Buscar

Teixeira Arns (2008) - Análise de estabilidade de aterro sobre solos moles

Prévia do material em texto

Artigo submetido ao Curso de Engenharia Civil da UNESC 
como requisito parcial para obtenção do Título de Engenheiro Civil 
 
 
UNESC- Universidade do Extremo Sul Catarinense – 2014/01 
 
 
ANÁLISE DE ESTABILIDADE DE ATERRO SOBRE SOLOS MOLES 
ESTUDO DE CASO 
Cassiana de Campos Teixeira (1), Pedro Arns (2). 
 
UNESC – Universidade do Extremo Sul Catarinense 
cassianact@yahoo.com.br (1), p.arns@terra.com.br (2) 
 
 
RESUMO 
 
O presente trabalho apresenta a análise de estabilidade de um aterro sobre solos 
moles, numa região caracterizada por Depósitos Continentais, que contém a 
formação Depósito de “Bajada”, na cidade de Tubarão - SC. Torna-se cada vez mais 
frequente, a utilização de áreas com características geológico-geotécnicas 
desfavorecidas, com presença de grandes camadas de solos moles para 
construção. Devido a essas características, são necessários ensaios para 
conhecimento do solo que receberá a carga, garantindo o dimensionamento correto 
de aterros e fundações. Os ensaios de Standard Penetration Test (SPT) e vane test 
forneceram dados para a obtenção dos parâmetros de resistência ao cisalhamento 
do solo compressível saturado. Verificou-se que os valores de SPT ultrapassaram a 
resistência real do solo mole, adotando-se os dados do ensaio de vane test para o 
dimensionamento do aterro. O objetivo deste trabalho é viabilizar a execução de um 
aterro alcançando um fator de segurança ≥ 1,500, garantindo a integridade física dos 
profissionais, e econômica do patrimônio da indústria que será implantada na área 
objeto de estudo. Para tal, foi necessário encontrar soluções viáveis, pois em 
condições naturais, a ruptura do solo seria iminente, devido à altura crítica do aterro 
ser inferior a cota de inundação do município, estabelecida pela Defesa Civil. 
Após a determinação dos parâmetros geotécnicos, foram obtidas cinco soluções 
para a execução e estabilidade do aterro. Sendo todas viáveis tecnicamente, a 
solução a ser aplicada, foi baseada na viabilidade econômica. Mesmo necessitando 
de uma grande área de desapropriação e bermas de equilíbrio, com volume total de 
55.184,08 m³ de saibro argiloso, esta foi a solução escolhida, por apresentar um 
custo inferior de aproximadamente 545% com relação à solução reforço de aterro 
com geogrelhas, que dispensa desapropriação de área. 
 
Palavras-Chave: Estabilidade de Aterro, SPT, Vane Test, Bermas de Equilíbrio. 
 
1. INTRODUÇÃO 
 
O crescimento econômico do Brasil nos últimos anos, os investimentos aplicados na 
execução das obras da Copa do Mundo de 2014 e das olimpíadas de 2016, 
inflacionaram os valores dos terrenos destinados à construção imobiliária. Essa 
inflação obrigou as construtoras a buscarem áreas, antes não cogitadas, devido as 
suas características geológico-geotécnicas, porém de preços baixos. 
2 
Artigo submetido ao Curso de Engenharia Civil da UNESC 
como requisito parcial para obtenção do Título de Engenheiro Civil 
 
 UNESC- Universidade do Extremo Sul Catarinense – 2014/01 
O município de Tubarão encontra-se localizado no sul de Santa Catarina e na zona 
costeira brasileira. Segundo Higashi (2006), a zona costeira brasileira apresenta 
relevo acidentado e/ou grandes extensões de áreas planas, de características 
geotécnicas variadas, que podem apresentar solos sedimentares, com profundos 
perfis de argilas moles, areias quartzosas e solos residuais, de diferentes rochas de 
origem. 
A área objeto de estudo, deste trabalho, encontra-se na porção do município de 
Tubarão, caracterizada pela ocorrência de solos moles. Logo, a implantação de 
qualquer estrutura (aterros, estradas, edificações, etc.) neste local, deve contemplar 
soluções que garantam a sua estabilidade, quanto à ruptura global e a manutenção 
dos recalques pós-construtivos, dentro de limites aceitáveis. 
No presente trabalho, foram avaliadas soluções técnico-econômicas, que garantam 
a estabilidade, quanto à ruptura global, de um aterro destinado à implantação de 
uma indústria. O mesmo terá sete metros de altura, sendo dois metros acima da cota 
de inundação (5,00 metros), determinada pela Defesa Civil do município. 
 
