Buscar

2 - Leis de Kirchhoff

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 40 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 40 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 40 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

LEIS DE KIRCHHOFF
MÓDULO 1 - Analisar circuitos elétricos por meio da Lei de Kirchhoff das correntes
PRIMEIRAS PALAVRAS - Os conceitos básicos envolvidos na teoria de circuitos elétricos são essenciais em cursos de Engenharia. Dificilmente alguma área técnica não abordará grandezas e leis que regem os princípios da eletricidade básica, já que os circuitos elétricos também são de utilidade para a modelagem de sistemas diversos de energia em virtude das técnicas matemáticas aplicadas e de suas configurações físicas envolvidas.
A partir da modelagem dos componentes, como resistores, indutores e capacitores, bem como do conhecimento das principais grandezas envolvidas em circuitos elétricos (tensão, corrente e potência elétrica), é possível analisar o comportamento desses elementos tendo como suporte as leis básicas que regem o funcionamento dos circuitos elétricos.
A primeira lei estudada em eletricidade básica é a de Ohm, que permite relacionar a tensão e a corrente elétrica em um elemento do circuito; ainda por meio dessa lei, é possível derivar outras relações essenciais, como as de potência elétrica dissipada pelos elementos.
No entanto, nem sempre a Lei de Ohm é suficiente para solucionar completamente as grandezas de um circuito elétrico – principalmente no caso de circuitos que contêm diversos componentes interligados.
O comportamento dos elementos de um circuito elétrico é regido por duas relações algébricas muito importantes entre as grandezas tensão e corrente (conhecidas na teoria de circuitos como Leis de Kirchhoff).
A LKT (LEI DE KIRCHHOFF DAS TENSÕES) E A LKC(LEI DE KIRCHHOFF DAS CORRENTES), ENUNCIADAS POR GUSTAV KIRCHHOFF EM 1848, SÃO NADA MAIS QUE A APLICAÇÃO DO PRINCÍPIO DE CONSERVAÇÃO DA ENERGIA PRESENTE EM UM CIRCUITO ELÉTRICO, COMO SERÁ DEMONSTRADO AO LONGO DESTE MATERIAL.
Para compreender as Leis de Kirchhoff e suas aplicações na solução de circuitos, é necessário entender alguns conceitos básicos relacionados à topologia de redes elétricas, ou seja, a forma como os elementos são conectados entre si. Dessa forma, é fundamental que sejam definidos os seguintes conceitos:
RAMO - Representação de um elemento único conectado entre dois nós. Um exemplo de ramo pode ser um resistor, um indutor ou uma fonte de tensão a ser conectada entre dois nós.
NÓ - É o ponto de conexão entre ramos, ou seja, a junção de dois ou mais ramos (elementos) do circuito. Se um fio (condutor) ideal conecta dois nós, esses nós constituem um único nó (curto-circuito).
LAÇO - É o caminho fechado em um circuito (circuito fechado). Um laço inicia-se em um nó, percorre uma série de outros nós e retorna ao nó de partida sem passar por qualquer outro mais de uma vez. O laço também é conhecido por malha de um circuito.
A quantidade de nós e laços (malhas) de um circuito depende de sua topologia, de modo que é possível estabelecer uma relação entre tais quantidades e o número de ramos presentes. Essa relação é o teorema fundamental da topologia de rede descrito pela equação 1:
B=L+N-1
A equação 1 relaciona a quantidade de b ramos, n nós e l laços independentes que devem satisfazer ao teorema da topologia de rede.
A partir da topologia de rede, pode-se dizer que:
Dois ou mais componentes da rede são ligados em série se eles compartilham exclusivamente um único nó e, portanto, estão submetidos à mesma corrente elétrica.
Dois ou mais componentes da rede são ligados em paralelo se eles estão conectados aos mesmos dois nós e, desse modo, estão submetidos à mesma tensão elétrica entre eles.
EXEMPLO 1: O circuito da figura 1 demonstra visualmente a presença de três laços (malhas). Com base na equação do teorema fundamental da topologia de rede, encontre o número de laços a partir da identificação dos ramos e dos nós presentes nesse circuito.
Pela topologia do circuito, é possível observar que estão presentes 6 ramos (5 resistores e 1 fonte de tensão) e 4 nós. A partir da equação 1, tem-se o seguinte:
L = 6 –
L = 3
Portanto, conforme observado, o circuito contém três laços (ou malhas).
LEI DE KIRCHHOFF DAS CORRENTES (LKC) - A primeira Lei de Kirchhoff, direcionada à relação de correntes no circuito (LKC), também conhecida como Lei dos Nós, diz que a soma algébrica das correntes que entram em um nó deve ser zero, ou seja, a soma daquelas que entram em um nó deve ser igual à das correntes que saem dele, conforme ilustra a figura 2. Normalmente, consideram-se as correntes que chegam a um nó como positivas e as que saem dele como negativas.
Matematicamente, a LKC pode ser descrita pela equação 2:
∑N=1NIN=0 → ∑IENTRADA=∑ISAÍDA
Em que N é o número de ramos conectados ao nó e In é a enésima corrente que entra (ou sai) desse nó. Na figura 2, a corrente I1 está entrando no nó (sinal positivo), enquanto as correntes I2 e I3 estão saindo dele (sinal negativo).
Portanto:
I1 – I2 – I3 = 0
I1 = I2 + I3
É importante destacar que a Lei de Kirchhoff das correntes também pode ser aplicada a um segmento fechado de circuito, conforme ilustra a figura 3, pois um nó genericamente é uma superfície fechada reduzida a um ponto. Dessa forma, de acordo com a equação 2, a corrente total que entra pela superfície fechada é igual à total que sai dessa superfície.
