antes de iniciar o equacionamento dos problemas, é importante definir qual é o tipo de domínio de análise — sistema ou volume
de controle:
Sistema
É constituído por determinada quantidade de matéria (massa), assim deve acompanhá-la ao longo do tempo.
Volume de controle
Compreende determinada região do espaço, por onde o fluido pode entrar e sair em diferentes aberturas, sendo delimitado pela
superfície de controle.
 EXEMPLO
Qual é o melhor domínio para análise de um bloco em um plano inclinado? Em se tratando de sólido, a massa do bloco é bem
definida e se desloca como um todo. Portanto, o equacionamento com base no sistema é o mais adequado.
E para avaliar o escoamento em determinado trecho de tubulação?
Nesse caso, a massa (matéria) de interesse é um fluido cujas partículas entram e saem da região de interesse (trecho de
tubulação), o que inviabiliza o equacionamento do sistema. Então, o volume de controle passa a ser a melhor opção.
A seguir, listaremos as leis da Física que servem como base para o desenvolvimento das equações abordadas na mecânica dos
fluidos. Essas leis são definidas, inicialmente, com aplicação num sistema.
PRINCÍPIO DA CONSERVAÇÃO DA MASSA
Também chamada de princípio da continuidade, estabelece que a massa do sistema se mantém constante, ou seja:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
PRINCÍPIO DA QUANTIDADE DE MOVIMENTO LINEAR (MOMENTUM)
A partir da definição da quantidade de movimento linear
num sistema
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
O princípio correspondente se refere à 2º Lei de Newton:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
PRINCÍPIO DA QUANTIDADE DE MOVIMENTO ANGULAR
Definindo a quantidade de movimento angular
no sistema por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
De maneira análoga ao princípio anterior, teremos:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
PRINCÍPIO DA ENERGIA
Definindo-se a energia do sistema por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Esse princípio se refere à 1ª e à 2ª Lei da Termodinâmica:
1ª Lei da Termodinâmica: 
2ª Lei da Termodinâmica: 
Adicionalmente, vale citar as relações de estado, que complementam as leis básicas fornecendo a pressão e energia do fluido em
função da massa específica e temperatura, ou seja:
msistema =  c
te →  ( )
sistema 
= 0 dm
dt
P
→
P sistema  =   ∫M
→
V dm
→
F = ( )
sistema
d
→
P
dt
H
→
H sistema  = ∫M
→
r   ×  
→
V dm 
−→
M = ( )
sistema
d
→
H
dt
Esistema  = ∫M e dm
Q̇ −  Ẇ = ( )
sistema 
dE
dt
δS  ≥
δQ
T
{
p = p(ρ,T )
e = e(ρ,T )
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Um exemplo de relação de estado é a Lei dos Gases Ideais,
, que pode ser reescrita como
, ou seja, uma expressão que fornece
em função de
e
.
MÃO NA MASSA
1. QUAL É A CLASSIFICAÇÃO DO ESCOAMENTO DE ÁGUA NO INTERIOR DE UMA ADUTORA COM
GRANDE COMPRIMENTO?
A) Invíscido, incompressível e interno.
B) Viscoso, turbulento, incompressível e interno.
C) Viscoso, laminar, compressível e interno.
D) Invíscido, compressível e externo.
E) Viscoso, laminar, incompressível e externo.
2. QUAL É A CLASSIFICAÇÃO DO ESCOAMENTO DE AR AO REDOR DE UM AVIÃO DE GRANDE
PORTE?
A) Invíscido, compressível e interno.
B) Viscoso, turbulento, incompressível e externo.
C) Viscoso, laminar, compressível e externo.D) Invíscido, incompressível e externo.
E) Viscoso, turbulento, compressível e externo.
3. DUAS PLACAS PLANAS HORIZONTAIS A UMA DISTÂNCIA H UMA DA OUTRA SÃO SEPARADAS
POR UM FLUIDO DE VISCOSIDADE Μ E MASSA ESPECÍFICA Ρ. A PLACA INFERIOR ESTÁ FIXA E A
pV = mRT
p = RT = ρRT
m
V
p
ρ
T
SUPERIOR SE MOVE LATERALMENTE COM VELOCIDADE V CONSTANTE. SE O FLUIDO EM
QUESTÃO SE TRATA DA ÁGUA (Μ = 10-3 KG/M.S E Ρ ≅ 1000KG/M³), V = 0,5M/S E H = 1,0MM,
CLASSIFIQUE O REGIME DE ESCOAMENTO QUANTO AO NÍVEL DE INFLUÊNCIA DAS TENSÕES
VISCOSAS.
A) Turbulento
B) Permanente
C) Transiente
D) Incompressível
E) Laminar
4. EM UM DUTO ESCOA GÁS SOB CONDIÇÕES PARA AS QUAIS A VELOCIDADE DO SOM É DE
500M/S. QUAL É O VALOR MÁXIMO DA VELOCIDADE PARA QUE O ESCOAMENTO SEJA
CONSIDERADO INCOMPRESSÍVEL?
A) 500m/s
B) 0,3m/s
C) 50m/s
D) 150m/s
E) 104m/s
5. QUAL É A CLASSIFICAÇÃO DO ESCOAMENTO DEFINIDO PELO CAMPO DE VELOCIDADE:
 ATENÇÃO! PARA VISUALIZAÇÃO COMPLETA DA EQUAÇÃO UTILIZE A ROLAGEM HORIZONTAL
A) 1D e permanente
B) 2D e permanente
C) 3D e permanente
D) 1D e transiente
E) 2D e transiente
6. A FIGURA A SEGUIR REPRESENTA UM TRECHO DE UMA TUBULAÇÃO DE ÁGUA ONDE HÁ UM
TÊ.
→
V = xy2  î − x2y ĵ + a k̂
 
IMAGEM: GABRIEL DE CARVALHO NASCIMENTO
ESPECIFIQUE O QUE MELHOR REPRESENTA UM SISTEMA, UM VOLUME DE CONTROLE E UMA
SUPERFÍCIE DE CONTROLE, RESPECTIVAMENTE.
A) I, III e II
B) II, III e I
C) I, II e III
D) II, I e III
E) III, I e II
GABARITO
1. Qual é a classificação do escoamento de água no interior de uma adutora com grande comprimento?
A alternativa "B " está correta.
Viscoso: no interior de uma tubulação de grande comprimento, as tensões cisalhantes acabam contribuindo significativamente,
como uma força de resistência ao escoamento. Dessa forma, a viscosidade, que está diretamente associada à tensão cisalhante
(viscosa), deve ser considerada.
Turbulento: conforme quase a totalidade dos escoamentos de interesse econômico, como gasodutos e oleodutos, as velocidades
no interior de adutoras são elevadas o suficiente para resultar num número de Reynolds muito acima do limite entre laminar e
turbulento.
Incompressível: para escoamentos muito abaixo da velocidade do som, a compressibilidade do fluido pode ser desprezada.
Interno: As paredes internas da tubulação representam uma condição de contorno que impacta, significativamente, na distribuição
de velocidades.
2. Qual é a classificação do escoamento de ar ao redor de um avião de grande porte?
A alternativa "B " está correta.
Viscoso: as tensões viscosas (cisalhantes) tem um papel relevante em aviões, pois além de contribuírem diretamente para a força
de arrasto (resistência) pelo “atrito” ao longo da fuselagem, provocam vórtices (recirculações) na esteira das asas e na cauda.
Turbulento: as elevadas velocidades dos aviões, além da baixa viscosidade do ar, provocam um comportamento turbulento, o que
pode ser facilmente constatado pelo número de Reynolds .(Re = ρV L/μ)
Incompressível: tratando-se de ar e elevadas velocidades, a compressibilidade tem impactos relevantes no escoamento, por isso
deve ser considerada.
Externo: a partir da superfície externa dos aviões, não há limites para interferir na distribuição de velocidades, o que caracteriza
um escoamento externo.
3. Duas placas planas horizontais a uma distância h uma da outra são separadas por um fluido de viscosidade μ e massa
específica ρ. A placa inferior está fixa e a superior se move lateralmente com velocidade V constante. Se o fluido em
questão se trata da água (μ = 10-3 kg/m.s e ρ ≅ 1000kg/m³), V = 0,5m/s e h = 1,0mm, classifique o regime de escoamento
quanto ao nível de influência das tensões viscosas.
A alternativa "E " está correta.
O adimensional que mede a influência das tensões viscosas é o número de Reynolds, calculado por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em se tratando de escoamento interno (entre duas placas), comparando-se com o limite até laminar conhecido para escoamento
em tubulações (Re < 2300), conclui-se que se trata de um escoamento laminar.
4. Em um duto escoa gás sob condições para as quais a velocidade do som é de 500m/s. Qual é o valor máximo da
velocidade para que o escoamento seja considerado incompressível?
A alternativa "D " está correta.
Para ser considerado incompressível, o número de Mach (Ma) deve ser Ma < 0,3. No caso em questão:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
5. Qual é a classificação do escoamento definido pelo campo de velocidade:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A alternativa "B " está correta.
Observando-se o campo de velocidade informado pelo anunciado, verifica-se que
é função de x e y, ou seja, varia ao longo de dois eixos, o que o classifica como 2D. A variável tempo não aparece na expressão
de
(a velocidade não varia no tempo), logo o escoamento é permanente.
6. A figura a seguir representa um trecho de uma tubulação de água onde há um tê.
Re = = = 500
ρV L
 μ
1000⋅0,5⋅ ( 1⋅10−3 )
10−3
Ma = < 0,3 →   V < 0,3 ⋅ c = 0,3 ⋅ 500V
c
→ V < 150 m/s
→
V = xy2  î − x2y ĵ + a k̂
→V
→V
 
Imagem: Gabriel de Carvalho Nascimento
Especifique o que melhor representa um sistema, um volume de controle e uma superfície de controle, respectivamente.
A alternativa "D " está correta.
SISTEMA VERSUS VOLUME DE CONTROLE
O especialista Gabriel de Carvalho Nascimento fala sobre o Sistema versus Volume de Controle.
GABARITO
TEORIA NA PRÁTICA
Desde as primeiras civilizações, ficou evidente a necessidade do fornecimento de água para as aglomerações urbanas. Exemplos
antigos de construções de aquedutos são encontrados desde o século III a.C. em diversas cidades romanas, com quilômetros de
extensão e, em maior parte, subterrâneos.
 
