Prévia do material em texto
UNIVERSIDADE ESTÁCIO DE SÁ Hélio Pereira Lopes Influência do Tipo de Movimento de Rotação na Vida Útil em Fadiga de Instrumentos Endodônticos de Níquel-Titânio Mecanizados Rio de Janeiro 2015 ii HÉLIO PEREIRA LOPES INFLUÊNCIA DO TIPO DE MOVIMENTO DE ROTAÇÃO NA VIDA ÚTIL EM FADIGA DE INSTRUMENTOS ENDODÔNTICOS DE NÍQUEL-TITÂNIO MECANIZADOS Tese apresentada à Faculdade de Odontologia da Universidade Estácio de Sá, visando à obtenção do grau de Doutor em Odontologia (Endodontia). ORIENTADOR Prof. Dr. José Freitas Siqueira Jr. UNIVERSIDADE ESTÁCIO DE SÁ RIO DE JANEIRO 2015 iii DEDICATÓRIA Aos meus filhos, Marcelo, Isabela e aos meus netos, Lucas, Daniel e Davi pelo estímulo permanente para que eu possa prosseguir nessa minha longa caminhada. iv AGRADECIMENTOS À Isabelita, minha esposa, pelo amor, amizade e companheirismo que me incentivam a seguir em frente, mesmo diante das adversidades encontradas. Ao professor e amigo José Freitas Siqueira Júnior, por ser referência mundial de pesquisador e professor. Pelo exemplo de determinação e amor ao que faz. Com sua genialidade tem contribuído mundialmente para tornar a endodontia uma especialidade mais científica. Minha eterna gratidão pela parceria em textos e livros científicos que temos publicado. Ao professor e amigo Carlos Nelson Elias, por sua extraordinária competência, perseverança e incansável dedicação ao ensino e a pesquisa. Seu profundo conhecimento na área de ciência dos materiais muito tem contribuído para o avanço científico da Odontologia. Obrigado por compartilhar todo o seu valioso conhecimento com extraordinária simplicidade, humildade e tolerância. À professora Márcia Valéria Boussada Vieira, pela dedicação e competência a que se dedica à difícil missão de formar e informar novos endodontistas. Agradeço pela valiosa colaboração no desenvolvimento e execução deste trabalho, assim como valorosos conhecimentos compartilhados. Aos professores Victor Talarico e Letícia Chaves, pela colaboração criteriosa na execução dos ensaios mecânicos realizados em laboratório. Obrigado pela disponibilidade e valiosa colaboração. À professora Isabela das Neves Roças Siqueira, pelo incentivo, amizade e confiança depositada. Ao Instituto Militar de Engenharia, pela cessão de seus laboratórios. v À secretária Angélica Pedrosa, pela gentileza e amizade. À professora de português, Nina Rosa Leitão de Carvalho Lima, por sua correção e revisão deste trabalho. Os meus agradecimentos a todos os colaboradores que participaram na elaboração e publicação dos artigos pertinentes à confecção deste trabalho. vi É fácil descrever técnica endodôntica. Difícil é executá-la. vii ÍNDICE Pág. RESUMO viii ABSTRACT ix LISTA DE SIGLAS E ABREVIATURAS x 1.INTRODUÇÃO 1 2.JUSTIFICATIVA 11 3.HIPÓTESE 12 4.OBJETIVOS 13 5.ARTIGOS PUBLICADOS 14 6.DISCUSSÃO 57 7.CONCLUSÕES 73 8. REFERÊNCIAS BIBLIOGRÁFICAS 75 viii RESUMO Objetivo: Este estudo avaliou e comparou a influência dos movimentos de rotação reciprocante e de rotação contínua na vida útil em fadiga de instrumentos endodônticos de niquel-titânio (NiTi) mecanizados, quando submetidos a ensaios de flexão rotativa estáticos e dinâmicos. Métodos: Os dispositivos empregados nos ensaios mecânicos de flexão rotativa estático e dinâmico, assim como os canais artificiais, foram os mesmos utilizados em todos os trabalhos avaliados e analizados nesse estudo. Resultados: Os resultados obtidos demonstraram diferenças estatísticas entre os movimentos de rotação reciprocante e de rotação contínua. Também ocorreram diferenças significantes em relação ao modelo de ensaio de flexão rotativa estático e dinâmico. Conclusão: Os resultados obtidos revelaram que os instrumentos endodônticos de NiTi mecanizados, quando acionados com o movimento de rotação reciprocante no modelo dinâmico, apresentaram maior vida útil em fadiga, quando comparados ao movimento de rotação contínua no modelo estático. Palavras-chave: instrumentos