DIVISOR DE CORRENTE - Sabe-se que a corrente elétrica sempre buscará o caminho de menor resistência para percorrer. No entanto, quando o circuito apresenta vários caminhos com resistência, essa corrente se divide entre esses ramos. Evidentemente, pela Lei de Ohm, os caminhos com menor resistência apresentarão as maiores parcelas da corrente dividida. Pelo mesmo raciocínio, se os ramos apresentarem resistências iguais, a corrente elétrica se dividirá igualmente entre os elementos.
RESUMINDO - Pode-se dizer, portanto, que a razão entre os valores das correntes em dois ramos será inversamente proporcional àquela entre suas resistências.
Considere o circuito ilustrado na figura 4 composto por uma fonte de tensão e dois resistores ligados em paralelo: R1 e R2. Por estarem ligados em paralelo, os resistores estão submetidos à mesma tensão.
V=I1R1=I2R2
I1=VR1 I2=VR2
Aplicando a LKC no nó a, obtém-se a corrente total que vem da fonte:
I=I1+I2
Substituindo a equação 4 na 5, tem-se:
I=VR1+VR2=V1R1+1R2=VREQ
Em que Req é denominada resistência equivalente dos resistores ligados em paralelo.
1REQ=1R1+1R2 → 1REQ=R1+R2R1R2
A resistência equivalente de dois resistores ligados em paralelo é dada pelo produto dessas resistências dividido pela sua soma.
REQ=R1R2R1+R2
Geralmente, é mais conveniente utilizar a condutância do elemento em vez da resistência para se lidar com componentes ligados em paralelo a fim de evitar operações matemáticas com frações. A partir da equação 7, a condutância equivalente para um circuito com N resistores ligados em paralelo é dada por:
GEQ=G1+G1+G2+…+GN
EM QUE GEQ=1⁄REQ, G1=1⁄R1, G2=1⁄R2, G3=1R1 GN=1⁄RN.
A condutância equivalente de resistores ligados em paralelo é dada pela soma de suas condutâncias individuais.
Dessa forma, a condutância equivalente dos resistores ligados em paralelo pode ser encontrada da mesma forma que a resistência equivalente para aqueles ligados em série. Analogamente, a condutância equivalente para os ligados em série pode ser encontrada da mesma forma que a resistência equivalente para os ligados em paralelo.
Uma forma genérica de encontrar a condutância equivalente é dada pela equação 10:
1GEQ=1G1+1G2+1G31+…+1GN
A partir da corrente total i que entra no nó a, é possível obter as correntes i1 e i2.
V=IREQ=IR1R2R1+R2
Ao combinar as equações 4 e 8, vê-se que:
I1=R2IR1+R2 , I2=R1IR1+R2
Percebe-se, portanto, que a corrente total é compartilhada pelos resistores de forma inversamente proporcional às resistências. Esse comportamento ilustra o princípio denominado divisão de corrente. O circuito da figura 4 é conhecido por circuito divisor de corrente.
EXEMPLO 2: Considere o circuito ilustrado na figura 5 composto por uma fonte de corrente e dois resistores ligados em paralelo. Determine o valor da corrente elétrica que circula pelos resistores R1 e R2.
Inicialmente,esse problema pode ser entendido sem a necessidade das equações do princípio de divisão de corrente. Basta lembrar que a corrente será dividida entre os resistores do circuito de forma inversamente proporcional à sua respectiva resistência ao longo de todo o circuito paralelo.
Como o valor da resistência de R2 é duas vezes maior que a de R1, sabe-se que a corrente que circula por R2 é duas vezes menor (metade) do que a que circula por R1.
I2=0,5I1
Utilizando agora o princípio de divisão de corrente, obtém-se:
Para o resistor R1
I1=48+46=2 A
Para o resistor R2
I2=88+46=4 A
A soma das duas correntes deve ser igual à corrente da fonte para estar de acordo com a Lei de Kirchhoff das correntes:
IT=6=I1+I2
MÉTODO DOS NÓS PARA CIRCUITOS COM FONTE DE CORRENTE - A partir dos conceitos fundamentais sobre o comportamento de circuitos elétricos com base na Lei de Kirchhoff das correntes (LKC) e da Lei de Ohm, apresentaremos nesta seção uma importante técnica para a resolução de circuitos elétricos.
O MÉTODO DOS NÓS, TAMBÉM CONHECIDO POR LEI DOS NÓS OU ANÁLISE NODAL, BASEIA-SE NA LKC PARA FORMULAR O PROBLEMA A SER RESOLVIDO MATEMATICAMENTE, O QUE PERMITE INCLUSIVE SUA SOLUÇÃO POR PROGRAMAS COMPUTACIONAIS DE SIMULAÇÃO.
É importante destacar que são duas as Leis de Kirchhoff: de correntes (LKC) e tensões (LKT). No entanto, o objetivo deste módulo concentra-se nos estudos da primeira lei, a LKC, de modo que as análises referentes à segunda lei (LKT) serão feitas no módulo 2 deste material.
A aplicação do Método dos Nós permite a solução de qualquer circuito linear a partir da resolução simultânea de um conjunto de equações lineares. Tendo em vista o princípio de conservação de energia regido pela Lei de Kirchhoff das correntes e das relações da Lei de Ohm, esse método utiliza as tensões nodais como variáveis do problema e determina as equações para a solução dos circuitos.
DICA: A utilização de tensões nodais é conveniente, pois reduz o número de equações que devem ser resolvidas.
Para iniciar o Método dos Nós, é necessário adotar um nó de referência no circuito. Apesar de não ser uma regra, normalmente adota-se o nó de terra (GND) como referência, que é designado com potencial zero.