Imagem: Shutterstock.com
A prática comum da engenharia para o dimensionamento de dutovias é considerar uma única velocidade média ao longo da seção
transversal do duto e vazão constante, facilitando o cálculo das grandezas físicas ao longo da linha. Velocidades típicas giram em
torno de 1,5m/s, e os diâmetros usuais para abastecimento vão desde 2” e podem chegar até 2 metros.
Para que seja possível iniciar o equacionamento (que será feito nos próximos módulos), vejamos a classificação do referido
escoamento, de forma que seja considerado o mais simples possível.
RESOLUÇÃO
CLASSIFICAÇÃO DO ESCOAMENTO EM DUTOVIAS
O especialista Gabriel de Carvalho Nascimento fala sobre classificação do escoamento em dutovias.
VERIFICANDO O APRENDIZADO
1. SEJA O ESCOAMENTO DE ÁGUA NO INTERIOR DE UMA TUBULAÇÃO CUJO CAMPO DE
VELOCIDADES É DADO POR , EM QUE
É UMA CONSTANTE,
u(r)= K(R2 − r2)
K
R
É O RAIO DA TUBULAÇÃO E
É A POSIÇÃO MEDIDA A PARTIR DO EIXO (CENTRO). SE A VELOCIDADE MÉDIA É DE 0,01M/S E O
RAIO É DE 1MM, QUAL É A CLASSIFICAÇÃO DESSE ESCOAMENTO?
A) Permanente, 2D, viscoso, turbulento.
B) Permanente, 1D, viscoso, laminar.
C) Transiente, 2D, invíscido, laminar.
D) Permanente, 1D, invíscido, turbulento.
E) Permanente, 1D, viscoso, turbulento.
2. CLASSIFIQUE O ESCOAMENTO DECORRENTE DO CHUTE FORTE APLICADO EM UMA BOLA DE
FUTEBOL DE CAMPO EM COBRANÇA DE FALTA DIRETA PARA O GOL.
A) 3D, transiente, viscoso, turbulento, incompressível.
B) 1D, permanente, viscoso, laminar, incompressível.
C) 3D, transiente, invíscido, turbulento, compressível.
D) 2D, transiente, invíscido, laminar, incompressível.
E) 2D, permanente, viscoso, turbulento, compressível.
GABARITO
1. Seja o escoamento de água no interior de uma tubulação cujo campo de velocidades é dado por ,
em que
é uma constante,
é o raio da tubulação e
é a posição medida a partir do eixo (centro). Se a velocidade média é de 0,01m/s e o raio é de 1mm, qual é a classificação
desse escoamento?
A alternativa "B " está correta.
 
Para melhor visualização, podemos fazer um esboço do perfil de velocidades com base na expressão .
r
u(r)= K(R2 − r2)
K
R
r
u(r)= K(R2 − r2)
 
Imagem:Gabriel de Carvalho Nascimento
Tanto pela expressão quanto pela imagem, percebemos que se trata de um escoamento 1D, pois só varia ao longo do raio.
Como não há a variável tempo do campo de velocidades, trata-se de regime permanente (não varia no tempo).
Calculando-se o número de Reynolds:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
O que indica um escoamento laminar, portanto viscoso.
2. Classifique o escoamento decorrente do chute forte aplicado em uma bola de futebol de campo em cobrança de falta
direta para o gol.
A alternativa "A " está correta.
 
Numa rápida pesquisa na internet, obtemos que o diâmetro da bola de futebol é de, aproximadamente,
. A velocidade de um chute forte, por sua vez, . A massa específica e viscosidade do ar, nas CNPT são 
 e , respectivamente. Então:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Trata-se de um escoamento turbulento. Isso significa que as tensões cisalhantes são relativamente baixas. Porém, para termos
certeza de que elas podem ser desprezadas, devemos avaliar se há a formação de vórtices. Para isso, veja a figura a seguir,
resultado de teste com bola em um túnel de vento.
Re = = = 100
ρVD
μ
1000⋅0,01⋅10−3
10−3
D = 20cm
V = 100 ≅28m/skm
h
ρ =  1, 2kg/m³ μ = 1, 8 ⋅ 10−5kg/m. s
Re = = = 3,7 ⋅ 105
ρVD
μ
1,2⋅28⋅0,2
1,8⋅10−5
 
Imagem: NASA's Ames Research Center/Site Nasa.gov/Nasa turns world cup into lesson in aerodynamics
Observe que há sim formação de vórtices, que são causados, indiretamente, por ação das tensões cisalhantes (viscosas ou
“atrito”), dessa maneira elas não podem ser desprezadas nesse tipo de escoamento, sendo classificado como viscoso. 
Quanto à compressibilidade, devemos avaliar o número de Mach dividindo-se a velocidade da bola pela velocidade do som no ar:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Como , o escoamento pode ser considerado incompressível.
O escoamento ao redor da bola (esfera) varia nas três direções (tridimensional) e no tempo (transiente).
MÓDULO 2
 Aplicar os conceitos de vazão
ANÁLISE DE ESCOAMENTO COM VOLUME DE CONTROLE
Ma = = = 0,082Vc
28
340
Ma < 0,3
O especialista Gabriel de Carvalho Nascimento fala sobre análise de escoamento com volume de controle.
INTRODUÇÃO
Um dos métodos mais práticos para resolver problemas de fluidodinâmica, quando possível, é a solução em volume de controle
(VC). Para isso, primeiramente, são listados os princípios da mecânica dos fluidos, baseados em leis da Física e, posteriormente,
adaptadas para um VC. Com esse método, problemas como o cálculo da força resultante de um jato atingindo uma placa podem
ser resolvidos em poucas linhas.
VAZÃO VOLUMÉTRICA E VAZÃO MÁSSICA
Conforme aprendemos no módulo 1, o tipo de domínio de análise mais apropriado para o estudo de fluidos é o volume de controle
(VC). O VC é delimitado por uma superfície de controle (SC) ao longo da qual pode haver entrada ou saída de fluido. Logo, é
fundamental sabermos quantificar o fluido que passa por essas aberturas.
Essa quantificação é feita através da vazão definida pela quantidade de fluido que atravessa uma superfície S ao longo do tempo.
 
Imagem: Gabriel de Carvalho Nascimento
 Vazão em uma superfície S
VAZÃO VOLUMÉTRICA,
:
É a quantidade de volume por tempo que atravessa
Q
S
, ou seja,
, calculada pela integral
. Considerando-se uma velocidade média (único valor constante)
e perpendicular à superfície, essa integral é simplificada para
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
No S.I. (Sistema Internacional de Unidades ) , a vazão volumétrica é medida em m³/s, porém o mais usual para tubulações é L/s
ou m³/h.
VAZÃO MÁSSICA, 
É a quantidade de volume por tempo que atravessa
, ou seja,
. Como
, basta multiplicar a expressão anterior por
:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
No S.I., a unidade adotada para a vazão mássica é kg/s.
 SAIBA MAIS
Vazão volumétrica, ou simplesmente vazão, é a quantificação mais utilizada para fluidos incompressíveis, ou seja, líquidos. Em se
tratando de gases, como o volume sofre grande variação com as condições de pressão e temperatura, é mais comum medir o
escoamento pela vazão mássica.
EXERCÍCIO RESOLVIDO 3
Qual é a velocidade média de escoamento numa tubulação de 4” onde escoam 12 L/s?
RESOLUÇÃO
Q = dV /dt
Q =   ∫
S
→V . d →A
Vm
Q =  VmA
ṁ
S
Q = dm/dt
dm = ρ dV
ρ
ṁ =  ρVmA
A vazão pode ser volumétrica ou mássica. Pela unidade informada no enunciado (L/s), vemos que se trata de Q (vazão
volumétrica), calculada por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A área interna da tubulação (superfície por onde há o escoamento) será:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A vazão, no S.I. é:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Então:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
CONVERSÃO DAS LEIS BÁSICAS DE SISTEMA PARA
VOLUME DE CONTROLE
A seguir, faremos a conversão das leis básicas (Módulo 1), a partir de um sistema, para um volume de controle (VC).
Matematicamente, isso pode ser feito pelo Teorema do Transporte de Reynolds, que equaciona uma grandeza
qualquer (ex.: massa) por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Na qual
é definido como a quantidade da grandeza
por unidade de massa, ou seja,
.
Apesar de parecer uma equação complexa, ela estabelece algo muito simples e intuitivo: a variação da grandeza N do sistema é
igual ao que varia internamente no VC somado ao que é trocado ao longo de SC (superfície de controle).
Q = VmA  →    Vm =
Q
A
A = = = 0,0081 m²πD
2
4
π ( 4⋅0,0254 ) 2
4
Q = 12L/s = m3/s = 0,012  m3/s12
1000
Vm = = = 1,5  m/s
Q
A
0,012
0,0081
N
( )
sistema
= ∫
VC
η ρ dV + ∫
SC
η ρ 
→
V ⋅ d
→
AdN
dt
d
dt
η
N
η = dN/dm
Uma primeira simplificação que adotaremos daqui em diante, é considerar apenas escoamento permanente. De acordo com o que
vimos (Classificação dos escoamentos) isso significa que as grandezas físicas não variam ao longo do tempo, ou seja, a derivada
temporal é igual a zero, o que ocorre na primeira parcela do lado direito da equação.
A outra simplificação é considerar aberturas (entrada ou saída de fluido) uniformes ou com valores médios, o que significa que
,
e
não variam ao longo de SC, consequentemente podem ser retiradas da integral.
A simplificação do lado direito da equação anterior se resumirá a
, que é o somatório de cada abertura i. Observando a definição de vazão mássica
, teremos:
(1)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A vazão mássica vem do produto escalar entre a velocidade
e o vetor normal à área
. Desse modo, se ambos tiverem o mesmo sentido (saída de fluido pela superfície), o produto será positivo, mas se tiverem sentido
contrário (entrada de fluido), será negativo. Veja:
η
ρ
→V
∑ (η ρ VA)i
ṁ
( )
sistema
= ∑ (±η ṁ)
i
            { saída : +
entrada : −
dN
dt
ṁi = ρiViAi
→V
d →A
 