endodônticos de níquel-titânio; movimento de rotação reciprocante; movimento de rotação contínua; fratura em flexão rotativa; ensaio estático; ensaio dinâmico. ix ABSTRACT Aim: This study evaluated and compared the influence of the reciprocating and the continuous rotation movements on the fatigue life of rotary nickel-titanium (NiTi) instruments subjected to static and dynamic cyclic fatigue assays. Methods: The devices used in the mechanic assays of static and dynamic cyclic fatigue as well as the artificial canals were the same used in all the experiments evaluated and analyzed in this study. Results: Findings showed statistic difference between the reciprocating and the continuous rotation movements. There was also a significant difference related to the use static and dynamic cyclic fatigue tests. Conclusion: The present results revealed that the rotary NiTi endodontic instruments working in reciprocating rotation in the dynamic model showed longer fatigue life when compared to the continuous rotation movement in the static model. Key words: nickel-titanium endodontic instruments; reciprocating movement; continuous rotation movement; rotation bending fracture; static assay; dynamic assay. x LISTA DE SIGLAS E ABREVIATURAS AISI - American Iron and Steel Institute D0 - diâmetro da ponta da parte de trabalho de um instrumento endodôntico D3 - diâmetro medido na parte de trabalho do instrumento endodôntico distando 3 mm da ponta D13 - diâmetro medido na parte de trabalho do instrumento endodôntico distando 13 mm da ponta D16 - diâmetro medido junto do intermediário de instrumentos endodônticos com comprimento de 16 mm na parte de trabalho HV - microdureza Vickers ISO - International Organization for Standardization MEV - microscopia eletrônica de varredura NCF - número de ciclos até a fratura NiTi - liga níquel-titânio NiTiNOL - Níquel-Titânio-Naval Ordenance Laboratory NOL - Naval Ordenance Laboratory em Silver Springs, EUA 1 1. INTRODUÇÃO Instrumento endodôntico é uma ferramenta de natureza metálica empregada como agente mecânico na instrumentação de canais radiculares. (LOPES et al., 2010a). A ocorrência de falhas de um material normalmente é o resultado de deficiências do projeto, processamento inadequado dos materiais, de deterioração em uso e operação incorreta pelo profissional. A fratura dos instrumentos endodônticos consiste na separação em duas partes, devido à aplicação de cargas externas. Pode ser induzida pela aplicação de cargas em torção ou em flexão rotativa (LOPES et al., 2000; ELIAS & LOPES, 2007; LOPES et al., 2007; CHEUNG, 2009). A resistência à fratura dos materiais depende basicamente das forças de coesão entre seus átomos e a presença de defeitos nos materiais. Não existe material sem defeito. Sabendo-se desta limitação, os materiais (instrumentos endodônticos) são submetidos aos diferentes ensaios mecânicos para a determinação de suas propriedades mecânicas e previsão de seu desempenho clínico. A despeito disso, às vezes, os materiais podem apresentar fratura com carregamento abaixo do seu limite de resistência, obtido em ensaios mecânicos(CALLISTER, 2002). Os instrumentos endodônticos são fabricados com ligas de aço inoxidável ou com ligas níquel-titânio (NiTi) convencional e modificadas. O grande diferencial entre os instrumentos endodônticos de NiTi e de aço inoxidável é a flexibilidade. Os instrumentos de NiTi apresentam flexibilidade 2 500% maior do que os de aço inoxidável; esta maior flexibilidade aumenta a resistência em fadiga de um instrumento endodôntico, quando submetido ao ensaio de flexão rotativa. Esta propriedade também permite que estes instrumentos acompanhem a curvatura de um canal com facilidade, reduzindo o deslocamento apical e mantendo a forma original do mesmo, com menor movimentação do eixo central do canal radicular durante a instrumentação (SERENE et al., 1995; BERUTTI et al., 2012; BÜRKLEIN & SCHÄFER, 2013). Apesar disto, o risco de