A figura 6 ilustra as simbologias tradicionalmente utilizadas para indicar um nó de referência:
Quando o potencial da terra é usado como referência, utiliza-se a simbologia de (a) e (b). Se o potencial de referência for a carcaça de um equipamento, por exemplo, será utilizada a simbologia de (c).
Dessa forma, em um circuito contendo N nós, ao definir um como referência, tem-se N -1 nós cujas tensões são variáveis do problema a serem determinadas, ou seja, N -1 equações devem ser escritas para a solução do circuito.
Os passos para aplicação do Método dos Nós são:
Determinar um nó como referência e atribuir a variável de tensão (v1,v2,...,vn-1) para os N -1 nós restantes.
Aplicar a Lei de Kirchhoff das correntes em cada um dos N -1 nós, exceto o de referência. Utilize a Lei de Ohm para expressar as correntes nos ramos em termos de tensões nodais.
Resolver as equações simultâneas para obter as tensões nodais.
O exemplo a seguir ilustra a aplicação do Método dos Nós em um circuito elétrico:
EXEMPLO 3: Considere o circuito da figura 7. Utilizando o Método dos Nós, encontre as equações necessárias para determinar as tensões nodais no circuito.
Após a definição do nó de referência (nó 0, em que v = 0), é necessário atribuir as tensões nodais nos N -1 nós restantes. O circuito possui outros dois nós, de modo que são atribuídas respectivamente as tensões v1 e v2
ESSAS TENSÕES SÃO DADAS EM RELAÇÃO AO NÓ DE REFERÊNCIA, OU SEJA, CADA TENSÃO NODAL É A ELEVAÇÃO DELA A PARTIR DA TENSÃO DO NÓ DE REFERÊNCIA.
A partir da aplicação da LKC nos nós 1 e 2, é possível expressar a relação entre as correntes das fontes (I1 e I2) e as que circulam pelos resistores R1, R2 e R3. Essas correntes são facilmente encontradas na figura 8.
I1=I2+I1+I2
LKC do nó 2:
I2+I2=I3
Por fim, basta aplicar a Lei de Ohm para representar essas correntes em termos de tensões nodais. É importante lembrar que, em elementos passivos como resistores, a corrente flui do maior para o menor potencial, o que pode ser feito por:
I=V+-V-R
As correntes que circulam pelos resistores R1, R2 e R3 são dadas por:
I1=V1-0R1
I2=V1-V2R2
I3=V2-0R3
Substituindo as expressões de corrente, vê-se que:
I1=I2+V1R1+V1-V2R2
I2+V1-V2R2=V2R3
Para finalizar a análise do circuito, basta resolver as equações lineares encontradas simultaneamente por meio da utilização de qualquer método matemático padrão de solução de sistemas lineares. Um método muito utilizado é o de Cramer, que utiliza uma formulação matricial para representar as equações.
A solução para esse circuito também pode ser encontrada em termos das condutâncias dos elementos. Dessa maneira, as expressões são representadas por:
I1=I2+G1V1+G2V1-V2
I2+G2V1-V2=G3V2
A representação matricial do sistema de equações obtidas é dada por:
G1+G2-G2-G2G2+G3V1V2=I1-I2I2
A solução fornecerá as tensões v1 e v2 dos nós do circuito.
MÉTODO DOS NÓS PARA CIRCUITOS COM FONTES DE TENSÃO - Em circuitos elétricos contendo fontes de tensão, a aplicação do Método dos Nós requer uma atenção especial. Das duas possibilidades que podem ocorrer, uma delas pode facilitar a análise.
São elas:
POSSIBILIDADE 1 - Circuitos em que a fonte de tensão está conectada entre o nó de referência e outro nó qualquer (que não seja de referência).
Na figura 9, por exemplo:
V1=10 V
Percebe-se, portanto, que, nesse caso, a tensão do nó 1 já é automaticamente conhecida. Isso facilita a análise e reduz o número de equações a serem solucionadas.
POSSIBILIDADE 2 - Circuitos em que a fonte de tensão está conectada entre dois nós que não são de referência. Nesses casos, em que se denomina a existência de um supernó, também é necessária a aplicação da Lei de Kirchhoff das tensões (LKT), a qual, como frisamos, será detalhada no módulo 2. É importante retornar a esta seção ao final dos estudos das duas Leis de Kirchhoff para um melhor entendimento.
UM SUPERNÓ OCORRE QUANDO UMA FONTE DE TENSÃO É CONECTADA ENTRE DOIS NÓS QUE NÃO SÃO NÓS DE REFERÊNCIA E QUAISQUER ELEMENTOS LIGADOS EM PARALELO COM ELE.
Na figura 9, os nós 2 e 3 formam um supernó. Com base nos mesmos passos demonstrados para o Método dos Nós para circuitos com fontes de corrente, é possível solucionar o circuito.
Deve-se observar que, para aplicar a Lei de Kirchhoff das correntes, é necessário conhecer as correntes em cada elemento do circuito; no entanto não é possível, a princípio, conhecer a corrente que circula por uma tensão nodal.
Assim, a partir do conceito de supernó, tem-se o seguinte:
I_1+I_4=I_2\;+\;I_3
V1-V22+V1-V34=V2-08+V3-06
Com auxílio da Lei de Kirchhoff das tensões para o supernó, o circuito da Figura 9 pode ser redesenhado conforme a Figura 10.
-V_2+5+V_3=0\;\RIGHTARROW\;V_2-V_3=5
Assim, a partir das equações 13, 14 e 15, é possível obter as tensões nodais.
ATENÇÃO: Em um supernó, a fonte de tensão fornece uma equação de restrição necessária para encontrar as tensões nodais.
Um supernó não possui tensão própria.