Imagem: Gabriel de Carvalho Nascimento
 Vazão como produto escalar entre velocidade e área
 ATENÇÃO
Se VC está em movimento, a velocidade utilizada no cálculo de
ou
deve ser a relativa a SC, ou seja,
.
Isso se faz necessário para considerar a quantidade de fluido que, efetivamente, entra ou sai no VC.
EQUAÇÃO DA CONTINUIDADE
Substituindo a grandeza genérica
da Equação (1) pela massa, em que , teremos:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
De acordo com o princípio da continuidade (módulo 1), a massa do sistema é constante, logo, e
ṁ
Q
→V r = →V − →V SC
N
η = dN/dm = dm/dm = 1
( )
sistema
= ∑± ṁidmdt
(dm/dt)sistema = 0
(2)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Essa é a equação da continuidade,na versão válida para escoamento permanente em um VC com aberturas uniformes.
EXERCÍCIO RESOLVIDO 4
Numa mangueira de 20mm de diâmetro, onde escoa água a 1,0m/s, se sua saída é parcialmente bloqueada, reduzindo a área
interna pela metade, qual será a velocidade do jato?
 
Imagem: Gabriel de Carvalho Nascimento
RESOLUÇÃO
O primeiro passo é definir qual será o volume de controle (VC). Devemos optar por uma superfície de controle (SC) cujas
aberturas envolvem dados conhecidos ou que desejamos calcular. Então, é intuitivo optar pela região delimitada na figura a seguir.
 
Imagem: Gabriel de Carvalho Nascimento
 Figura 2: Formação de uma treliça simples a partir do elemento básico ABC / Fonte: Autor
Aplicando o Princípio da Continuidade, (equação 2), considerando a entrada 1 (negativo) e saída 2 (positivo):
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Como o fluido é incompressível (água), a massa específica é constante
∑± ṁi = 0       {
saída : +
entrada : −
ṁi = ρiAiVi = ρiQi
− ṁ1 + ṁ2 = 0      →        − ρ1V1A1 + ρ1V2A2 = 0
:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Como a abertura bloqueada (2) tem a metade da área, :
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Esse exemplo nos mostra que, se reduzirmos a área de saída (2), haverá um aumento da velocidade, o que nós já aplicamos,
intuitivamente, quando colocamos o dedo na saída da mangueira com o objetivo de obter um jato com maior alcance.
EQUAÇÃO DA QUANTIDADE DE MOVIMENTO LINEAR
(MOMENTUM)
Seguindo para o próximo princípio ou lei básica da mecânica dos fluidos, vamos agora substituir a grandeza genérica
da Equação (1) pela quantidade de movimento linear (momentum)
, sendo :
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Lembrando que, de acordo com a 2ª Lei de Newton, :
(3)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Essa é a equação da quantidade de movimento linear que permite calcular a força atuando num VC.
(ρ1 = ρ2)
V2 = V1
A1
A2
A1/A2 = 2
V2 = 2 ⋅ 1 = 2, 0m/s
N
P =   ∫ →V dm
η = dN/dm = d
→
P /dm =
→
V
( )
sistema
= ∑(±
→
V  ṁ)
i
d
→
P
dt
( )
sistema
=
→
Fd
→
P
dt
→
F = ∑(±
→
V  ṁ)
i
      { saída : +
entrada : −
ṁi = ρiViAi = ρiQi
EXERCÍCIO RESOLVIDO 5
Calcule a força necessária para manter imóvel uma placa onde incide, perpendicularmente, um jato d’água com área transversal
de 2,0cm² a 10m/s.
 
Imagem: Gabriel de Carvalho Nascimento
RESOLUÇÃO
Primeiramente, devemos delimitar o VC escolhido para solucionar o problema. Devemos escolher uma SC que tenha aberturas
que envolvam dados conhecidos ou que desejamos calcular.
 
Imagem: Gabriel de Carvalho Nascimento
Em seguida, aplicaremos a equação que permite obter a força aplicada num VC (equação 3). Por se tratar de uma equação
vetorial, vamos separar a análise em eixos (x, y e z). Observa-se que o único eixo de interesse é aquele orientado com a direção
do jato. Nessa direção, há apenas uma abertura (entrada do jato). Portanto:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A área do jato é:
Fx = −Vj ṁj = −Vj(ρVjAj)= −ρV 2j Aj
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Então:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
O sinal negativo indica que a força é contrária ao sentido do jato. É importante ressaltar que a força calculada pela equação 3 é a
aplicada no VC, ou seja, no fluido. Por isso, a força que o fluido exerce na placa será a reação (sentido contrário) da calculada.
MÃO NA MASSA
1. O MANUAL DO FILTRO DE ÁGUA DA UMA RESIDÊNCIA ESPECÍFICA QUE A VAZÃO DE SERVIÇO
DEVE ESTAR ENTRE 45 E 55 L/H. PARA ENCHER UMA GARRAFA DE 2L, FORAM NECESSÁRIOS
2MIN E 24S. QUAL É A VAZÃO DO FILTRO?
A) 0,01388 L/h
B) 50 L/h
C) 50 L/s
D) 60 L/h
E) 40 L/s
2. EM UM ÓLEO DUTO COM 20” DE DIÂMETRO INTERNO, SÃO ESCOADOS 120.000 BBD (BARRIS
POR DIA) DE PETRÓLEO. QUAL A VELOCIDADE MÉDIA DE ESCOAMENTO, EM M/S, SE 
?
A) 1,09m/s
B) 0,54m/s
C) 0,27m/s
D) 0,22m/s
E) 4,12m/s
3. QUAL É A VAZÃO MÁSSICA EM UM GASODUTO DE 12” QUE ESCOA UM GÁS COM MASSA
ESPECÍFICA NUMA VELOCIDADE MÉDIA DE 6M/S?
A) 4,8kg/s
B) 0,437kg/s
C) 0,350kg/s
Aj = 2 cm
2 = 2 ⋅ (10−2)
2
 m2 = 0,0002 m²
F = −1000 ⋅ (10)2 ⋅(0,0002)= −20 N
1barril ≅159L
ρ = 0, 8 kg/m³
D) 57,6kg/s
E) 1,15kg/s
4. PARA MOLHAR AS PLANTAS DE UM JARDIM, É COMUM TAPARMOS A SAÍDA D’ÁGUA,
PARCIALMENTE, COM O DEDO. ESSE PROCEDIMENTO REDUZ A ÁREA DE SAÍDA E, DE ACORDO
COM A EQUAÇÃO DA CONTINUIDADE, AUMENTA A VELOCIDADE, ALCANÇANDO DISTÂNCIAS
MAIORES. SE A VELOCIDADE NO INTERIOR DA MANGUEIRA É DE 1,5M/S E 80% DA ÁREA É
OBSTRUÍDA COM O DEDO, QUAL A VELOCIDADE DO JATO D’ÁGUA?
A) 1,9m/s
B) 1,5m/s
C) 7,5m/s
D) 1,2m/s
E) 3,0m/s
5. A CAIXA D’ÁGUA DE UMA RESIDÊNCIA É ENCHIDA POR BOMBEAMENTO A 2.000L/H, QUANDO A
ÁGUA ATINGE A ALTURA MÁXIMA DE SERVIÇO E PASSA A HAVER SAÍDA PELO EXTRAVASOR,
COMUMENTE CHAMADO DE “LADRÃO”. SE O CONSUMO TOTAL DE ÁGUA NESSE INSTANTE É DE
0,30L/S, QUAL SERÁ A VAZÃO NO “LADRÃO” EM M³/H?
A) 0,92m³/s
B) 1,08m³/s
C) 2,00m³/s
D) 920m³/s
E) 0,20m³/s
6. UM JATO DE ÁGUA HORIZONTAL A 20°C COM VELOCIDADE E ÁREA DE SEÇÃO
TRANSVERSAL IGUAL A 1,0CM² ATINGE, PERPENDICULARMENTE, A PLACA REPRESENTADA
NA FIGURA A SEGUIR, DIVIDINDO-SE EM DOIS JATOS VERTICAIS.
Vj = 5, 0m/s
Aj
 