2. MATERIAIS E MÉTODOS 
 
O embasamento teórico para os temas tratados (tensões em massa de solo, 
resistência ao cisalhamento, estabilidade de taludes, etc.), foi feito através de uma 
ampla pesquisa bibliográfica. Após este, foram realizadas visitas a campo, para 
acompanhamento de investigações geotécnicas diretas (sondagem à percussão e 
mista) e ensaios In Situ (vane test). 
Com base nas informações obtidas por meio das investigações geotécnicas diretas, 
e pela análise do mapa geológico da cidade, foi possível traçar o perfil estratigráfico 
estimado do solo de fundação da área, bem como, determinar os parâmetros 
geotécnicos de resistência ao cisalhamento dos solos que constituem o mesmo. De 
posse da estratigrafia e dos parâmetros geotécnicos do solo de fundação e do solo 
do aterro, obtidos de Santos (2008), realizou-se as análises de estabilidade do 
referido aterro, através do método de Bishop (1955) por meio do software Slide do 
Grupo Rocscience. As análises de estabilidade tiveram por objetivo definir a 
geometria e as soluções geotécnicas que garantissem um fator de segurança 
admissível (FSadm) de 1,500. E por fim, levantaram-se os custos de implantação das 
3 
Artigo submetido ao Curso de Engenharia Civil da UNESC 
como requisito parcial para obtenção do Título de Engenheiro Civil 
 
 UNESC- Universidade do Extremo Sul Catarinense – 2014/01 
soluções estudadas, com o intuito de definir, entre elas, a que é técnica e 
economicamente mais viável. 
 
2.1 LOCALIZAÇÃO DA ÁREA OBJETO DE ESTUDO 
 
A área objeto estudo, destinada à implantação do aterro para a construção de uma 
indústria, mede 200 x 150 m e fica localizada as margens do rio Tubarão, na avenida 
Ageu da Silva Medeiros, Bairro Campestre, no município de Tubarão-SC. 
A tabela 01 apresenta as coordenadas Universal Transversa Mercator (UTM) dos 
vértices da área e a figura 01 a área em estudo. 
 
 Tabela 01: Coordenadas UTM (DATUM SIRGAS, 2000) dos vértices da área. 
Vértices Norte Este 
V-01 6.847.349,5284 699.594,1995 
V-02 6.847.450,4401 699.705,1807 
V-03 6.847.302,4650 699.839,7296 
V-04 6.847.201,5534 699.728,7583 
 Fonte: Autor, 2014. 
 
Figura 01: Imagem da área em estudo 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fonte: Google Maps, 2014. 
 
 
4 
Artigo submetido ao Curso de Engenharia Civil da UNESC 
como requisito parcial para obtenção do Título de Engenheiro Civil 
 
 UNESC- Universidade do Extremo Sul Catarinense – 2014/01 
2.2 GEOLOGIA 
 
2.2.1 Geologia Local 
 
A área estudada encontra-se inserida numa região de baixada, caracterizada por 
Depósitos Continentais de “Bajada”, mais precisamente, Depósitos Fluviodeltáico-
Marinhos. 
Estes depósitos caracterizam-se por apresentar: lamas, areias biodetríticas, areias 
arcosianas, cascalhos e seixos que se apresentam sobrepostos em função de 
episódios distintos de variações do nível relativo do mar. 
 
2.3 INVESTIGAÇÕES GEOTÉCNICAS 
 
A elaboração do projeto de aterro sobre solos moles requer um conhecimento 
adequado da estratigrafia do subsolo e das propriedades geotécnicas dos materiais 
envolvidos. Estas informações são obtidas, normalmente, através de ensaios de 
campo, como no presente caso. Para tanto, foram realizados, na área, dois furos de 
sondagem à percussão, um de sondagem mista (Figura 02) e três (Figura 03) para 
realização de oito ensaios vane test, em diferentes profundidades. 
 
 Figura 02: Sondagem de mista (SM) Figura 03: Ensaio Vane Test 
 
 
 
 
 
 
 
 
 
As tabelas 02 e 03 apresentam as coordenadas UTM dos furos de sondagem e de 
vane test, respectivamente,bem como as cotas do terreno. 
 
 
 Fonte: Autor, 2014. Fonte: Autor, 2014. 
 
5 
Artigo submetido ao Curso de Engenharia Civil da UNESC 
como requisito parcial para obtenção do Título de Engenheiro Civil 
 
 UNESC- Universidade do Extremo Sul Catarinense – 2014/01 
 Tabela 02: Coordenadas UTM (DATUM SIRGAS 2000) dos furos de sondagem. 
Furos Norte 
(m) 
Este 
(m) 
Cota 
(m) 
SP-01 6.847.306,7568, 699.784,1690 4,637 
SM-01 6.847.340,3576 699.738,3507 4,467 
SP-02 6.847.387,4058 699.711,9973 4,559 
 Fonte: TBSA, 2014. 
 