Na análise de circuitos com supernó, deve-se aplicar tanto a LKC como a LKT.
MÃO NA MASSA
1. A FIGURA 11 ILUSTRA PARTE DE UM CIRCUITO ELÉTRICO EM QUE DIVERSAS CORRENTES CIRCULAM PELOS RAMOS. CONSIDERANDO OS CONCEITOS RELACIONADOS À PRIMEIRA LEI DE KIRCHHOFF (LKC), AS CORRENTES I3 E I4 VALEM RESPECTIVAMENTE:
a) 3A e 5A
b) 6A e 2A
c) 7A e 8A
d) 5A e 7A
e) 4A e 8A
A alternativa "C " está correta.
O segmento de circuito ilustrado possui duas junções representadas pelos nós a e b. É possível encontrar as correntes incógnitas com apenas uma equação por nó aplicando a Lei de Kirchhoff das correntes:
Para o nó a:
∑IENTRADA=∑ISAÍDA
I1+I2=I3
3 A+4 A= I3
I3=7 A
Para o nó b:
∑IENTRADA=∑ISAÍDA
I3+I5=I4
7 A+1 A= I3
I3=8 A
2. PARA O CIRCUITO DA FIGURA 12, QUE CONTÉM UMA FONTE DE TENSÃO E TRÊS ELEMENTOS RESISTIVOS LIGADOS EM PARALELO, É POSSÍVEL ENCONTRAR AS CORRENTES NOS RAMOS A PARTIR DA LEI DE KIRCHHOFF DAS CORRENTES.COM BASE NOS CONCEITOS DESSA LEI E NOS VALORES DE CORRENTE APRESENTADOS NA FIGURA, A RESISTÊNCIA DE R3 É DE:
a) 27kΩ
b) 28kΩ
c) 26kΩ
d) 24kΩ
e) 25kΩ
3. A PARTIR DA PRIMEIRA LEI DE KIRCHHOFF E DO CIRCUITO DIVISOR DE CORRENTE, O VALOR DA CORRENTE QUE CIRCULA PELO RESISTOR R1, ILUSTRADO NA FIGURA 13, É DE:
a) 3,48mA
b) 5,24mA
c) 6,38mA
d) 4,84mA
e) 7,36mA
A alternativa "D" está correta.
A resistência equivalente do circuito é dada por:
Aplicando a regra do divisor de corrente no resistor R1, sabe-se que:
4. COM BASE NAS REGRAS DO CIRCUITO DIVISOR DE CORRENTE, O VALOR DA POTÊNCIA ELÉTRICA DISSIPADA PELO RESISTOR DE 2Ω DA FIGURA 14 É DE:
a) 1,84 watts
b) 2,56 watts
c) 3,45 watts
d) 2,35 watts
e) 3,86 watts
A alternativa correta é "A".
Os resistores de 3Ω e 2Ω estão em paralelo. Sua resistência equivalente é de:
É possível obter a tensão no resistor de 2Ω aplicando a Lei de Ohm:
Então
Portanto, a potência dissipada pelo resistor de 2Ω será de:
5. UTILIZANDO A ANÁLISE NODAL E A LEI DE KIRCHHOFF DAS CORRENTES, AS TENSÕES NOS NÓS 1 E 2 ILUSTRADOS NA FIGURA 15 VALEM RESPECTIVAMENTE:
a) 1,5V e 4,0V
b) 2,0V e 3,5V
c) 3,0V e 4,0V
d) 3,5V e 4,5V
e) 2,5V e 5,0V
A alternativa correta é "D".
Para o nó 1, a aplicação da Lei de Kirchhoff das correntes e da Lei de Ohm, tem-se:
Manipulando a expressão acima, é possível encontrar a primeira equação do problema:
 ou 
Para o nó 2, a aplicação da Lei de Kirchhoff das correntes e da Lei de Ohm, sabe-se que:
Manipulando a expressão acima, é possível encontrar a segunda equação do problema:
 ou 
Aplicando uma técnica matemática para a solução de sistemas lineares (exemplo: eliminação, regra de Cramer), as tensões v1 e v2 são respectivamente:
6. O CIRCUITO DA FIGURA 16 APRESENTA UM SUPERNÓ. COM BASE NA LEI DE KIRCHHOFF DAS CORRENTES E UTILIZANDO O MÉTODO DOS NÓS, AS TENSÕES V1 E V2 VALEM RESPECTIVAMENTE:
a) -4,5V e -5,0V
b) 4,5V e -5,0V
c) -4,5V e 5,0V
d) 7,3V e 5,3V
e) -7,3V e -5,3V
A alternativa "E" está correta.
O supernó contém a fonte de tensão de 2V e o resistor de 10Ω. Aplicando a Lei de Kirchhoff das correntes no supernó, tem-se:
Utilizemos a Lei de Kirchhoff das tensões, que é necessária para estabelecer a relação entre v1 e v2:
TEORIA NA PRÁTICA
Considere o circuito da Figura 17, que contém três fontes de corrente ligadas em direções distintas entre si. Com base na Lei de Kirchhoff das correntes, a expressão que melhor representa o valor da corrente elétrica resultante total a circular pelos nós ab será de:
RESOLUÇÃO - Uma interessante aplicação da Lei de Kirchhoff das correntes em circuitos práticos é a possibilidade de associação de diversas fontes de corrente em paralelo, de modo que a corrente resultante na carga será dada pela soma algébrica das correntes individuais fornecidas pelas respectivas fontes.
IT+I2+I3=I1
Dessa forma, a corrente total que circula pelos nós ab é de :
IT=I1-I2-I3
É importante observar que, em um circuito série, jamais haverá duas correntes diferentes, a menos que ambas sejam iguais (I1 = I2). Correntes diferentes em um circuito série violam o princípio fundamental da primeira Lei de Kirchhoff, a LKC.