IMAGEM: GABRIEL DE CARVALHO NASCIMENTO
CALCULE O MÓDULO DA FORÇA REQUERIDA PARA MANTER A PLACA IMÓVEL.
A) 0,5N
B) 2,5N
C) 25N
D) 5N
E) 10N
GABARITO
1. O manual do filtro de água da uma residência específica que a vazão de serviço deve estar entre 45 e 55 L/h. Para
encher uma garrafa de 2L, foram necessários 2min e 24s. Qual é a vazão do filtro?
A alternativa "B " está correta.
A definição de vazão é a razão entre o volume escoado pelo intervalo de tempo, que neste caso foi .
Então:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Obs.: Aqui, é utilizado para distinguir volume de velocidade.
2. Em um óleo duto com 20” de diâmetro interno, são escoados 120.000 bbd (barris por dia) de petróleo. Qual a
velocidade média de escoamento, em m/s, se ?
A alternativa "A " está correta.
Primeiramente, é conveniente passar as medidas fornecidas para o S.I.:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A velocidade média é obtida através da vazão, pela relação . Sendo :
Δt = 2min24s = 144s
Q = = = = = 50 L/h 
V
Δt
2 L
144 s
2
144
L
s
2
144
3600 L
3600 s
h
V
1barril ≅159L
D = 20 "= 20 ⋅ 0, 0254m = 0, 508m
Q = 120.000 = 120.000 = 0,221 m3/sbarril
dia
0,159 L
24⋅60⋅60 s
Q = V ⋅ A A = πD2/4
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
3. Qual é a vazão mássica em um gasoduto de 12” que escoa um gás com massa específica numa
velocidade média de 6m/s?
A alternativa "C " está correta.
Vazão mássica é definida por , sendo A a área da seção reta de escoamento:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Logo:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
4. Para molhar as plantas de um jardim, é comum taparmos a saída d’água, parcialmente, com o dedo. Esse procedimento
reduz a área de saída e, de acordo com a equação da continuidade, aumenta a velocidade, alcançando distâncias
maiores. Se a velocidade no interior da mangueira é de 1,5m/s e 80% da área é obstruída com o dedo, qual a velocidade
do jato d’água?
A alternativa "C " está correta.
De acordo com a equação da continuidade para um problema permanente (a vazão não varia):
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Lembrando-se da definição de vazão mássica e denotando-se a entrada como abertura 1 e a saída de 2:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Por se tratar de um fluido incompressível (água),a massa específica é constante e :
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Se houve obstrução de 80% da área, restaram apenas 20% . Então:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
5. A caixa d’água de uma residência é enchida por bombeamento a 2.000L/h, quando a água atinge a altura máxima de
serviço e passa a haver saída pelo extravasor, comumente chamado de “ladrão”. Se o consumo total de água nesse
instante é de 0,30L/s, qual será a vazão no “ladrão” em m³/h?
A alternativa "A " está correta.
SOLUÇÃO DE PROBLEMAS COM A EQUAÇÃO DA
CONTINUIDADE
V = = = = 1,09 m/s
Q
A
4Q
πD2
4⋅0,221
π⋅ ( 0,508 )
2
ρ = 0, 8 kg/m³
ṁ = ρVA
A = = = 0,0729 m²πD
2
4
π ( 12⋅0,0254 )
2
4
ṁ = 0,8 ⋅ 6 ⋅ 0,0729 = 0,350 kg/s
ṁentrada = ṁsaída
ṁi = ρiViAi
ρ1V1A1 = ρ2V2A2
ρ1 = ρ2
V1A1 = V2A2         →               V2 = V1
A1
A2
(A2 = 0, 2 ⋅ A1)
V2 = 1,5 = 7,5 m/s
A1
0,2⋅A1
O especialista Gabriel de Carvalho Nascimento fala sobre solução de problemas com a equação da continuidade.
6. Um jato de água horizontal a 20°C com velocidade e área de seção transversal igual a 1,0cm² atinge,
perpendicularmente, a placa representada na figura a seguir, dividindo-se em dois jatos verticais.
 
Imagem: Gabriel de Carvalho Nascimento
Calcule o módulo da força requerida para manter a placa imóvel.
A alternativa "B " está correta.
O primeiro passo é definir a superfície de controle (SC) e assim o volume de controle (VC), que deve conter as aberturas ao longo
das quais são conhecidas as vazões e a superfície em que a força é aplicada. Dessa maneira, é natural escolher uma SC
semelhante à da figura a seguir.
 
Imagem: Gabriel de Carvalho Nascimento
Vj = 5, 0m/s Aj
A equação integral do momentum na direção x se reduz a:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Na qual as parcelas correspondem a cada i-ésima abertura, somada para saída e subtraída para entrada.
A única abertura que possui velocidade na direção
é a da entrada, em que a velocidade é
e área
. Sendo assim:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
O sinal negativo indica que o sentido da força é para esquerda, conforme esperado.
GABARITO
TEORIA NA PRÁTICA
As estações de tratamento de esgoto (ETEs) são de grande importância, principalmente em áreas urbanas, pois reduzem o
impacto ambiental causado pela concentração de habitantes. Nessas instalações, processos físicos, químicos e biológicos
removem a carga de poluentes do esgoto, reestabelecendo um nível adequado para ser devolvido ao ambiente (ex.: rios, lagoas e
mares). Em uma ETE, normalmente, há diversos tanques, utilizados em etapas como decantação, aeração e filtração. Para que o
tratamento seja adequado, é importante controlar o volume e, como resultado, a vazão de enchimento de cada tanque.
 
Foto: Shutterstock.com
Fx = ∑
N
i=1 ± u ρViAi
x(u)
Vj
Aj
Fx = −VjρVjAj = −ρV 2j Aj
→     Fx = −1000 ⋅ 5
2 ⋅(1 ⋅ 10−4)= −2,5 N
Suponha uma estação de tratamento de esgotos (ETE) que receba efluentes no momento de pico com a vazão total de 140L/s.
Após a chegada em um barrilete, essa vazão é distribuída, através de um barrilete, para quatro tanques.
Apenas o medidor do tanque 1 está funcionando, que marca uma vazão de 72m³/h.
No tanque 2, foi montado um dispositivo improvisado, com um tubo horizontal de
e uma régua abaixo de sua extremidade
(figura seguinte), que mede a distância alcançada pelo jato.
 
Imagem: Gabriel de Carvalho Nascimento
A velocidade pode ser obtida com um simples cálculo cinemático, considerando L = 90cm. 
No tanque 3, que tem uma área de 100m², um medidor do nível d’água mostra que houve um aumento de 30cm em 10min.
Assumindo regime permanente, calcule qual é a vazão que chega no tanque 4.
RESOLUÇÃO
O PRINCÍPIO DA CONSERVAÇÃO DA MASSA NA PRÁTICA
O especialista Gabriel de Carvalho Nascimento fala sobre o princípio da conservação da massa na prática
VERIFICANDO O APRENDIZADO
Di = 6 "
h = 1m
1. UM TRECHO DE TUBULAÇÃO, ONDE ESCOA ÁGUA E HÁ REDUÇÃO DE DIÂMETRO DE 100MM
PARA 50MM, É REPRESENTADO NA FIGURA.
 
IMAGEM: GABRIEL DE CARVALHO NASCIMENTO
SE A VELOCIDADE NA SEÇÃO 1 É 0,50M/S, QUAL É O VALOR DA VAZÃO NA SEÇÃO 2, EM L/S ?
A) 3,9
B) 2,0
C) 0,12
D) 3,9.10-3
E) 16
2. DURANTE A INSPEÇÃO DE UMA REDE DE ÁGUA FRIA UTILIZADA PARA REFRIGERAÇÃO NUM
SHOPPING, FOI VERIFICADO QUE HAVIA UM VAZAMENTO NO TÊ ILUSTRADO NA FIGURA. PORÉM,
O LOCAL ERA DE DIFÍCIL ACESSO, IMPOSSIBILITANDO UMA MEDIÇÃO DIRETA DESSA VAZÃO.
 
IMAGEM: GABRIEL DE CARVALHO NASCIMENTO
ANALISANDO AS INDICAÇÕES DE DIFERENTES TIPOS DE MEDIDORES, FORAM OBTIDOS OS
VALORES REPRESENTADOS NA FIGURA. QUANTO ESTÁ VAZANDO, EM L/S?
A) 7,85 L/s
B) 0,00 L/s
C) 8,39 L/s
D) 1,54 L/s
E) 0,54 L/s
GABARITO
1. Um trecho de tubulação, onde escoa água e há redução de diâmetro de 100mm para 50mm, é representado na figura.
 
Imagem: Gabriel de Carvalho Nascimento
Se a velocidade na seção 1 é 0,50m/s, qual é o valor da vazão na seção 2, em L/s ?
A alternativa "A " está correta.
 
Tratando-se de escoamento incompressível (
constante), a equação da continuidade pode ser simplificada para:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Na qual a parcela deve ser somada (+) em saídas e subtraída (-) em entradas.
Definindo-se a SC da figura, obtém-se um volume de controle (VC) com uma entrada (1) e uma saída (2) de fluido.
 
Imagem: Gabriel de Carvalho Nascimento
Assim, a aplicação da equação da continuidade será:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
O produto entre a velocidade média e a área da seção é igual à vazão volumétrica
, então
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
2. Durante a inspeção de uma rede de água fria utilizada para refrigeração num shopping, foi verificado que havia um
vazamento no tê ilustrado na figura. Porém, o local era de difícil acesso, impossibilitando uma medição direta dessa
vazão.
ρ
∑Ni=1 ±Vi ⋅ Ai = 0
Vi ⋅ Ai
−V1A1 + V2A2 = 0         →         V2A2 = V1A1
(V2A2 = Q2)
Q2 = V1A1 = V1( )= 0,5 ⋅[ ]= 3,9 ⋅ 10−3m3/s = 3,9 L/s
πD2
1
4
π ( 0,1 ) 2
4
 
Imagem: Gabriel de Carvalho Nascimento
Analisando as indicações de diferentes tipos de medidores, foram obtidos os valores representados na figura. Quanto
está vazando, em L/s?
A alternativa "E " está correta.
 