 Tabela 03: Coordenadas UTM (DATUM SIRGAS 2000) dos furos de vane test. 
Furos Norte 
(m) 
Este 
(m) 
Cota 
(m) 
VT-SP-01 6.847.306,1316 699.782,5215 4,582 
VT-SM-01 6.847.386,3021 699.709,6758 4,529 
VT-SP-02 6.847.319,1796 699.716,2336 4,491 
 Fonte: TBSA, 2014. 
 
2.3.1 Caracterização Geotécnica do Solo de Fundação 
 
A análise dos boletins de sondagem demonstra que a estratigrafia do solo de 
fundação, representada na Figura 04, é composta por cinco tipos de solos, que se 
encontram distribuídos ao longo da profundidade da seguinte forma: 
 
Solo 01 (2,81 m de espessura): areia argilosa, marrom acinzentada, fofa; 
Solo 02 (11,19 m de espessura): argila, cinza escura, consistência muito mole; 
Solo 03 (28,27 m de espessura): argila, cinza escura, consistência mole; 
Solo 04 (1,59 m de espessura): areia argilosa, cinza, pouco compacta; 
Solo 05: seixo rolado de diabásio e basalto, cinza (detectado no furo SM-01). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6 
Artigo submetido ao Curso de Engenharia Civil da UNESC 
como requisito parcial para obtenção do Título de Engenheiro Civil 
 
 UNESC- Universidade do Extremo Sul Catarinense – 2014/01 
 
Figura 04: Perfil Estratigráfico Adotado 
Fonte: Autor, 2014. 
 
 
 
7 
Artigo submetido ao Curso de Engenharia Civil da UNESC 
como requisito parcial para obtenção do Título de Engenheiro Civil 
 
 UNESC- Universidade do Extremo Sul Catarinense – 2014/01 
2.4 DETERMINAÇÃO DOS PARÂMETROS GEOTÉCNICOS 
 
Para a realização das análises de estabilidade, quanto à ruptura, do aterro e do solo 
de fundação, é preciso determinar os parâmetros de resistência ao cisalhamento dos 
materiais que constituem os mesmos. Neste caso, esses parâmetros, foram 
determinados através de correlações com o NSPT, de ensaios laboratoriais 
(resistência ao cisalhamento direto) e de campo (vane test). 
O peso específico (γ), o ângulo de atrito (φ) e a coesão não drenada (cu), dos 
materiais que constituem o solo de fundação, foram determinados através de 
correlações com o NSPT. 
Os valores de γ adotados, foram os sugeridos por Godoy (1972), para solos 
arenosos e argilosos. 
Teixeira & Godoy (1996) sugerem, quando não se dispõe de resultados de ensaios 
laboratoriais, que se estime o valor de cu, através da correlação com o NSPT, sendo: 
 
cu= 10. NSPTmédio 
 
Para a determinação do ângulo de atrito dos solos, através do NSPT, adotou-se a 
equação proposta por Teixeira (2006): 
 
φ= √20. NSPTmédio + 15 
 
A Tabela 04 apresenta os parâmetros de resistência ao cisalhamento dos materiais, 
determinados através de correlações com o NSPT. 
 
Tabela 04: Parâmetros geotécnicos segundo ensaio de NSPT. 
Amostras NSPTmédio γ 
(kN/m³) 
c 
(kN/m²) 
φ 
( º ) 
Solo 1 - Areia Argilosa 4 19 0 23,94 
Solo 2 – Argila 2 13 20,00 0 
Solo 3 - Argila 4 15 40,00 0 
Solo 4 - Areia Argilosa 8 19 0 27,65 
Solo 5 - Seixo Rolado Camada de resistência infinita 
Fonte: Autor, 2014. 
 
8 
Artigo submetido ao Curso de Engenharia Civil da UNESC 
como requisito parcial para obtenção do Título de Engenheiro Civil 
 
 UNESC- Universidade do Extremo Sul Catarinense – 2014/01 
A coesão não drenada (cu) dos solos 02 e 03, também foi determinada através de 
ensaios de campo, tipo vane test, realizados pela empresa Solo Sondagem. 
A Tabela 05 traz os valores de cu médio dos solos supracitados. 
 
 Tabela 05: Valores de cu médio dos solos 02 e 03. 
Amostras cu 
(kN/m²) 
Solo 2 - Argila 20,43 
Solo 3 - Argila 41,84 
 Fonte: Autor, 2014. 
 
Observa-se, que os valores cu dos solos 02 e 03, determinados através de 
correlações com o NSPT, ficaram muito próximos aos valores obtidos no ensaio 
vane test. No entanto, em virtude do caráter generalista das correlações, adotou-se 
para os referidos solos, os valores de cu obtidos pelo ensaio vane test. 
O solo a ser utilizado para execução do aterro é um saibro argiloso de coloração 
avermelhada, que ocorre em abundância na região do município de Tubarão – SC. 
Os parâmetros de resistência ao cisalhamento do mesmo foram determinados por 
Santos (2008) e encontram-se na Tabela 06. 
 