fratura dos instrumentos endodônticos continua a ser um problema durante a instrumentação de canais radiculares curvos. A fratura dos instrumentos endodônticos pode ocorrer por torção ou por flexão rotativa. A fratura por torção ocorre quando a ponta ou qualquer parte de um instrumento fica imobilizada no interior de um canal radicular, enquanto sua haste de acionamento continua a girar. Nesta condição, o limite elástico do material é ultrapassado e o instrumento endodôntico sofre deformação plástica. A continuidade do carregamento (giro), estando o instrumento em deformação plástica, pode levá-lo a falha (fratura por torção). Já a fratura por flexão rotativa promove a fratura por fadiga de um instrumento endodôntico. A fratura por flexão rotativa ocorre quando um instrumento endodôntico gira no interior de um canal curvo. Nesta condição, o instrumento é submetido a tensões trativas e compressivas concentradas na região de curvatura máxima do canal. Esta concentração de tensões trativas e compressivas podem promover mudanças microestruturais na liga metálica, promovendo a falha por fadiga do instrumento endodôntico. 3 A fratura por fadiga ocorre sem que haja qualquer sinal visível de deformação plástica anteriormente. A vida útil em fadiga de um instrumento endodôntico é diretamente proporcional à intensidade das tensões a que são submetidos. A intensidade das tensões varia em função da geometria dos canais, da geometria dos instrumentos endodônticos e da flexibilidade da liga metálica empregada na fabricação dos instrumentos (PRUETT, 1997; HAIKEL et al., 1999; LOPES et al., 2013a). Com o objetivo de reduzir a intensidade das tensões aplicadas em um instrumento endodôntico, durante a instrumentação de um canal curvo, tem sido propostas mudanças no tipo de movimento a ele aplicado. Assim a crescente proposta é o acionamento de instrumentos endodônticos com dispositivos mecânicos (motores e contra ângulos especiais), por meio do movimento de rotação reciprocante. Este movimento pode aumentar a vida útil em fadiga de instrumentos endodônticos, quando comparado com o movimento de rotação contínua, estático ou dinâmico (WAN et al., 2011; KIM et al., 2012; LOPES et al., 2013b, LOPES et al., 2013c). O uso de contra-ângulos especiais com o objetivo de obter o movimento reciprocante data de 1928 (Cursor Filing Contra-Angle; W&H, Bürmoos, Áustria). Desde então, outros contra ângulos tem sido desenvolvidos com o propósito de acionar os instrumentos endodônticos por meio de movimento de rotação reciprocante (YARED & RAMLI, 2013). 4 Movimentos dos instrumentos endodônticos Durante a instrumentação de canais radiculares, os instrumentos endodônticos podem promover o desgaste da dentina (ampliação do canal radicular) por meio dos movimentos (limagem, alargamento ou alargamento e limagem) aplicados a eles, obtidos manualmente ou por dispositivos mecânicos. O movimento de alargamento ou limagem está relacionado à geometria da parte de trabalho, ao comportamento mecânico do instrumento e à anatomia dos segmentos de canais radiculares (LOPES et al., 2010a). Movimento de alargamento Alargamento é um processo mecânico de usinagem destinado a ampliar por meio do corte de um material, o diâmetro de um furo (canal radicular) pré- existente. Alargadores endodônticos são instrumentos de natureza metálica cuja haste de corte, geralmente, é cônica. Os alargadores endodônticos são instrumentos (ferramentas) projetados exclusivamente para alargar canais radiculares (LOPES et al., 2010a). O alargamento consiste no giro (movimento de rotação) e no deslocamento compressivo (movimento de avanço) simultâneos de um alargador no interior de um furo. Para que ocorra o alargamento de um canal radicular (corte do material), é necessário que o instrumento trabalhe justo no interior de um furo, ou seja, o diâmetro do instrumento deve ser maior do que o do furo e o círculo de corte complete todo o contorno do furo. Os alargadores