De acordo com a equação da continuidade para um problema permanente (as vazões não variam):
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Como entrada, há a abertura 1 e a saída ocorre em 2, 3 e 4. Portanto:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A vazão mássica é calculada por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A escolha de qual das duas relações utilizar (velocidade vezes área ou vazão volumétrica) deve ser feita de acordo com os dados
fornecidos e resultado solicitado. Por isso:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Tratando-se de fluido incompressível (água), a massa específica será constante :
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Antes de substituir os valores na equação anterior, é importante garantir a compatibilidade de unidades. Para isso, a vazão de
entrada será .
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
ṁentrada = ṁsaída
ṁ1 = ṁ2 + ṁ3 + ṁ4
ṁi = ρiViAi = ρiQi
ρ1Q1 = ρ2V2A2 + ṁ3 + ρ4Q4
(ρ1 = ρ2 = ρ4 = ρ)
ρQ1 = ρV2A2 + ṁ3 + ρQ4            →              Q4 = Q1 − V2A2 −
ṁ3
1000
Q1 = 9,4L/s = 0,0094 m
3/s
Q4 = 0,0094 − 1 ⋅[ ]− = 0,00054 = 0,54 L/s
π ( 0,1 ) 2
4
1
1000
m3
s
MÓDULO 3
 Calcular a pressão ao longo de tubulações
ENERGIA AO LONGO DE TUBULAÇÕES
O especialista Gabriel de Carvalho Nascimento fala sobre energia ao longo de tubulações.INTRODUÇÃO
A equação de Bernoulli é uma das mais conhecidas na mecânica dos fluidos. Com ela, é possível explicar e prever diversos
fenômenos de interesse para a Engenharia de maneira prática e intuitiva.
Adicionando-se o efeito da perda de energia, obtém-se uma equação de grande importância para o projeto de tubulações, pois
permite calcular a pressão em qualquer ponto de uma rede.
EQUAÇÃO DE BERNOULLI – INTERPRETAÇÃO MECÂNICA
Para a próxima dedução, vamos considerar escoamento com as seguintes simplificações:
PERMANENTE
(não varia no tempo)
INCOMPRESSÍVEL
(
constante)
INVÍSCIDO
(tensão cisalhante nula)
Seja o escoamento representado pelas linhas de corrente da figura (a), onde atua a gravidade
e o sistema de coordenadas cartesiano tem o eixo
na direção horizontal e
na vertical.
 
Imagem: Gabriel de Carvalho Nascimento
 Partícula de um fluido ideal ao longo de uma linha de corrente
Analisando detalhadamente a partícula da figura (b), vamos definir um outro sistema de coordenadas, com a componente s na
direção do caminho percorrido pela partícula e n na direção normal.
ρ
→g
x
z
Ampliando ainda mais a partícula (figura (c)), podemos representá-la no plano da imagem como um retângulo com dimensões
e
, cujo centro encontra-se na coordenada (s,n).
Definindo-se a pressão na linha de corrente analisada como função da posição s, as pressões nas faces perpendiculares à direção
do caminho são as apresentadas na figura (c). As forças decorrentes da pressão e do peso são as únicas atuantes, tendo em vista
que não há tensão viscosa (fluido ideal – escoamento invíscido). A resultante de pressão na direção s será obtida pelo produto
com as respectivas áreas:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Que, de acordo com a definição de derivada é:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Para obter a soma de todas as forças, resta somar a projeção do peso :
(4)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
De acordo com a 2ª Lei de Newton, essa soma deve ser igual a:
(5)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
ds
dn
∑ dFp = p(s − )dn dy − p(s + )dn dy = −[p(s + )−p(s − )]dn dyds2
ds
2
ds
2
ds
2
= −
dV
ds dn dy = − lim
δs→0
{ }dV
[p( s+ )−p( s− ) ]ds2
ds
2
ds
[p( s+ )−p( s− ) ]δs2
δs
2
δs
∑ dFp = − d V
∂p
∂s
dFg senβ = dm g senβ = d V ρg senβ = d V ρg∂z/∂s
∑ dF = − d V − d V ρ g  ∂p
∂s
∂z
∂s
∑ dF = dm a = d V ρ  dV
dt
A velocidade é função também do espaço, ou seja,
, assim, pela regra da cadeia, a derivada em relação ao tempo será
.
Como estamos assumindo escoamento permanente,
. Além disso, a derivada
corresponde à velocidade
(variação da posição no tempo). Substituindo essas informações na equação 5:
(6)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Igualando as equações 4 e 6:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Integrando-se essa expressão de um ponto 1 a um ponto 2 ao longo de s:
V = V (s, t)
= +
dV
dt
∂V
∂s
∂s
∂t
∂V
∂t
= 0
∂V
∂t
∂s
∂t
V
∑ dF = d V ρ ( V )=∂V
∂s
d V ρ
2
∂ (V 2 )
∂s
− dV − d V ρ g =
∂p
∂s
∂z
∂s
d V ρ
2
∂ (V 2 )
∂s
+ ρg + = 0
∂p
∂s
∂z
∂s
ρ
2
∂ (V 2 )
∂s
∫ p2
p1
ds + ρg ∫ z2
z1
ds + ∫ V2
V1
ds  = 0
∂p
∂s
∂z
∂s
ρ
2
∂ (V 2 )
∂s
(p
2
− p
1
)+ρg(z
2
− z
1
)+ (V 22 − V
2
1 )= 0
ρ
2
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Dividindo-se essa expressão por
e separando os pontos:
(7)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
ESSA É CONHECIDA COMO A EQUAÇÃO DE BERNOULLI, QUE
RELACIONA A ENERGIA (OU CARGA) DO FLUIDO
EM DOIS PONTOS. ELA PODE SER INTERPRETADA COMO A SOMA DE
TRÊS ENERGIAS MECÂNICAS: CARGA DE PRESSÃO, CARGA CINÉTICA E
POTENCIAL GRAVITACIONAL.
Observações sobre a equação de Bernoulli:
É VÁLIDA APENAS PARA ESCOAMENTO PERMANENTE, INCOMPRESSÍVEL
E INVÍSCIDO.
COMO SE TRATA DE ESCOAMENTO INVÍSCIDO (FLUIDO IDEAL), NÃO HÁ
TENSÃO CISALHANTE (“ATRITO”), LOGO, NÃO SÃO CONSIDERADAS
PERDAS DE ENERGIA.
NÃO SÃO CONSIDERADOS EVENTUAIS GANHOS DE ENERGIA, COMO
OCORRE COM BOMBAS.
ρg
+ +  z1 =   + +  z2 
p1
ρg
V 21
2g
p2
ρg
V 22
2g
Hi
NO FORMATO APRESENTADO PELA EQUAÇÃO 7 (HÁ OUTROS NA
LITERATURA), TEM COMO DIMENSÃO O COMPRIMENTO (UNIDADE
METRO, NO S.I.).
FOI DEDUZIDA PARA DOIS PONTOS AO LONGO DE UMA LINHA DE
CORRENTE.
TAMBÉM PODE SER UTILIZADA NUM VOLUME DE CONTROLE COM
APENAS UMA ENTRADA (PONTO 1) E UMA SAÍDA (PONTO 2).
EXERCÍCIO RESOLVIDO 6
Considere o escoamento do ar ao redor de uma asa de avião:
 
Imagem: Gabriel de Carvalho Nascimento
Esse tipo de escoamento pode ser considerado invíscido, exceto na esteira formada após a passagem pelo corpo. Desse modo,
assumindo regime permanente e escoamento incompressível, calcule a pressão no ponto 2, onde ocorre estagnação (velocidade
nula).
RESOLUÇÃO
O escoamento em questão reúne as condições necessárias para validade da equação de Bernoulli (permanente, incompressível e
invíscido).
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Como
,
e
+ +  z1 =   + +  z2
p1
ρg
V 21
2g
p2
ρg
V 22
2g
V1 = V
z1 = z2
:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Portanto, a pressão no ponto 2 será maior que em 1.
Com base no que vimos no exercício anterior, outra interpretação que pode ser dada aos termos da equação de Bernoulli num
ponto
é:
, carga de pressão estática: é que está aplicada na partícula fluida.
, carga de pressão de estagnação: é a que ocorre num ponto mais adiante com estagnação (velocidade nula).
, carga de pressão dinâmica: é a carga somada à estática para obtenção da carga de estagnação.
 SAIBA MAIS
O termo “caga de pressão estática” é questionável, pois ocorre num fluido com escoamento (não é estático!). No entanto, é
comumente utilizado na literatura.
ANÁLISE GEOMÉTRICA DA ENERGIA: LINHA DE ENERGIA,
PIEZOMÉTRICA E TOPOGRÁFICA
A análise geométrica da energia é um método que pode facilitar bastante a análise do escoamento ao longo de tubulações. Para
isso, são definidas:
LE – LINHA DE ENERGIA
Corresponde à altura obtida com a soma de todas as parcelas da equação de Bernoulli (equação 7), ou seja, num ponto
será:
V2 = 0
+ =        →      p2 = p1 +
p1
ρg
V 2
2g
p2
ρg
ρV 2
2
i
pi
ρg
pi +
ρV 2i
2
V 2i
2g
i
(8)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
LP – LINHA PIEZOMÉTRICA
Corresponde à altura obtida com a soma da carga de pressão e potencial (cota topográfica):
(9)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Observe que a diferença entre as duas corresponde à carga cinética,
.
Para aplicar a análise gráfica, vamos considerar o escoamento invíscido (sem “atrito”) que parte de um reservatório com nível
constante numa tubulação que tem seu diâmetro gradualmente reduzido da seção 2 para 3.
 