VERIFICANDO O APRENDIZADO
1. A FIGURA 18 ILUSTRA UM CIRCUITO INTEGRADO (CI) COM OITO TERMINAIS E SUAS RESPECTIVAS CORRENTES ELÉTRICAS. COM BASE NA LEI DE KIRCHHOFF DAS CORRENTES, É POSSÍVEL AFIRMAR QUE A CORRENTE I1 TEM MÓDULO:
a) 20mA saindo do CI.
b) 15mA entrando no CI.
c) 20mA entrando no CI.
d) 15mA saindo do CI.
e) 10mA saindo do CI.
A alternativa "D " está correta.
A Lei de Kirchhoff das correntes diz que:
∑IENTRADA=∑ISAÍDA
I1+4 mA+6 mA+10 mA+7 mA=4 mA+3 mA+5 mA
I1+27 mA=12 mA
I1=-15 mA																										
Isso significa que a corrente I1 tem módulo 15mA saindo do CI.
2. PARA O CIRCUITO DA FIGURA 19, O VALOR DA TENSÃO V1 É:
SUGESTÃO: UTILIZE O MÉTODO DOS NÓS PARA SOLUCIONAR O PROBLEMA.
a) 5V
b) 25V
c) 20V
d) 15V
e) 10V
A alternativa "C " está correta
O circuito possui apenas dois nós: o nó v1 e o referência. Pela Lei de Ohm, sabe-se que:
Pela Lei de Kirchhoff das correntes, vemos que:
Substituindo I = 1 A, a tensão v1 será:
MÓDULO 2 - Analisar circuitos elétricos por meio da Lei de Kirchhoff das tensões
LEI DE KIRCHHOFF DAS TENSÕES
PRIMEIRAS PALAVRAS - Conforme destacamos no módulo 1, as Leis de Kirchhoff são essenciais para representar o comportamento de circuitos elétricos e estabelecer relações entre correntes e tensões nos diversos elementos de rede, como, por exemplo, resistores, capacitores, indutores e até mesmo fontes de alimentação, como as fontes de tensão e as de corrente.
Inicialmente, apresentamos a primeira Lei de Kirchhoff conhecida como Lei de Kirchhoff das correntes (LKC). Neste módulo, falaremos sobre a segunda lei: a Lei de Kirchhoff das tensões (LKT).
ATENÇÃO: Os conceitos de ramo, nó e laço (malha) são igualmente importantes e necessários para o entendimento da segunda Lei de Kirchhoff.
LEI DE KIRCHHOFF DAS TENSÕES (LKT) - A partir do conceito de laço ou malha, a segunda Lei de Kirchhoff permite avaliar as variáveis de um circuito a partir de caminhos fechados, ou seja, a análise começa em determinado ponto, desloca-se pelos elementos presentes na malha e retorna ao ponto de partida original.
Por exemplo, na Figura 20, um caminho fechado será observado se a corrente elétrica deixar o ponto d até o ponto a percorrendo a fonte de tensão e, em seguida, seguindo de b até c através do resistor até retornar ao ponto d. Percebe-se que a soma resultante de elevações e quedas de tensão será igual a zero.
Considerando que as elevações de tensão sejam representadas por um sinal positivo e as quedas de tensão, por um negativo, a sequência da Figura 20 resulta matematicamente na equação 16:
+E-V1-V2=0
(16)
A equação 16 deixa evidente que a tensão aplicada em um circuito de CC em série é igual à soma das quedas de tensão nos elementos conectados ao longo do circuito. A Lei de Kirchhoff das tensões (LKT) expressa que a soma algébrica das tensões ao longo de um caminho fechado, ou malha, é zero.
Matematicamente, a LKT pode ser representada pela equação 17:
EXEMPLO 1: Considere o circuito da figura 21. Os sinais nas tensões de cada elemento dizem respeito à polaridade do terminal encontrado quando a corrente elétrica percorre a malha independentemente de tal circulação se dar no sentido horário ou no anti-horário.
No sentido anti-horário, as tensões seriam, na ordem, - v1 + v2 + v3 - v4+ v5. Dessa forma, a Lei de Kirchhoff das tensões (LKT) para esse circuito é representada por:
-V1+V2+V3-V4+V5=0
Reorganizando os termos, verifica-se que:
V2+V3+V5=V1+V4
Este exemplo ilustra de forma clara que a soma das quedas de tensão é igual, conforme descrevemos anteriormente, à soma das elevações de tensão.
Quando um circuito contiver fontes de tensão conectadas em série, a Lei de Kirchhoff das tensões poderá ser utilizada para encontrar a tensão total equivalente mediante a soma algébrica de cada tensão individual. No circuito da Figura 22, por exemplo, as três fontes V1, V2 e V3 podem ser substituídas por uma fonte equivalente Vab após a aplicação da LKT no trecho ab.
DIVISOR DE TENSÃO - A Lei de Kirchhoff das tensões demonstra que a soma das tensões por meio dos elementos do circuito será sempre igual à das tensões aplicadas, ou seja, das fontes de alimentação. Além disso, essa tensão será dividida entre os resistores do circuito de forma proporcional à sua respectiva resistência ao longo de todo o circuito em série. Desse modo, quanto maior for a resistência do elemento, maior será a tensão à qual estará submetido.
O circuito ilustrado na Figura 24 representa um circuito com uma fonte de tensão e dois resistores ligados em série, de modo que apenas a corrente i circula por ambos (uma única corrente de malha).