 Tabela 06: Parâmetros geotécnicos do aterro 
Amostra γ 
(kN/m³) 
c 
(kN/m²) 
φ 
( º ) 
 Aterro 20 0 33 
 Fonte: Santos, 2008. 
 
A Tabela 07 apresenta os parâmetros de resistência ao cisalhamento dos solos 
envolvidos nas análises de estabilidade. 
 
Tabela 07: Parâmetros de resistência ao cisalhamento dos solos. 
Amostras γ 
(kN/m³) 
cu 
(kN/m²) 
φ 
( º ) 
Aterro 20,0 0,00 33,00 
Solo 1 - Areia Argilosa 19,0 0,00 23,94 
Solo 2 – Argila 13,0 20,43 0,00 
Solo 3 - Argila 15,0 41,84 0,00 
Solo 4 - Areia Argilosa 19,0 0,00 27,65 
Solo 5 - Seixo Rolado Camada de resistência infinita 
Fonte: Autor, 2014. 
9 
Artigo submetido ao Curso de Engenharia Civil da UNESC 
como requisito parcial para obtenção do Título de Engenheiro Civil 
 
 UNESC- Universidade do Extremo Sul Catarinense – 2014/01 
2.5 DEFINIÇÃO DO FATOR DE SEGURANÇA ADMISSÍVEL 
 
A definição do fator de segurança admissível (FSadm), adotado nas análises de 
estabilidade, quanto à ruptura (análise de estabilidade global), levou em 
consideração, o risco de perdas de vidas humanas e perdas econômicas, como 
recomenda a GEORIO (2000). 
A Tabela 08 apresenta os valores de FSadm recomendados pela mesma. 
 
Tabela 08: Fatores de segurança admissíveis recomendados 
 RISCO DE PERDA DE VIDAS HUMANAS 
FSadm 
Desprezível Médio Elevado 
RISCO DE 
PERDAS 
ECONÔMICAS 
Desprezível 1,1 1,2 1,4 
Médio 1,2 1,3 1,4 
Elevado 1,4 1,4 1,5 
Fonte: GEORIO, 2000. 
 
Levando-se em consideração os riscos mencionados, optou-se por um elevado risco 
de perdas de vidas humanas e econômicas, devido ao fato da indústria possuir um 
grande número de profissionais, durante o expediente de trabalho e possuir 
materiais de grande valor econômico. Logo, adotou-se um FSadm de 1,500. 
 
3. RESULTADOS E DISCUSSÕES 
 
3.1 DETERMINAÇÃO DA ALTURA CRÍTICA DO ATERRO 
 
A determinação da altura máxima que o aterro poderá atingir, ou seja, a altura crítica 
(Hc), foi obtida através da seguinte equação: 
 
Hc= (5,14 x cu) / (γaterro x FSadm) 
Onde: 
 
 
Hc= altura crítica (m); 
cu= resistência ao cisalhamento não drenada (kN/m²); 
10 
Artigo submetido ao Curso de Engenharia Civil da UNESC 
como requisito parcial para obtenção do Título de Engenheiro Civil 
 
 UNESC- Universidade do Extremo Sul Catarinense – 2014/01 
γaterro= peso específico do aterro (kN/m³); 
FSadm = fator de segurança admissível. 
 
Logo, 
Hc= (5,14 x 20,43) / (20 x 1,500) 
Hc= 3,50 m 
 
A altura crítica de 3,50 metros é inferior a cota de inundação do local (5,00 metros), 
fato esse, que inviabiliza a execução do mesmo, sem a introdução de medidas 
estabilizadoras, que garantam o FSadm de 1,500. 
 
3.2 SOLUÇÕES VIÁVEIS À CONSTRUÇÃO DO ATERRO 
 
Para as análises de estabilidade global das soluções estudadas, tomou-se como 
base a seção longitudinal da área, representada na Figura 05, e os parâmetros 
geotécnicos dos solosque compõem a mesma, os quais se encontram na Tabela 
07. As referidas análises foram feitas através do método de Bishop (1955). 
 
Figura 05: Seção Longitudinal da Área 
Fonte: Autor, 2014. 
 
3.2.1 Substituição de Solo Mole 
 
Uma das soluções estudadas foi a substituição da camada de areia argilosa, marrom 
acinzentada (Solo 01), por uma camada drenante de areia pura, com φ de 33º, uma 
vez que a espessura da mesma (2,81 metros), é menor que 3,00 metros, como 
recomenda o Departamento Nacional de Infraestrutura (DNIT). 
O fator segurança obtido para essa solução, foi de 0,742 < 1,500, inviabilizando a 
aplicação da mesma. 
11 
Artigo submetido ao Curso de Engenharia Civil da UNESC 
como requisito parcial para obtenção do Título de Engenheiro Civil 
 
 UNESC- Universidade do Extremo Sul Catarinense – 2014/01 
A Figura 06 apresenta a superfície de ruptura, com seu respectivo FS. 
 