Imagem: Introdução à mecânica dos fluidos, FOX, R. W.; MCDONALD, A. T.; PRITCHARD, P. J, 2014
 Linha de energia e linha piezométrica em escoamento invíscido
Como o escoamento é invíscido, não há perda de carga, então a LE se mantém constante. No entanto, ao entrar na tubulação
(sair do reservatório), o fluido ganha velocidade
, o que passa a distanciar LP de LE.
Quando um tubo vertical é colocado num furo junto à parede do tubo, ele medirá a carga de pressão, então o nível d’água se
elevará além de
LEi = + + zi 
pi
ρg
V 2
i
2g
LPi = + zi 
pi
ρg
V 2i /2g
V2
zi
(cota no tubo do escoamento), à altura
, totalizando LP (equação 9). Por isso, esse tubo é chamado de piezômetro.
Quando a extremidade inferior do tubo vertical é posicionada no centro do tubo onde há escoamento, ocorrerá a pressão de
estagnação
, que somada à cota
, totalizará LE (equação 8).
Da seção 2 para 3, ocorre uma redução da área interna do duto. De acordo com a equaçãoda continuidade, isso acarreta o
aumento da velocidade. Assim, LP se afastará ainda mais de LE.
EXERCÍCIO RESOLVIDO 7
Antes e após um pequeno trecho com redução gradual de diâmetro, ilustrada na figura, foram instalados piezômetros que
marcaram uma diferença de altura
. Se foi medida uma vazão constante
de água e
”, qual é o diâmetro
?
 
Imagem: Gabriel de Carvalho Nascimento
RESOLUÇÃO
pi/ρg
( + )
pi
ρg
V 2i
2g
zi
Δh = 10, 0cm
Q = 0, 6L/s
D1 = 1
D2
Por se tratar de uma redução gradual e um pequeno trecho de tubulação, podemos considerar escoamento invíscido (sem “atrito”).
Além disso, o fluido é incompressível (água) e escoamento permanente (vazão constante). Essas condições são suficientes para
validade da equação de Bernoulli.
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A soma da carga de pressão com cota topográfica é definida como LP (Linha Piezométrica), cuja altura é medida pelos
piezômetros:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A velocidade
é obtida através da definição da vazão:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Continuando a equação anterior:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Aplicando-se a equação da continuidade entre os pontos 1 e 2:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
PERDA DE CARGA EM TUBULAÇÕES
Consideramos até aqui apenas escoamentos invíscidos, ou seja, sem tensão cisalhante (“atrito”), consequentemente sem perda
de energia. Na análise de tubulações, essa simplificação só é válida para trechos muito curtos e transições (ex.: redução de
diâmetro) graduais. Porém, na maioria dos projetos de tubulações, essa simplificação não é válida e devemos considerar a perda
de energia (carga), que é dividida em dois tipos:
Perda distribuída
Ocorre pelo “atrito” com as paredes do duto ao longo do comprimento.
Perda localizada
Se deve às recirculações e intensificação da turbulência causada pela mudança da direção de fluxo em acessórios como curvas,
tês, válvulas e reduções.
Após o desenvolvimento feito para a equação de Bernoulli, observamos que a carga hidráulica em um ponto
+ +  z1 =   + +  z2
p1
ρg
V 2
1
2g
p2
ρg
V 2
2
2g
LP1 + = LP2 +       →     = +(LP1 − LP2) 
V 21
2g
V 22
2g
V 22
2g
V 21
2g
V1
Q = VA →  V1 = = = = 1,18 m/s
Q
A1
0,6⋅10−3
π ( 1⋅0,0254 ) 2
4
0,6⋅10−3
5,06⋅10−4
V2 = √V 21 + 2g(LP1 − LP2) = √(1,18)
2 + 2 ⋅ 9,8 ⋅ 0,1 = 1,83 m/s
ṁ1 = ṁ2     →        ρV1A1 = ρV2A2       →       A2 = A1
V1
V2
→       =
πD22
4
V1
V2
πD21
4
→     D2 = √ D1 = √ ⋅ 0,0254 ≅20mmV1V2
1,18
1,83
i
do escoamento ao longo de uma linha de corrente é calculada por:
(10)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Para utilizar a mesma formulação em uma tubulação, é necessário considerar
como a velocidade média ao longo da seção
, ao invés da velocidade em determinado ponto. Por conta dessa aproximação, faz-se necessário a inclusão do fator de correção
. Para escoamentos turbulentos, comumente se considera
.
Em relação ao que foi desenvolvido até o tópico anterior, agora precisamos incluir a perda de carga. Portanto, a carga no ponto 1
será igual à carga no ponto 2 mais a perda
:
(11)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Nessa equação, observa-se a importância da perda de carga, pois seu valor é necessário para calcular a pressão no ponto 2. O
engenheiro deve ser capaz de calcular a pressão na tubulação para verificar se está acima do mínimo necessário para operação e
abaixo do máximo admissível pelo material.
Hi = + αi +  zi
pi
γi
V 2i
2g
α : fator de correção  {
escoamento laminar :  α = 2
escoamentos turbulentos : 1,04 < α < 1,11
Vi
i
α
α = 1
hp
H1 = H2 + hp
( + +  z1)=( + +  z2)+hp 
p1
ρg
V 21
2g
p2
ρg
V 22
2g
A maneira mais conhecida de se calcular a perda distribuída é através da fórmula universal da perda de carga (ou de Darcy-
Weisbach):
(12)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Na qual:
: comprimento entre o ponto 1 e 2.
: diâmetro interno da tubulação.
(adimensional): fator de atrito, função de
e
, sendo
(em metros) a rugosidade do material do tubo.
: velocidade média do escoamento.
Em caso de escoamento laminar, , o fator de atrito é dado por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Para escoamentos turbulentos, a equação teórica mais precisa para o cálculo do fator de atrito
é a equação de Colebrook-White:
hp = L
f
D
V 2
2g
L(m)
D(m)
f
Re
ε/D
ε
V (m/s)
Re  < 2300
f = 64
Re
f
= −2,0 log( + )1
√f
ε/D
3,7
2,51
Re√f
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Porém, devido à dificuldade de se utilizá-la, pois
está implícito (dentro e fora do logaritmo), há formulações aproximadas, como a de Swamee-Jain:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
O método mais prático de se obter
, sem fazer muita conta, é pelo diagrama de Moody:
 
Imagem: Gabriel de Carvalho Nascimento
 Diagrama de Moody
A perda de carga localizada, por sua vez, pode ser calculada por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Onde
é uma constante adimensional que depende do tipo de acessório. Em caso de acessórios com redução ou alargamento de
diâmetro, o valor de
deve ser referente ao menor diâmetro (maior
f
f =
0,25
[ log( + ) ]
2ε/D
3,7
5,74
Re0,9
f
hPloc = K
V 2
2g
K
V
V
).
Acessório
Cotovelo de 90° raio curto (joelho) 0,9
Curva de 90° 0,4
Válvula de gaveta aberta 0,2
Entrada na tubulação (saída do reservatório) 0,8
Saída da tubulação (entrada no reservatório) 1
 Atenção! Para visualização completa da tabela utilize a rolagem horizontal
 Exemplos de valores de
para cálculo da perda localizada
EXERCÍCIO RESOLVIDO 8
No ponto A de uma tubulação horizontal de 50mm de diâmetro interno em PVC
, um manômetro registra 5bar de pressão. Quando ocorre escoamento permanente de 4 L/s, qual será a pressão no ponto B,
situado a 122m após o ponto A?
RESOLUÇÃO
As condições de pressão em dois pontos de uma tubulação podem ser relacionadas pela equação 11, que requer a perda de carga
, calculada pela equação 12:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Onde
é o fator de atrito. O número de Reynolds para esse escoamento será:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
K
K
(ε = 0, 04mm)
hP
hP = L
f
D
V 2
2g
f = f (Re, )
ε
D
Re =
ρVD
μ
A velocidade de escoamento é:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Então:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A rugosidade relativa é:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Com os valores de
e
calculados, podemos obter no diagrama de Moody ()
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Substituindo na Fórmula de Darcy-Weisbach (equação 12):
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Agora, a pressão no ponto B pode ser obtida pela equação da energia (equação 11):
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Como
(tubulação horizontal) e
(mesmo diâmetro):
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
ENERGIA FORNECIDA POR BOMBAS E RETIRADA POR
TURBINAS
V = = = 2,0 m/s
Q
A
4⋅10−3
π(50⋅10−3 )
4
Re = = 105
1000⋅2,0⋅ ( 50⋅10−3 )
0,001
= = 0,0008ε
D
0,04
50
Re
ε/D
f ≅0,0215
hP = 122 ⋅ = 11m
0,0215
50⋅10−3
22
2⋅9,8
( + +  zA)=( + +  zB)+hp
pA
ρg
V 2A
2g
pB
ρg
V 2
B
2g
zA = zB
VA = VB
= + hp
pA
ρg
pB
ρg
→    pB = pA − ρghP = 5 ⋅ 100 ⋅ 10
3 − 1000 ⋅ 9,8 ⋅ 11 = 392 kPa ≅4bar
Bombas fornecem energia para o fluido,enquanto turbinas fazem o contrário.
 