Ao aplicar a Lei de Ohm para cada um dos resistores, obtém-se o seguinte:
V1=iR1 , V2=iR2
(18)
Aplicando a Lei de Kirchhoff das tensões à malha e arbitrando que a corrente circule no sentido horário, vê-se que:
-V+V1+V2=0
(19)
Relacionando asequações 18 e 19:
(20)
A equação 20 pode ser modificada, pois os dois resistores podem ser substituídos por um resistor equivalente:
V=iREQ
(21)
Em que:
REQ=R1+R2
(21)
A resistência equivalente em um circuito com N resistores ligados em série é a soma algébrica das resistências individuais desses elementos.
Para N resistores:
(22)
As tensões individuais em cada resistor podem ser encontradas substituindo a equação 18 na 20:
(23)
É importante observar que a tensão da fonte v foi dividida entre as resistências de forma proporcional à sua resistência conforme demonstramos anteriormente. Esse equacionamento é conhecido como divisão de tensão, de modo que o circuito da figura 24 é conhecido como circuito divisor de tensão.
Se o circuito tiver N resistores ligados em série, a tensão sob o n-ésimo resistor será dada genericamente por:
(24)
EXEMPLO 2: Considere o circuito ilustrado na Figura 25 composto por uma fonte de tensão e dois resistores ligados em série. Determine o valor da queda de tensão nos resistores R1 e R2.
Inicialmente, esse problema pode ser entendido sem a necessidade das equações do princípio de divisão de tensão. Basta lembrar que a tensão será dividida entre os resistores do circuito de forma proporcional à sua respectiva resistência ao longo de todo o circuito em série.
Como o valor da resistência de R2 é três vezes maior que a resistência de R1, verifica-se que a tensão em R2 será três vezes maior que a encontrada em R1:
V2=3V1
Utilizando agora o princípio de divisão de tensão, tem-se:
Para o resistor R1
Para o resistor R2
A soma das duas tensões deve ser igual à tensão da fonte para se estar de acordo com a Lei de Kirchhoff das tensões:
E=V1+V2=16+48=64 V
MÉTODO DAS MALHAS PARA CIRCUITOS COM FONTES DE TENSÃO - De modo semelhante ao Método dos Nós demonstrado no módulo 1, o Método das Malhas é outra maneira de solucionar circuitos elétricos a partir da segunda Lei de Kirchhoff. No Método das Malhas, utilizam-se as correntes circulantes como variáveis do problema.
Como as variáveis são as correntes de malha, e não as correntes dos elementos, o número de equações a ser resolvido torna-se substancialmente menor, facilitando a análise do circuito elétrico.
MÉTODO DOS NÓS - Utiliza-se a Lei de Kirchhoff das correntes para encontrar as varáveis de tensão nodal.
MÉTODO DAS MALHAS - Emprega-se a Lei de Kirchhoff das tensões para determinar as variáveis de correntes de malha.
É importante destacar que, para que o método agora apresentado possa ser efetivamente aplicado, o circuito elétrico não deverá ter cruzamento de ramos entre si, configurando-se como um circuito denominado planar. A Figura 26 ilustra dois circuitos, sendo que o primeiro é caracterizado como planar e o segundo, por sua vez, como não planar.
No segundo circuito, percebe-se que não existe uma maneira de redesenhá-lo sem que haja um cruzamento de ramos, o que faz com que ele seja configurado como não planar. Apesar de não ser possível utilizar o Método de Malhas, os circuitos não planares podem ser solucionados normalmente mediante o emprego do Método dos Nós.
No Método das Malhas, o interesse está em aplicar a Lei de Kirchhoff das tensões em circuitos planares sem a presença de fontes de corrente. Casos especiais em que o circuito pode conter essas fontes serão tratados mais adiante.
Para um circuito contendo N malhas, são necessários os seguintes passos:
· Atribuir as correntes de malha i1, i2, i3,....in para todas as n malhas do circuito.
· Aplicar a Lei de Kirchhoff das tensões (LKT) para cada malha n.
· Utilizar a Lei de Ohm para expressar as tensões nos elementos em termos da corrente de malha.
· Resolver as n equações simultâneas para obter as correntes de malha.
Para entender o método das malhas, considere o exemplo a seguir:
EXEMPLO 3: O circuito da figura 27 contém duas fontes de tensão (V1 e V2 e R3) e três resistores (R1, R2) alocados em duas malhas. Aplique o método das malhas para encontrar as correntes de malha i1 e i2.
Seguindo os passos a serem aplicados no Método das Malhas, primeiramente deve-se atribuir as correntes elétricas às duas malhas do circuito: i1 e i2. De forma arbitrária, essas correntes circulam no sentido horário (importante: pode-se arbitrar que as correntes circulem no sentido anti-horário desde que todas as correntes do circuito sejam invertidas na análise).
No segundo passo, aplica-se a Lei de Kirchhoff das tensões (LKT) em cada malha:
Malha 1
-V1+R1i1+R3(i1-i2) =0
(R1+R3) i1-R3i2=V1
Malha 2
R2i2+V2+R3(i2-i1) =0
-R3i1+(R2+R3) i2=-V2
Rearranjando os termos nas expressões descritas para reduzir as equações de malha, é possível escrevê-las na forma matricial:
O último passo é a solução das equações simultâneas utilizando qualquer método matemático padrão de solução de sistemas lineares. Um método muito usado é o de Cramer, que emprega uma formulação matricial para representar as equações.
Se um circuito possui n nós, b ramos e l malhas independentes, então tem-se o seguinte:
l=b-n+1
Dessa forma, são necessárias l equações simultâneas para solucionar o circuito a partir do Método das Malhas.