Figura 06: Resultado da Análise com Substituição da Camada de Areia Argilosa 
Fonte: Autor, 2014. 
 
3.2.2 Bermas de Equilíbrio 
 
Uma das soluções mais adotadas para estabilizar e/ou viabilizar técnica e 
economicamente a construção de aterros sobre solos moles, são as bermas de 
equilíbrio. Logo, foram realizadas análises de estabilidade para diferentes 
dimensões destas. 
A berma que atendeu o FSadm possui 36,50 metros (para cada lado do aterro) e 
espessura de 2,25 metros. A Figura 07 apresenta a superfície de ruptura, com seu 
respectivo FS. 
 
Figura 07: Resultado da Análise com Bermas de Equilíbrio 
 
 
 
 
 
 
 
 
 
Fonte: Autor, 2014. 
 
3.2.3 Reforço do Aterro com Geogrelhas 
 
O reforço do aterro com geogrelhas surge como uma alternativa de solução, que 
evita a desapropriação da área destinada à implantação das bermas de equilíbrio, 
12 
Artigo submetido ao Curso de Engenharia Civil da UNESC 
como requisito parcial para obtenção do Título de Engenheiro Civil 
 
 UNESC- Universidade do Extremo Sul Catarinense – 2014/01 
que circundam a mesma. Salienta-se, que desapropriação gera negociações 
demoradas, transtornos e aumento de custos. 
A geogrelha adotada na análise de estabilidade, como reforço, é a soldada de 
poliéster, tipo L 500, com resistência última a tração longitudinal de 500 kN/m, 
monoaxial e com deformação no escoamento de 12%. 
Para atender o FSadm, reforçou-se o aterro com quatro linhas de geogrelhas, tipo L 
500, com espaçamento de 0,30 metros, entre elas. Cabe ressaltar que entre o solo 
natural e o colchão drenante, com 0,50 metros de espessura, foi aplicado um 
geotêxtil, para evitar a contaminação do solo do aterro. A Figura 08 apresenta a 
superfície de ruptura, com seu respectivo FS e o posicionamento das geogrelhas. 
 
Figura 08: Resultado da Análise com Geogrelhas 
Fonte: Autor, 2014. 
 
A Tabela 09 traz os comprimentos das linhas de geogrelhas a serem adotadas nas 
seções longitudinais e transversais do aterro. 
 
Tabela 09: Resumo das dimensões das geogrelhas. 
 
 
Linhas 
 
Espaçamento entre 
geogrelhas (m) 
Comprimento 
Longitudinal (m)* 
Comprimento 
Transversal (m)* 
1ª Linha 
 
0,30 
194,00 144,00 
2ª Linha 167,00 117,00 
3ª Linha 162,00 112,00 
4ª Linha 160,00 110,00 
* Extensão: Ao longo da profundidade 
Fonte: Autor, 2014. 
13 
Artigo submetido ao Curso de Engenharia Civil da UNESC 
como requisito parcial para obtenção do Título de Engenheiro Civil 
 
 UNESC- Universidade do Extremo Sul Catarinense – 2014/01 
A geogrelha WG 600 tecida, com resistência última à tração longitudinal de 600 
kN/m, monoaxial e com deformação no escoamento de 12% é equivalente à L 500 e 
pode ser utilizada sem que haja perda das propriedades de resistência do conjunto. 
 
3.2.4 Bermas de Equilíbrio Associadas ao Reforço do Aterro com Geogrelhas 
 
Com o intuito de reduzir o número de linhas de geogrelhas, bem como, reduzir o 
comprimento das mesmas e das bermas de equilíbrio, foram realizadas várias 
análises referentes à utilização conjunta, de bermas e geogrelhas, (L 500), para 
estabilizar e viabilizar a implantação do aterro. Três soluções atenderam o FSadm: 
 
Solução A: Bermas com 28,00 metros (para cada lado do aterro) e espessura de 
2,25 metros, associadas a uma linha de geogrelha, apoiada sobre colchão drenante. 
A Figura 09 apresenta a superfície de ruptura, com seu respectivo FS e o 
posicionamento da geogrelha. 
 
Figura 09: Resultado da Análise com Bermas mais Geogrelhas - 1 Linha. 
Fonte: Autor, 2014. 
 
A Tabela 10 traz o comprimento da linha de geogrelha a ser adotada nas seções 
longitudinais e transversais do aterro. 
 