endodônticos de NiTi são indicados para a realização do movimento de 5 alargamento empregado na instrumentação de canais radiculares (LOPES et al., 2010b). Em endodontia, os alargadores endodônticos podem executar o movimento de alargamento, por meio de uma rotação parcial à direita, de uma rotação parcial alternada ou reciprocante (com rotação à direita e à esquerda ou à esquerda e à direita) ou de uma rotação contínua à direita (LOPES et al., 2010b). O movimento de alargamento parcial à direita é realizado manualmente. O movimento de alargamento parcial reciprocante pode ser realizado manualmente ou por dispositivos mecânicos. Quando os instrumentos endodônticos apresentam hélices da direita para a esquerda, o instrumento deve ser acionado inicialmente à direita, com o objetivo de cortar a dentina e, à esquerda, para libertar o instrumento endodôntico do esforço de corte. Quando os instrumentos endodônticos apresentam hélices da esquerda para a direita, o instrumento deve ser acionado inicialmente à esquerda com o objetivo de cortar a dentina e, à direita, com o objetivo de libertar o instrumento do esforço de corte (LOPES et al., 2010b). O movimento de alargamento parcial reciprocante por meio de dispositivos mecânicos pode ser programado para funcionar com diferentes ângulos de rotação. O ângulo de rotação reciprocante pode variar ou ser constante. Quando variável é maior no sentido de corte da dentina. Quanto maior o ângulo de rotação reciprocante menor será a resistência em flexão rotativa (vida útil em fadiga) do instrumento endodôntico. (WAN et al., 2011; KIM et al., 2012; PLOTINO et al., 2012; GAMBARINI et al., 2012a; LOPES et 6 al., 2013b; LOPES et al., 2013c) A frequência das oscilações pode variar com a velocidade de giro do dispositivo mecânico. A posição do ângulo de corte pode se situar na mesma região em relação ao círculo de corte ou pode se deslocar sucessivamente completando o contorno do círculo de corte. No movimento de alargamento contínuo, o instrumento endodôntico deve girar continuamente à direita. É executado por meio de dispositivos mecânicos (motores e contra ângulos especiais); porém, podem ser acionados manualmente. A velocidade de giro é variável e normalmente indicada pelo fabricante. Quanto maior a velocidade de giro, menor será a vida útil em fadiga do instrumento empregado (LOPES et al., 2009; KIM et al., 2012). O movimento de alargamento contínuo, em comparação ao alargamento reciprocante, induz maior tensão trativa e compressiva na região crítica (ponto de maior tensão) em flexão rotativa, reduzindo a vida útil em fadiga do instrumento endodôntico (LOPES et al., 2013b; LOPES et al., 2013c). Fratura por flexão rotativa A fratura por flexão rotativa ocorre quando um instrumento endodôntico gira no interior de um canal curvo, estando ele dentro do limite elástico do material. Na região de flexão rotativa de um instrumento endodôntico são induzidas tensões alternadas trativas e compressivas.A repetição destas tensões promove mudanças microestruturais acumulativas, que induzem a fratura por fadiga do instrumento endodôntico. A fadiga é um fenômeno que ocorre quando são aplicados carregamentos dinâmicos repetidos ou flutuantes a um material metálico e o 7 mesmo se rompe com uma carga muito menor que a equivalente a sua resistência estática. A fadiga é importante no sentido de que ela é a maior causa individual de falhas em metais, sendo estimado que ela compreenda aproximadamente 90% de todas as falhas metálicas (LOPES & ELIAS, 2001; CHEUNG, 2009; RODRIGUES et al., 2011). A fratura por fadiga de um instrumento pode ser avaliada e analisada por meio de ensaio mecânico por flexão rotativa. Para a realização do ensaio mecânico de flexão rotativa é necessário o uso de dispositivos específicos (PRUETT et al., 1997; LI et al., 2002; LOPES et al., 2013a). O instrumento gira no interior de um canal artificial curvo com raio de curvatura, posição e comprimento do arco