ATENÇÃO: As correntes nos ramos serão diferentes das correntes de malha – exceto se a malha for isolada. Considerando i como corrente de malha e I como corrente de ramo para a figura 27, verifica-se que:
I1=i1, I2=i2, I3=i1-i2
MÉTODO DAS MALHAS PARA CIRCUITOS COM FONTES DE CORRENTE - Apesar de, a princípio, parecer uma análise mais difícil, aplicar o Método das Malhas a circuitos contendo fontes de corrente poderá ser mais fácil que na forma anteriormente demonstrada.
A análise contendo esse tipo de fonte pode ser feita para duas situações distintas:
SITUAÇÃO 1 - Circuitos em que existe fonte de corrente em apenas uma malha.
Ao atribuir as correntes de malha, percebe-se que diretamente tem-se a corrente i2=-5A. As equações das malhas são facilmente obtidas. Por substituição, a corrente i1 pode ser encontrada.
(25)
SITUAÇÃO 2 - Circuitos em que a fonte de corrente está presente em duas malhas. Nesse caso, tem-se a chamada supermalha.
Uma supermalha ocorre quando duas malhas possuem uma fonte de corrente em comum.
Figura 29. Circuito com: (a) duas malhas e fonte de corrente comum; (b) supermalha.
A supermalha ocorre a partir do compartilhamento do ramo que contém a fonte de corrente das malhas 1 e 2. A análise de malhas requer o conhecimento da tensão em cada ramo; no entanto, não é possível, a princípio, conhecer a tensão em uma fonte de corrente.
Desse modo, aplicando a Lei de Kirchhoff das tensões (LKT) na supermalha, sabe-se que:
Com o auxílio da Lei de Kirchhoff das correntes (LKC) aplicada ao nó de interseção das malhas, tem-se:
	(27)
Resolvendo as equações 26 e 27, obtém-se o seguinte resultado:
i1=-3,2A, i2=2,8A
(28)
ATENÇÃO: Em uma supermalha, a fonte de corrente fornece uma equação de restrição necessária para encontrar as correntes de malha.
Uma supermalha não possui corrente própria.
Na análise de circuitos com supermalha, deve-se aplicar tanto a LKT como a LKC.
MÃO NA MASSA
1. CONSIDERE O CIRCUITO DA FIGURA 30. COM BASE NA LEI DE KIRCHHOFF DAS TENSÕES (LKT), OS VALORES DAS QUEDAS DE TENSÃO NOS RESISTORES R1 E R2 SÃO RESPECTIVAMENTE DE:
a) -8V e -12V
b) 8V e 12V
c) -8V e 12V
d) -12V e 8V
e) 8V e -12V
Para encontrar as tensões em R1 e R2, basta aplicar a Lei de Ohm nos resistores e a LKT na malha do circuito. Considerando que a corrente I flua pela malha no sentido horário, tem-se:
Pela Lei de Ohm
V1=4I, V2=−6I
Pela LKT
−20+V1−V2=0
−20+4I+6I=0 → 10I=20 →I=2ª
Substituindo nas expressões de tensão, encontra-se o seguinte:
V1=8V, V2=−12V
2. PARA O CIRCUITO DA FIGURA 31, A TENSÃO À QUAL O RESISTOR R2 ESTÁ SUBMETIDO É DE:
a) 8V
b) 10V
c) 12V
d) 15V
e) 6V
A alternativa "C " está correta.
O circuito contém uma fonte de tensão em série com os resistores R1, R2 e R3. Dessa forma, trata-se de um circuito com apenas uma malha, o que permite encontrar a tensão em R2 apenas aplicando a Lei de Kirchhoff das tensões:
Considerando o sentido horário para a correntede malha:
Vs+V1+V2+V3=0
Isolando a tensão V2:
V2=Vs−V1−V3=30−8−10
V2=12V
Perceba que o valor da resistência de R2 não foi importante no cálculo da tensão pela LKT, já que as outras tensões eram conhecidas.
3. COM BASE NA LEI DE KIRCHHOFF DAS TENSÕES E NO PRINCÍPIO DE DIVISÃO DE TENSÃO, AS TENSÕES NOS RESISTORES R1 E R3 DA FIGURA 32 SÃO RESPECTIVAMENTE DE:
a) 5V e 12V
b) 8V e 16V
c) 10V e 6V
d) 4V e 8V
e) 15V e 9V
A alternativa "B " está correta.
Primeiramente, deve-se encontrar a resistência total do circuito série:
RT=R1+R2+R3
RT=2 kΩ+3 KΩ+4 KΩ=9kΩ
Com base no circuito divisor de tensão, as tensões V1 e V3 são:
4. A FIGURA 33 ILUSTRA SIMPLIFICADAMENTE UM CIRCUITO COM UMA FONTE DE TENSÃO DE 12 VOLTS E DOIS RESISTORES (DE 2Ω E 1Ω) LIGADOS EM SÉRIE. A PARTIR DA REGRA DE DIVISÃO DE TENSÃO, O VALOR DA TENSÃO VX EM RELAÇÃO À REFERÊNCIA É DE:
a) 4 volts
b) 6 volts
c) 8 volts
d) 5 volts
e) 3 volts
A alternativa "A " está correta.