Tabela 10: Resumo das dimensões das geogrelhas 
Linhas 
 
Espaçamento entre 
geogrelhas (m) 
Comprimento 
Longitudinal (m) 
Comprimento 
Transversal (m) 
1ª Linha 0,30 163,00 113,00 
Fonte: Autor, 2014. 
14 
Artigo submetido ao Curso de Engenharia Civil da UNESC 
como requisito parcial para obtenção do Título de Engenheiro Civil 
 
 UNESC- Universidade do Extremo Sul Catarinense – 2014/01 
Solução B: Bermas com 17,00 metros (para cada lado do aterro), espessura de 
2,25 metros, associadas a duas linhas de geogrelhas, com espaçamento entre elas 
de 0,30 metros, apoiadas sobre colchão drenante. 
A Figura 10 apresenta a superfície de ruptura, com seu respectivo FS e o 
posicionamento das geogrelhas. 
 
Figura 10: Resultado da Análise com Bermas mais Geogrelhas - 2 Linhas. 
Fonte: Autor, 2014. 
 
A Tabela 11 traz os comprimentos das linhas de geogrelhas a serem adotadas nas 
seções longitudinais e transversais do aterro. 
 
Tabela 11: Resumo das dimensões das geogrelhas. 
Fonte: Autor, 2014. 
 
Solução C: Bermas com 9,00 metros (para cada lado do aterro), espessura de 2,25 
metros, associadas a três linhas de geogrelhas, com espaçamento entre elas de 
0,30 metros e apoiadas sobre colchão drenante. 
 A Figura 11 apresenta a superfície de ruptura, com seu respectivo FS e o 
posicionamento das geogrelhas. 
 
Linhas 
 
Espaçamento entre 
geogrelhas (m) 
Comprimento 
Longitudinal (m)* 
Comprimento 
Transversal (m)* 
1ª Linha 0,30 183,00 133,00 
2ª Linha 176,00 126,00 
* Extensão: Ao longo da profundidade 
15 
Artigo submetido ao Curso de Engenharia Civil da UNESC 
como requisito parcial para obtenção do Título de Engenheiro Civil 
 
 UNESC- Universidade do Extremo Sul Catarinense – 2014/01 
Figura 11: Resultado da Análise com Bermas mais Geogrelhas - 3 Linhas. 
Fonte: Autor, 2014. 
 
A Tabela 12 traz os comprimentos das linhas de geogrelhas a serem adotadas nas 
seções longitudinais e transversais do aterro. 
 
Tabela 12: Resumo das dimensões das geogrelhas 
Fonte: Autor, 2014. 
 
3.3 ESTIMATIVA DE CUSTOS DAS SOLUÇÕES VIÁVEIS ENCONTRADAS 
 
As tabelas 13, 14, 15, 16 e 17 apresentam os custos de implantação das soluções 
tecnicamente viáveis encontradas, demonstrando os valores de cada serviço a ser 
executado, assim como o valor dos montantes finais. 
Para a escolha da solução ideal, considera-se então, a viabilidade técnico-
econômica, fazendo-se necessário, a análise de custos frente às soluções 
encontradas para a escolha da mesma. 
A tabela resumo facilita a análise dos valores, bem como sua escolha, e o gráfico 
comparativo de custos, possibilita o entendimento do quão grande pode ser a 
economia ou o gasto, de acordo com a solução adotada. 
 
 
 
 
Linhas 
 
Espaçamento entre 
geogrelhas (m) 
Comprimento 
Longitudinal (m)* 
Comprimento 
Transversal (m)* 
1ª Linha 
0,30 
179,00 129,00 
2ª Linha 179,00 129,00 
3ª Linha 179,00 129,00 
16 
Artigo submetido ao Curso de Engenharia Civil da UNESC 
como requisito parcial para obtenção do Título de Engenheiro Civil 
 
 UNESC- Universidadedo Extremo Sul Catarinense – 2014/01 
Tabela 13: Tabela de Custos 
Item Serviços Unid. Quant.
Preço 
Unitário 
(R$)
Preço Total 
(R$)
1.0 Berma
1.1 Material Posto em Obra - DMT= 10 km m³ 55184,08 38,04 2099202,40
1.2 Compactação de Aterros 100 % PN m³ 55184,08 4,58 252743,09
1.3 Desapropriação m² 30879,00 15,00 463185,00
TOTAL R$ 2.815.130,49 
BERMAS DE EQUILÍBRIO 
 
Fonte: DEINFRA; Maccafferi do Brasil. 
 
Tabela 14: Tabela de Custos 
Item Serviços Unid. Quant.
Preço 
Unitário 
(R$)
Preço Total (R$)
1.0 Reforço de Solo-Geogrelha WG 600
1.1 Fornecimento e Aplicação m² 166438,00 85,50 14230449,00
2.0 Geotêxtil Não Tecido - RT 8 kN/m
2.1 Fornecimento e Aplicação m² 30000,00 3,39 101700,00
3.0 Colchão de Areia Comercial
3.1 Fornecimento de Areia m³ 14936,25 67,75 1011930,94
TOTAL R$ 15.344.079,94 
REFORÇO DO ATERRO COM GEOGRELHAS
 
Fonte: DEINFRA; Maccafferi do Brasil. 
 