Foto: Shutterstock.com
 
Foto: Shutterstock.com
 Bomba d’água (esq.) e turbina hidráulica (dir.)
A energia provida por uma bomba
e retirada por uma turbina
, então podem ser adicionadas na equação 13:
(13)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
hB
hT
( + +  z1)=( + +  z2)+hp − hB + hT
p1
ρg
V 21
2g
p2
ρg
V 22
2g
Observe que
é subtraído, pois os valores de h nessa equação se referem à energia perdida.
Os parâmetros
e
são denominados carga da bomba e turbina, respectivamente. Porém, no dimensionamento desses equipamentos precisamos
especificar suas respectivas potências
e
o que é feito por:
(14)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
para bombas e por:
(15)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
para turbinas. Devem ser levadas em conta as eficiências de ambas,
e
.
EXERCÍCIO RESOLVIDO 9
Uma bomba deve ser dimensionada para recalcar água através de uma tubulação com diâmetro constante, partindo do
reservatório A, no nível do mar e sob pressão atmosférica, até o reservatório B, 25m acima e com pressão manométrica de
10m.c.a. Se a vazão é de 54m³/h, a perda de carga na tubulação é de 4m e a eficiência da bomba é de 70%, qual a potência
necessária em cv?
hB
hB
hT
ẆB
ẆT ,
ẆB =
ρ Qg hB
ηB
ẆT = ηT  ρ Qg hT  
ηB
ηT
RESOLUÇÃO
A equação da energia mais completa que vimos aqui (equação 13) permite calcular a carga de bomba:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Como a tubulação tem diâmetro constante,
. Além disso, não há turbinas, então:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A potência da bomba é obtida pela equação 14:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
MÃO NA MASSA
1. CALCULANDO-SE A CARGA (ENERGIA) DO FLUIDO EM DETERMINADO PONTO I POR 
 CADA UMA DAS PARCELAS REPRESENTA, RESPECTIVAMENTE:
A) Energia potencial, energia piezométrica e energia elástica.
B) Energia potencial, energia cinética e energia gravitacional.
C) Energia de pressão, energia cinética e energia potencial gravitacional.
D) Energia de pressão, energia cinética e energia elástica.
E) Energia total, energia potencial e energia cinética.
2. A FIGURA REPRESENTA O PROBLEMA CLÁSSICO DO RECIPIENTE COM UM FURO NA
PROFUNDIDADE
. CONSIDERANDO-SE QUE NÃO HÁ PERDA DE CARGA, QUAL A EXPRESSÃO QUE FORNECE O
VALOR DA VELOCIDADE DO JATO D’ÁGUA E QUAL O NOME DA EQUAÇÃO QUE PODE SER
UTILIZADA PARA SUA DEDUÇÃO?
( + +  z1)=( + +  z2)+hp − hB + hT
p1
ρg
V 21
2g
p2
ρg
V 22
2g
V1 = V2
hB =( − )+(z2 −  z1)+hp =(10 − 0)+(25)+4 = 39m
p2
ρg
p1
ρg
ẆB = = = 8190 W =  cv ≅11 cv
ρ Qg hB
ηB
1000⋅( ) ⋅9,8⋅3954
3600
0,7
8190
735
hi = + + zi
pi
γ
V 2i
2g
h
 
IMAGEM: GABRIEL DE CARVALHO NASCIMENTO
A) e Navier-Stokes
B) e Reynolds
C) e Pascal
D) e Stevin
E) e Bernoulli
3. UMA DAS FORMAS DE SE REPRESENTAR A EQUAÇÃO DE BERNOULLI É
 ATENÇÃO! PARA VISUALIZAÇÃO COMPLETA DA EQUAÇÃO UTILIZE A ROLAGEM HORIZONTAL
O QUE REPRESENTA CADA UM DOS TERMOS, RESPECTIVAMENTE?
A) Pressão hidrostática, energia potencial e carga cinética.
B) Pressão estática, pressão dinâmica e pressão hidrostática.
C) Pressão total, pressão estática e poro pressão.
D) Pressão hidrostática, pressão estática e pressão de coluna.
E) Pressão dinâmica, pressão total e pressão hidrostática.
4. EM ESCOAMENTOS PRÓXIMOS A SUPERFÍCIES SÓLIDAS, É COMUM HAVER REGIÕES ONDE A
VELOCIDADE É MUITO BAIXA. TEORICAMENTE, HÁ PONTOS LOCALIZADOS NO ENCONTRO DAS
LINHAS E CORRENTE COM A SUPERFÍCIE, CONSEQUENTEMENTE, COM VELOCIDADE NULA,
DENOMINADOS PONTOS DE ESTAGNAÇÃO. A FIGURA S SEGUIR ILUSTRA UM EXEMPLO
CLÁSSICO DESSA SITUAÇÃO. 
 
CONSIDERANDO ESCOAMENTO INVÍSCIDO, INCOMPRESSÍVEL E PERMANENTE, QUAL DAS
ALTERNATIVAS ABAIXO CONTÉM A EXPRESSÃO PARA PRESSÃO MANOMÉTRICA NO PONTO DE
√gh
2√gh
√2patm/ρ
√2gh + 2patm/ρ
√2gh
p1 + ρ + γz1 = p2 + ρ + γz2
V 21
2
V 22
2
ESTAGNAÇÃO DA FIGURA? CONSIDERE QUE, DISTANTE DA ESFERA, A VELOCIDADE É UNIFORME
E COM MÓDULO V E A PRESSÃO É ATMOSFÉRICA.
 
IMAGEM: GABRIEL DE CARVALHO NASCIMENTO
A) 
B) 
C) 
D) 0
E) 
5. NUMA TUBULAÇÃO DE 20M DE COMPRIMENTO E 20MM DE DIÂMETRO INTERNO FEITA DE
FERRO FUNDIDO , ESCOA ÁGUA A 1,5M/S. QUAL A PERDA DE CARGA NESSA
TUBULAÇÃO, EM METROS?
A) 3,8
B) 37
C) 0,2
D) 2,3
E) 1,0
6. NUM TRECHO DE TUBULAÇÃO DE DIÂMETRO CONSTANTE QUE VAI DO PONTO A, NA COTA
123M, AO PONTO B, NA COTA 135M, A PERDA DE CARGA É DE 3,8M. SE A PRESSÃO NO PONTO A É
DE 12KGF/CM², QUAL É A PRESSÃO NO PONTO B, EM KGF/CM²?
A) 102
B) 10,4
C) 9,1
D) 14
ρV 2
2
patm +
ρV 2
2
patm
V 22
2g
(ε = 0, 1mm)
E) 5
GABARITO
1. Calculando-se a carga (energia) do fluido em determinado ponto i por cada uma das parcelas
representa, respectivamente:
A alternativa "C " está correta.
Analisando-se cada uma das parcelas:
 Corresponde à energia que a pressão
confere ao fluido, tendo em vista que energia pode ser associada ao produto entre força (pressão vezes área) e distância
(movimento do fluido).
 Corresponde à energia cinética, que é relacionada à velocidade que o fluido possui.
 Corresponde à energia potencial gravitacional, pois quanto mais alto estiver, mais energia terá.
2. A figura representa o problema clássico do recipiente com um furo na profundidade
. Considerando-se que não há perda de carga, qual a expressão que fornece o valor da velocidade do jato d’água e qual o
nome da equação que pode ser utilizada para sua dedução?
 
Imagem: Gabriel de Carvalho Nascimento
A alternativa "E " está correta.
Como a variação do nível d’água é muito lenta, podemos considerar que o regime de escoamento é permanente. Além disso,
conforme o enunciado, não há perdas e o fluido é incompressível, o que forma as condições necessárias para aplicação da
equação de Bernoulli:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
hi = + + zi
pi
γ
V 2i
2g
pi/γ :
(pi)
V 2i /2g :
zi :
h
+ + z1 = + + z2
p1
γ
V 21
2g
p2
γ
V 22
2g
Essa equação consiste, basicamente, na igualdade entre a energia total num ponto 1 e no ponto 2. Dessa forma, em seguida, é
necessário escolher esses pontos, que devem estar posicionados em locais onde se tenha informações ou se deseje calcular
algum resultado. Sendo assim, são escolhidos os pontos representados na figura:
 
Imagem: Gabriel de Carvalho Nascimento
Ressaltando-se que, no ponto 2, a pressão é a mesma que no ponto 1 (pressão atmosférica) e que a velocidade em 1 é muito
baixa (desprezível):
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
3. Uma das formas de se representar a equação de Bernoulli é
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
O que representa cada um dos termos, respectivamente?
A alternativa "B " está correta.
Essa forma de representação da equação de Bernoulli tem seus termos equivalente à grandeza de pressão (força por área).
Analisando-se cada um dos termos:
– : No desenvolvimento da equação de Bernoulli, esse termo é oriundo da parcela de energia de pressão. Corresponde à
pressão que, efetivamente, seria medida naquele ponto (1 ou 2). É comumente chamado de pressão estática, pois não contempla
a parcela cinética (dinâmica), embora seja contraditório com o fato de o fluido ter velocidade.
– : Corresponde à energia cinética do fluido naquele ponto (1 ou 2). Por isso, é chamada de pressão dinâmica.
– : Corresponde à energia potencial gravitacional. É semelhante à fórmula da pressão hidrostática , em tão recebe o
mesmo nome.
4. Em escoamentos próximos a superfícies sólidas, é comum haver regiões onde a velocidade é muito baixa.
Teoricamente, há pontos localizados no encontro das linhas e corrente com a superfície, consequentemente, com
velocidade nula, denominados pontos de estagnação. A figura s seguir ilustra um exemplo clássico dessa situação.Considerando escoamento invíscido, incompressível e permanente, qual das alternativas abaixo contém a expressão para
+ 0 + z1 = + + z2
patm
γ
patm
γ
V 22
2g
→      = z1 − z2 = h
V 22
2g
→    V2 = √2gh
p1 + ρ + γz1 = p2 + ρ + γz2
V 21
2
V 22
2
pi
ρV 2i /2
γzi (ρgh)
pressão manométrica no ponto de estagnação da figura? Considere que, distante da esfera, a velocidade é uniforme e
com módulo V e a pressão é atmosférica.
 