Caso seja necessário, a figura 33 pode ser redesenhada no formato de uma malha fechada utilizando o símbolo de uma fonte de tensão. Ao aplicar o princípio de divisão de tensão, vê-se que a tensão Vx é a tensão sob o resistor R2:
5. O MÉTODO DAS MALHAS, QUE É UM DOS MÉTODOS MAIS UTILIZADOS PARA A SOLUÇÃO DE VARIÁVEIS EM CIRCUITOS ELÉTRICOS, DISPÕE QUE O SOMATÓRIO DAS TENSÕES EM UM CAMINHO FECHADO DEVE SER NULO. COM BASE NOS CONCEITOS DO MÉTODO DESCRITO, AS CORRENTES I1 E I2 A CIRCULAR NAS MALHAS 1 E 2 DO CIRCUITO DA FIGURA 34 SÃO RESPECTIVAMENTE DE:
a) 4A e 1A
b) 3A e 2A
c) 1A e 2A
d) 2A e 3A
e) 3A e 1A
6. A PARTIR DA APLICAÇÃO DO MÉTODO DAS MALHAS E DA LEI DE KIRCHHOFF DAS TENSÕES PARA A SOLUÇÃO DE CIRCUITOS, AS CORRENTES I1, I2 E I3 DO CIRCUITO ILUSTRADO NA FIGURA 35 VALEM RESPECTIVAMENTE:
a) 3A, 2A e 1A.
b) 2A, 1A e 1A.
c) 0A, 1A e 2A.
d) 1A, 1A e 0A.
e) 2A, 0A e 3A.
A alternativa "D " está correta.
Para a solução, as correntes de malha serão adotas como i1 e i2.
Aplicando-se inicialmente a LKT na malha 1:
−15+5i1+10(i1−i2) +10=0
3i1−2i2=1
Aplicando-se agora a LKT na malha 2:
6i2+4i2+10(i2−i1) −10=0
i1=2i2−1
Aplicando, por fim, o método da substituição para a solução de sistemas lineares, tem-se que:
i2=1 A
Consequentemente:
I1=i1=1 A, I2=i2=1 A, I3=i1−i2=0
TEORIA NA PRÁTICA
Considere o circuito da Figura 35. Com o auxílio da Lei de Kirchhoff das tensões, o valor da tensão no resistor R1 é de:
RESOLUÇÃO
A Lei de Kirchhoff das tensões é um conceito muito importante na solução de problemas com circuitos elétricos. Com base no princípio de conservação de energia e conhecimento das tensões ao longo de uma malha, é possível encontrar grandezas nos elementos do circuito.
Para o circuito da Figura 23, a tensão desconhecida referente ao resistor R1 pode ser obtida simplesmente aplicando o conceito elementar da Lei de Kirchhoff das tensões em torno de um caminho fechado, o que inclui as duas fontes de tensão:
Considerando o sentido horário para corrente de malha, verifica-se que:
VS1-VR1-VR2-VS2=0
VR1=VS1-VR2-VS2
VR1=15-3,2-10=1,8 V
É possível observar que, utilizando a LKT, não é necessário conhecer o valor dos resistores ou da corrente que circula para determinar uma tensão se os valores das outras quedas de tensão estão disponíveis.
VERIFICANDO O APRENDIZADO
1. CONSIDERE O CIRCUITO DA FIGURA 37. COM BASE NA LEI DE KIRCHHOFF DAS TENSÕES (LKT), O VALOR DA TENSÃO VX É DE:
a) 20V
b) 15V
c) 12V
d) 18V
e) 24V
A alternativa "A " está correta.
A tensão Vx no circuito não é de apenas um elemento resistivo, e sim entre dois pontos distintos. Basta aplicar a Lei de Kirchhoff das tensões na malha:
VS-V1-VX=0
VX=VS-V1=32-12=20 V
2. O CIRCUITO DA FIGURA 38 PODE SER SOLUCIONADO POR MEIO DO MÉTODO DAS MALHAS. AS CORRENTES I1 E I2, REFERENTES ÀS CORRENTES DE MALHA, SÃO:
a) 2,25A e 0,41A
b) 3,33A e -0,67A
c) -3,45A e 1,28A
d) 1,85A e -0,67A
e) -3,33A e 2,45A
A alternativa "B " está correta.
Inicialmente, deve-se arbitrar o sentido das correntes de malha, como, por exemplo, o sentido horário. É possível perceber que a fonte de corrente no meio do circuito fornece uma supermalha.
Aplicando a Lei de Kirchhoff das tensões, tem-se:
20-6I1-4I1-2I2+12=0
10I1+2I2=32
Relacionando as correntes de malha e a fonte de corrente, verifica-se que:
I1=IS+I2
Por fim, aplicando o método da substituição para resolver o sistema com as duas equações encontradas, obtém-se isto:
I1=3,33 A, I2=-0,67 A
CONCLUSÃO
CONSIDERAÇÕES FINAIS - A solução de circuitos elétricos é essencial para o entendimento de diversas disciplinas de Engenharia. A aplicação da eletricidade básica em circuitos parte essencialmente das leis básicas de circuito, como a Lei de Ohm e as Leis de Kirchhoff.
Tendo isso em vista, apresentamos neste conteúdo os conceitos básicos relacionados à Lei de Kirchhoff das correntes (LKC) e à de Kirchhoff das tensões (LKT). A partir do conhecimento dessas leis elementares, salientamos que é possível equacionar os circuitos elétricos para o cálculo de grandezas de interesse, como tensão, corrente elétrica e potência elétrica nos elementos.
Demonstramos ainda a aplicação das Leis de Kirchhoff na solução de circuitos por meio dos métodos de análise que se baseiam nas correntes dos nós e tensões de malhas. A análise nodal tem como princípio básico a Lei de Kirchhoff das correntes e dispõe que o somatório das correntes em um nó de circuito deve ser zero. De forma semelhante, a de malhas tem como princípio a Lei de Kirchhoff das tensões e estabelece que o somatório das tensões em uma malha precisa ser zero.
Por fim, observamos que, com base no princípio de conservação de energia e desses métodos de análise, formulam-se as equações lineares dos circuitos que podem ser matematicamente solucionadas para a obtenção das variáveis do circuito.
pág. 8

Outros materiais