Tabela 15: Tabela de Custos 
Item Serviços Unid. Quant.
Preço 
Unitário 
(R$)
Preço Total 
(R$)
1.0 Berma
1.1 Material Posto em Obra - DMT= 10 km m³ 41796,58 38,04 1589941,90
1.2 Compactação de Aterros 100 % PN m³ 41796,58 4,58 191428,34
1.3 Desapropriação m² 22736,00 15,00 341040,00
2.0 Reforço de Solo-Geogrelha WG 600
2.1 Fornecimento e Aplicação m² 36838,00 85,50 3149649,00
3.0 Geotêxtil Não Tecido - RT 8 kN/m
3.1 Fornecimento e Aplicação m² 30000,00 3,39 101700,00
4.0 Colchão de Areia Comercial
4.1 Fornecimento de Areia m³ 14936,25 67,75 1011930,94
TOTAL R$ 6.385.690,18 
BERMAS DE EQUILÍBRIO ASSOCIADAS AO REFORÇO DO ATERRO COM GEOGRELHAS - 1 LINHA
 
Fonte: DEINFRA; Maccafferi do Brasil. 
17 
Artigo submetido ao Curso de Engenharia Civil da UNESC 
como requisito parcial para obtenção do Título de Engenheiro Civil 
 
 UNESC- Universidade do Extremo Sul Catarinense – 2014/01 
 
Tabela 16: Tabela de Custos 
Item Serviços Unid. Quant.
Preço 
Unitário 
(R$)
Preço Total (R$)
1.0 Berma
1.1 Material Posto em Obra - DMT= 10 km m³ 24471,58 38,04 930898,90
1.2 Compactação sde Aterros 100 % PN m³ 24471,58 4,58 112079,84
1.3 Desapropriação m² 13056,00 15,00 195840,00
2.0 Reforço de Solo-Geogrelha WG 600
2.1 Fornecimento e Aplicação m² 93030 85,50 7954065,00
3.0 Geotêxtil Não Tecido - RT 8 kN/m
3.1 Fornecimento e Aplicação m² 30000 3,39 101700,00
4.0 Colchão de Areia Comercial
4.1 Fornecimento de Areia m³ 14936,25 67,75 1011930,94
TOTAL R$ 10.306.514,68 
BERMAS DE EQUILÍBRIO ASSOCIADAS AO REFORÇO DO ATERRO COM GEOGRELHAS - 2 LINHAS
 
Fonte: DEINFRA; Maccafferi do Brasil. 
 
Tabela 17: Tabela de Custos 
Item Serviços Unid. Quant.
Preço 
Unitário 
(R$)
Preço Total (R$)
1.0 Berma
1.1 Material Posto em Obra - DMT= 10 km m³ 11871,58 38,04 451594,90
1.2 Compactação sde Aterros 100 % PN m³ 11871,58 4,58 54371,84
1.3 Desapropriação m² 6624,00 15,00 99360,00
2.0 Reforço de Solo-Geogrelha WG 600
2.1 Fornecimento e Aplicação m² 138546,00 85,50 11845683,00
3.0 Geotêxtil Não Tecido - RT 8 kN/m
3.1 Fornecimento e Aplicação m² 30000,00 3,39 101700,00
4.0 Colchão de Areia Comercial
4.1 Fornecimento de Areia m³ 14936,25 67,75 1011930,94
TOTAL R$ 13.564.640,68 
BERMAS DE EQUILÍBRIO ASSOCIADAS AO REFORÇO DO ATERRO COM GEOGRELHAS - 3 LINHAS
 
Fonte: DEINFRA; Maccafferi do Brasil. 
 
A tabela 18 apresenta o resumo dos custos das soluções. 
 
 
 
 
 
18 
Artigo submetido ao Curso de Engenharia Civil da UNESC 
como requisito parcial para obtenção do Título de Engenheiro Civil 
 
 UNESC- Universidade do Extremo Sul Catarinense – 2014/01 
Tabela 18: Resumo dos Custos 
Soluções Produto Custo Total R$
1 Bermas de Equilíbrio 2.815.130,49
2 Reforço do Aterro com Geogrelhas 15.344.079,94
3
Bermas de Equilíbrio associadas ao reforço do 
aterro com geogrelhas - 1 linha
6.385.690,18
4
Bermas de Equilíbrio associadas ao reforço do 
aterro com geogrelhas - 2 linhas
10.306.514,68
5
Bermas de Equilíbrio associadas ao reforço do 
aterro com geogrelhas - 3 linhas
13.564.640,68
RESUMO DOS CUSTOS (R$)
 
 Fonte: AUTOR, 2014. 
 
 Figura 12: Comparativo de Custos (%) 
 
 
 
 
 
 
 
 
 
 
 Fonte: Autor, 2014. 
 