pré-determinados (LOPES et al., 2013a). É considerado ensaio destrutivo, ou seja, é realizado até ocorrer a fratura do instrumento endodôntico. O canal artificial deve possuir diâmetro maior do que o do instrumento a ser ensaiado. O instrumento endodôntico é acionado a uma velocidade pré-determinada, empregando-se um contra ângulo acoplado a um micromotor elétrico. O conjunto canal artificial, contra ângulo / micromotor elétrico é fixado em um dispositivo suporte, tendo como objetivo principal eliminar a interferência do operador na indução de tensões sobre os instrumentos endodônticos, durante o ensaio de flexão rotativa (LOPES et al., 2013a). Na endodontia, o ensaio mecânico de flexão rotativa pode ser considerado estático ou dinâmico. É considerado estático, quando um instrumento endodôntico gira no interior de um canal artificial curvo, permanecendo numa mesma distância, ou seja, sem deslocamento longitudinal 8 de avanço e retrocesso (PRUETT et al., 1997; HAIKEL et al., 1999; LOPES et al., 2007). Quando um instrumento, durante o ensaio, é movimentado longitudinalmente com avanço e retrocesso, é considerado dinâmico. Em ambas as condições os instrumentos podem ser ensaiados por meio de rotação reciprocante ou contínua (LI et al., 2002; LOPES et al., 2010c; LOPES et al., 2013c). De acordo com TOBUSHI et al. (1998), o ensaio de flexão rotativa é um método simples e eficaz para determinar o comportamento mecânico em fadiga dos instrumentos endodônticos de NiTi. Intensidade das tensões A intensidade das tensões (força) a que um instrumento endodôntico fica submetido durante um ensaio mecânico de flexão rotativa, ou durante o uso clínico, está relacionada à geometria dos canais, à geometria dos instrumentos endodônticos e ao tipo de movimento empregado (LOPES et al., 2010c; LOPES et al., 2013a). Quanto à geometria dos canais, o profissional não pode mudá-la. Porém, os instrumentos e o tipo de movimento selecionados estão atrelados ao conhecimento do profissional. Quanto à geometria dos canais, destacam-se o comprimento do raio, o comprimento do arco e a posição do arco ao longo do comprimento do canal (LOPES et al, 2013a). Quanto menor o comprimento do raio, quanto maior o arco e quanto mais para cervical estiver o arco, maior será a intensidade das tensões que um instrumento endodôntico ficará submetido no ensaio de flexão 9 rotativa. Este aumento da intensidade das tensões induzirá a fratura do instrumento endodôntico por um tempo menor de uso (LOPES et al., 2013a). Em relação à geometria dos instrumentos endodônticos, destacamos o diâmetro D0, a conicidade das hastes helicoidais, o comprimento da parte de trabalho e o número de hélices (SCHÄFER & TEPEL, 2001; ZHANG et al., 2010). Quanto maior o diâmetro em D0, quanto maior a conicidade, quanto menor o comprimento da parte de trabalho e quanto menor o número de hélices, maior será a intensidade das tensões a que um instrumento endodôntico ficará submetido durante o ensaio de flexão rotativa (LOPES et al., 2013c). O aumento da intensidade de tensões reduz o tempo de vida útil de um instrumento endodôntico. Também devemos ressaltar outros fatores, como a forma e a área da seção reta transversal e a flexibilidade de um instrumento endodôntico (SCHÄFER & TEPEL, 2001; ELIAS & LOPES, 2007; ZHANG et al.,2010). Como os instrumentos endodônticos apresentam a haste helicoidal cônica, há aumento de seu diâmetro de D0 para D16; com isto, ocorre redução de sua flexibilidade, à medida que se aproxima de D16. Consequentemente a redução da flexibilidade aumentará a frequência de fratura por fadiga de um instrumento submetido ao ensaio de flexão rotativa. Com o objetivo de reduzir a intensidade das tensões em um instrumento endodôntico ao girar no interior de um canal curvo, tem sido proposto o acionamento do instrumento por meio do movimento de alargamento com rotação reciprocante como alternativa ao movimento de alargamento com rotação contínua (GAMBARINI et