Imagem: Gabriel de Carvalho Nascimento
A alternativa "A " está correta.
De acordo com o enunciado, o escoamento reúne as condições necessárias para que a equação de Bernoulli seja válida.
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
O próximo passo, é escolher onde estarão os pontos 1 e 2. Para isso, recomenda-se locais onde se tenha informações e onde se
deseje calcular algum resultado. Dessa forma, são definidos os pontos indicados na figura:
 
Imagem: Gabriel de Carvalho Nascimento
Substituindo na equação:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A pressão manométrica
é definida como a pressão absoluta subtraída da pressão ambiente
+ + z1 = + + z2
p1
γ
V 21
2g
p2
γ
V 22
2g
+ + z1 = + 0 +
=z1
z2
patm
γ
V 2
2g
p2
γ
→      p2 = patm +
ρV 2
2
(p2m)
. Então:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
5. Numa tubulação de 20m de comprimento e 20mm de diâmetro interno feita de ferro fundido , escoa água
a 1,5m/s. Qual a perda de carga nessa tubulação, em metros?
A alternativa "C " está correta.
O número de Reynolds para esse escoamento é:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
E a rugosidade relativa é:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Com esses valores, obtemos o fator de atrito através do diagrama de Moody:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Conforme a fórmula universal da perda de carga:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
6. Num trecho de tubulação de diâmetro constante que vai do ponto A, na cota 123m, ao ponto B, na cota 135m, a perda
de carga é de 3,8m. Se a pressão no ponto A é de 12kgf/cm², qual é a pressão no ponto B, em kgf/cm²?
A alternativa "B " está correta.
A INFLUÊNCIA DA PERDA DE CARGA EM TUBULAÇÕES
O especialista Gabriel de Carvalho Nascimento fala sobre a influência da perda de carga em tubulações.
GABARITO
(patm)
p2atm =
ρV 2
2
(ε = 0, 1mm)
Re = = = 30.000
ρVD
μ
1000⋅1,5⋅0,02
0,001
= = 0,005ε
D
0,1
20
f = 0,033
hP = L = 20 = 3,8 m.
f
D
V 2
2g
0,033
0,02
(1,5)
2
2⋅9,8
TEORIA NA PRÁTICA
O tubo de Pitot é um dispositivo utilizado para medição da velocidade de um fluido. Ele é empregado em aviões, para medição da
velocidade do ar, e em embarcações, para velocidade da água.
 
Foto: Shutterstock.com
 
Foto: Shutterstock.com
Apesar de ser relativamente simples e bastante eficiente, a utilização do tubo de Pitot não é totalmente à prova de falhas. Um dos
casos mais conhecidos de falha é o do voo 447 da Air France, que caiu no Oceano Atlântico na noite entre 31 de maio e 1º de
junho de 2009, com 228 pessoas a bordo.
Segundo o relatório do BEA (Bureau d’Enquêtes et d’Analyses), um dos medidores Pitot do avião registrou uma queda de
velocidade de 274 nós (507km/h) para 52 nós (96km/h) em apenas 2 segundos, o que seria fisicamente improvável. Essa
inconsistência, além de divergência entre a medição dos diferentes medidores instalados no avião, levou o piloto automático a se
desativar, retornando o controle para a tripulação. Isso é apontado como a causa do que desencadeou uma série de eventos e, por
fim, a queda do avião.
A hipótese mais provável levantada por todas as investigações, tendo em vista as condições atmosféricas, é que houve um
depósito de cristais de gelo no tubo de Pitot, causando sua obstrução, ocasionando erro de leitura.
Na figura, é feita uma representação simplificada do tubo de Pitot. A velocidade é medida, indiretamente, pela diferença de
pressão
.
 
Imagem: Gabriel de Carvalho Nascimento
Baseando-se na equação de Bernoulli, explique por que a velocidade pode ser obtida através de 
.
Calcule qual era a diferença de pressão correspondente à medição de velocidade de 274 nós e 52 nós, considerando que o
avião voava a uma altitude de 10600m.
RESOLUÇÃO
O TUBO DE PITOT
O especialista Gabriel de Carvalho Nascimento fala sobre o tubo de Pitot
VERIFICANDO O APRENDIZADO
p1 − p2
p1 − p2
1. UMA SEÇÃO ESTRANGULADA NO FLUXO DE UM TUBO, CHAMADA VENTURI, FORMA UMA
REGIÃO DE BAIXA PRESSÃO QUE PODE ASPIRAR FLUIDO DE UM RESERVATÓRIO, CONFORME A
FIGURA. CONSIDERANDO UM ESCOAMENTO SEM PERDAS, DEDUZA UMA EXPRESSÃO PARA
VELOCIDADE V1 SUFICIENTE PARA TRAZER O FLUIDO DO RESERVATÓRIO PARA SEÇÃO
ESTRANGULADA.
 
IMAGEM: GABRIEL DE CARVALHO NASCIMENTO
A) 
B) 
C) 
D) 
E) 
2. UM AGRICULTOR DESEJA INSTALAR UMA PEQUENA CENTRAL HIDRELÉTRICA (PCH) NO RIO
QUE PASSA EM SUA PROPRIEDADE. PARA OBTER UMA MAIOR QUEDA D’ÁGUA, ELE PRECISARÁ
REALIZAR A CAPTAÇÃO POR TUBULAÇÃO NUM PONTO MAIS DISTANTE, O QUE TAMBÉM
INTRODUZIRÁ UMA PERDA DE CARGA. DADOS DO SISTEMA: 
 
VAZÃO MÉDIA DO RIO: 100 L/S.
PERDA DE CARGA NA TUBULAÇÃO: 1,0M.
COTA DO N.A. NA CAPTAÇÃO:
.
√2gh
√2gh
D41
D42
√gh
√2gh(1 − )
D42
D41
√2gh(1 − )
D4
1
D42
z1 = 25m
COTA DO N.A. NA SAÍDA DO SISTEMA:
.
EFICIÊNCIA DA TURBINA:
.
TUBULAÇÃO DE CAPTAÇÃO COM MESMO DIÂMETRO DA SAÍDA.
COM UM DESENVOLVIMENTO ANÁLOGO AO FEITO NO ENUNCIADO DA QUESTÃO ANTERIOR PARA
POTÊNCIA DE BOMBA, A POTÊNCIA DE TURBINA É OBTIDA POR . QUAL É A
POTÊNCIA MÉDIA A SER GERADA?
A) 0,1kW
B) 1,2kW
C) 1,8kW
D) 1.000W
E) 1.200kW
GABARITO
1. Uma seção estrangulada no fluxo de um tubo, chamada Venturi, forma uma região de baixa pressão que pode aspirar
fluido de um reservatório, conforme a figura. Considerando um escoamento sem perdas, deduza uma expressão para
velocidade V1 suficiente para trazer o fluido do reservatório para seção estrangulada.
 
Imagem: Gabriel de Carvalho Nascimento
A alternativa "E " está correta.
z2 = 22m
η = 60
ẆT = η ρ Q g hT
 
Em se tratando de escoamento sem perdas, podemos utilizar a equação de Bernoulli entre o ponto 1 e 2:
 
Imagem: Gabriel de Carvalho Nascimento
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A pressão em 2 é atmosférica (pressão manométrica nula) enquanto a pressão em 1, na condição estática (iminência do
movimento), deve ser . Além disso, a altura da linha de centro é a mesma , então:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Pela equação da continuidade:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
que substituído na equação anterior:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
2. Um agricultor deseja instalar uma pequena central hidrelétrica (PCH) no rio que passa em sua propriedade. Para obter
uma maior queda d’água, ele precisará realizar a captação por tubulação num ponto mais distante, o que também
introduzirá uma perda de carga. Dados do sistema: 
 
Vazão média do rio: 100 L/s.
Perda de carga na tubulação: 1,0m.
+ + z1 = + + z2
p1
ρg
V 21
2g
p2
ρg
V 22
2g
p1 = pa − ρgh = −ρgh (z1 = z2)
+ =
−ρgh
ρg
V 21
2g
V 22
2g
V 21   −  2gh  = V
2
2
ṁ1 = ṁ2 →   ρV1A1 = ρV2A2  →   V2 = V1
D21
D22
V 21   −  2gh  = (V1 )
2
D21
D22
→ √2gh(1 − )
D41
D42
Cota do N.A. na captação:
.
Cota do N.A. na saída do sistema:
.
Eficiência da turbina:
.
Tubulação de captação com mesmo diâmetro da saída.
Com um desenvolvimento análogo ao feito no enunciado da questão anterior para potência de bomba, a potência de
turbina é obtida por . Qual é a potência média a ser gerada?
A alternativa "B " está correta.
 
Conforme o enunciado da questão anterior, a expressão da energia que considera perda e ganho de energia é:
 Atenção! Para visualização

Outros materiais