Analisando os custos de cada solução, conclui-se que mesmo exigindo uma grande 
área de desapropriação, a solução 01 (bermas de equilíbrio com 36,50 metros) é a 
mais viável econômica e tecnicamente. Caso optassem por não gerar 
desapropriação, a solução 02 (reforço do aterro com geogrelhas) seria adotada, 
porém seu custo aumentaria, aproximadamente, 545% em relação à solução 01. 
 
4. CONCLUSÕES 
 
Através do presente estudo, foi possível chegar as seguintes conclusões: 
 
19 
Artigo submetido ao Curso de Engenharia Civil da UNESC 
como requisito parcial para obtenção do Título de Engenheiro Civil 
 
 UNESC- Universidade do Extremo Sul Catarinense – 2014/01 
a) Após a visita a campo e os resultados do ensaio de NSPT, verificou-se a 
presença de uma grande camada de solo mole com baixa resistência ao 
cisalhamento. Devido a isto, foi indispensável o estudo de uma possível ruptura 
global, adotando-se FS ≥ 1,500, frente às grandes chances de perdas humanas e 
materiais, em virtude da instalação de uma empresa na área em questão; 
b) Os valores de coesão não drenada (cu), atingidos através de correlações, 
ficaram muito próximos aos valores do ensaio In Situ, porém verificou-se que os 
valores de NSPT ultrapassaram a resistência real do solo mole, adotando-se então 
as informações do vane Test; 
c) A altura crítica calculada de 3,50 metros foi inferior à cota de inundação do 
município (5,00 metros), o que inviabilizou a execução do aterro sem a introdução de 
medidas estabilizadoras que garantissem o FS adotado; 
d) Foram encontradas cinco soluções tecnicamente viáveis, assim, a solução 
adotada foi baseada na viabilidade econômica, onde bermas de equilíbrio com 36,50 
metros de largura e 2,25 metros de altura, apesar de exigirem grande área de 
desapropriação, mostraram-se compensatórias, devido o custo inferior as demais, 
chegando a uma diferença de aproximadamente 545% com relação à solução de 
reforço do aterro com geogrelhas, que dispensa a compra de área para sua 
implantação. 
Logo, o estudo realizado, mostra que hoje, a solução mais adequada 
economicamente seria a construção de bermas de equilíbrio. 
 
5. REFERÊNCIAS 
 
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Sondagens de simples 
reconhecimento com SPT: NBR 6484. Rio de Janeiro, 2001. 
 
CARDOSO, João Manoel. Projeto Geotécnico de Fundações Profundas em 
Solos Moles-Estudo de caso. Artigo (Graduação em Engenharia Civil) - 
Universidade do Extremo Sul Catarinense. Criciúma. 2013. 
 
CERUTTI, Ricardo. Análise de Estabilidade e Recalques de um Aterro Sobre 
Solo Mole – Estudo de Caso. Artigo (Graduação em Engenharia Civil) - 
Universidade do Extremo Sul Catarinense. Criciúma. 2011. 
 
CINTRA, José Carlos A.; AOKI, Nelson; ALBIERO, José Henrique. Fundações 
Diretas: projeto geotécnico. São Paulo: Oficina de Textos, 2011. 140 p. 
 
20 
Artigo submetido ao Curso de Engenharia Civil da UNESC 
como requisito parcial para obtenção do Título de Engenheiro Civil 
 
 UNESC- Universidade do Extremo Sul Catarinense – 2014/01 
DAS, Braja M., Fundamentos de Engenharia Geotécnica, São Paulo: Thomson, 
2007. 559 p. 
 
GEORIO. Manual Técnico de Encostas. Ancoragens e Grampos. Volume 04, 2ª 
edição, 2000. 
 
HACHICH, WALDEMAR, et al, Fundações Teoria e Prática, São Paulo: Pini 1998. 
751p. 
 
HIGASHI, Rafael Augusto dos Reis. Metodologia de Uso e Ocupação dos Solos 
de Cidades Costeiras Brasileiras através de SIG com base no Comportamento 
Geotécnico e Ambiental. Tese (Graduação em Doutor em Engenharia Civil) – 
Universidade Federal de Santa Catarina. Florianópolis. 2006. 
 
LEMOS, Mayckon Sullivan Amaral. Reforço de subleito com geogrelha-estudode 
casa. Artigo (Graduação em Engenharia Civil) - Universidade do Extremo Sul 
Catarinense. Criciúma. 2013. 
 
LOPES, Francisco; VELLOSO, Dirceu, Fundações, São Paulo: Oficina de Textos 
2004. 226 p. 
 
SANTOS, Nicolas Coelho. Análise de Estabilidade de Aterro Sobre Solos Moles 
– (PI09) – Estudo de Caso. 138 f. Dissertação (Graduação em Engenharia Civil) - 
Universidade do Extremo Sul Catarinense. Criciúma. 2008.

Continue navegando