al., 2012a; GAMBARINI et al., 2012b; 10 GAMBARRA-SOARES et al., 2013; LOPES et al., 2013b; LOPES et al., 2013c; YARED & RAMLI, 2013) Durante o preparo químico mecânico de um canal radicular, os instrumentos endodônticos são submetidos a severo estado de tensão e deformação, que variam com a anatomia do canal, com as propriedades e comportamento mecânico dos instrumentos endodônticos e com o tipo de movimento aplicado (LOPES et al., 2010b). Assim, a presente proposta sugere a avaliação, em laboratório, da influência do movimento reciprocante aplicado aos instrumentos endodônticos de níquel-titânio mecanizados, quando submetidos ao ensaio de flexão rotativa contínua estático e dinâmico. 11 2. JUSTIFICATIVA O conhecimento da influência do tipo de movimento aplicado em um instrumento endodôntico de NiTi mecanizado é essencial na sua vida útil em fadiga. Em função do exposto, este trabalho buscou, por meio da realização de ensaios mecânicos estáticos e dinâmicos, com o movimento de rotação reciprocante e com o movimento de rotação contínua, avaliar a vida útil em fadiga de instrumentos endodônticos de NiTi mecanizados, quando empregados em canais curvos. 12 3. HIPÓTESE Os resultados esperados devem respaldar a hipótese de que o movimento de rotação reciprocante no modelo dinâmico aumenta a vida útil em fadiga de um instrumento endodôntico de NiTi mecanizado, em comparação ao movimento de rotação contínua. 13 4. OBJETIVOS Este estudo teve como objetivos: 1- Realizar ensaios de flexão rotativa com o movimento de rotação reciprocante e movimento de rotação contínua e comparar os resultados obtidos, para determinar que tipo de movimento rotatório promove maior vida útil em fadiga de um instrumento ensaiado. 2- Realizar ensaio de flexão rotativa com o movimento de rotação reciprocante e com o movimento de rotação contínua nos modelos de ensaios estáticos e dinâmicos, para determinar qual modelo promove maior vida útil em fadiga de um instrumento ensaiado. 3- Analisar, por meio da microscopia eletrônica de varredura (MEV), as superfícies de fraturas e as configurações das hastes helicoidais cônicas dos instrumentos, nos ensaios estáticos e dinâmicos com o movimento de rotação reciprocante e com o movimento de rotação contínua. 14 5. ARTIGOS PUBLICADOS ARTIGO N° 1 Lopes HP, Britto IMO, Elias CN, Oliveira JCM, Neves MS, Moreira EJL, Siqueira JF Jr (2010d). Cyclic fatigue resistance of ProTaper Universal instruments when subjected to static and dynamic tests. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 110: 401-404. ARTIGO N° 2 Rodrigues RCV, Lopes HP, Elias CN, Amaral G, Vieira VTL, De Martin AS (2011). Influence of different manufacturing methods on the cyclic fatigue of rotary nickel-titanium endodontic instruments. J Endod37: 1553-1557. ARTIGO N° 3 Gambarra-Soares T, Lopes HP, Oliveira JCM, Souza LC, Vieira VT, Elias CN (2013). Dynamic or static fatigue tests: which best determines the lifespan of endodontic files? ENDO 7: 101-104. ARTIGO N° 4 De-Deus G, Moreira EJL, Lopes HP, Elias CN (2010). Extended cyclic fatigue life of F2 ProTaper instruments used in reciprocating movement. Int Endod J 43: 1063-1068. ARTIGO N° 5 Lopes HP, Vieira MVB, Elias CN, Siqueira Jr JF, Mangelli M, Lopes WSP et al. (2013b). Fatigue life of WaveOne and ProTaper instruments operated in 15 reciprocating or continous rotation movements and subjected to dynamic and static tests. ENDO 7: 217-222. ARTIGO N° 6 Lopes HP, Elias CN, Vieira MVB, Siqueira Jr JF, Mangelli M, Lopes WSP et al. (2013c). Fatigue life of Reciproc and Mtwo instruments subjected to static and dynamic tests. J Endod 39: 693-696. ARTIGO N° 7 De-Deus G, Vieira VTL, Nogueira da Silva EJ, Lopes HP, Elias CN, Moreira EJ (2014). Bending resistance and dynamic and static cyclic fatigue life of Reciproc and WaveOne Large instruments. J Endod 40: 575-579. 16 ARTIGO N° 1 Lopes HP, Britto IMO, Elias CN, Oliveira JCM, Neves MS, Moreira EJL, Siqueira JF Jr (2010d). Cyclic fatigue resistance of ProTaper Universal instruments when subjected to static and dynamic tests. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 110: 401-404. Cyclic fatigue resistance of ProTaper Universal instruments when subjected to static and dynamic tests Hélio P. Lopes, DDS, LD,a Izabelle M.O. Britto, DDS,a Carlos N. Elias, PhD,b Julio C. Machado de Oliveira, DDS, PhD,a Mônica A.S. Neves, DDS, MSc,a Edson J.L. Moreira, DDS, PhD,c and José F. Siqueira Jr., DDS, PhD,a Rio de Janeiro, Brazil ESTÁCIO DE SÁ UNIVERSITY, MILITARY INSTITUTE OF ENGINEERING, AND GRANDE RIO UNIVERSITY Objective. This study evaluated the number of cycles to fracture of ProTaper Universal S2 instruments when subjected to static and dynamic cyclic fatigue tests. Study design. ProTaper Universal S2 instruments were used until fracture in an artificial curved canal under rotational speed of 300 rpm in either a static or a dynamic test model. Afterward, the length of the fractured segments was measured and fractured surfaces and helical shafts analyzed by scanning electron microscopy (SEM). Results. The number of cycles to fracture was significantly increased when instruments were tested in the dynamic model (P � .001). Instrument separation occurred at the point of maximum flexure within the artificial canals, i.e., the midpoint of the curved canal segment. SEM analysis revealed that fractured surfaces exhibited characteristics of the ductile mode. Plastic deformation was not observed in the helical shaft of fractured instruments. Conclusions. The number of cycles to fracture ProTaper Universal S2 instruments significantly increased with the use of instruments in a dynamic cyclic fatigue test compared with a static model. These findings reinforce the need for performing continuous pecking motions during rotary instrumentation of curved root canals. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:401-404) Root canal preparation methods have changed substan- tially since the introduction of nickel-titanium (NiTi) alloy. The physical properties of NiTi have enabled manufacturing endodontic instruments with different cross-sectional designs and greater tapered working shafts. Another great breakthrough accompanying the introduction of NiTi instruments was the development and further widespread use of rotary instruments and techniques for root canal instrumentation, especially of curved root canals.1-3 The NiTi alloy presents a lower modulus of elasticity than stainless steel files; therefore, NiTi instruments exhibit a greater elasticity and higher resistance to plastic deformation. The advent of NiTi endodontic instruments has made it possible to attain preparations that are larger at the apical part, more centered, and with reduced incidence of deviations compared with stainless-steel instruments.1,3-5 Current evidence indi- aDepartment of Endodontics, Faculty of Dentistry, Estácio de Sá University. bDepartment of Materials Science, Military Institute of Engineering. cDepartment of Endodontics, Faculty of Dentistry, Grande Rio Uni- versity. Received for publication Apr 25, 2010; returned for revision May 11, 2010; accepted for publication May 15, 2010. 1079-2104/$ - see front matter © 2010 Published by Mosby, Inc. doi:10.1016/j.tripleo.2010.05.013 cates that larger apical preparations enhance irrigation efficacy, disinfection, and quality of the obturation.6-9 The major concern during clinical use of rotary NiTi instruments under continuous reaming rotation is the low-cycle fatigue fracture. Fatigue fracture is consid- ered to be low cycle when it occurs in �104 cycles, and this type of instrument failure develops when instru- ments are subjected to rotating bending stress in curved canals.10 The resistance to low-cycle fatigue fracture refers to the number of cycles that an instrument can endure under a specific loading condition before frac- ture occurs.11,12 Cyclic fatigue tests can be static or dynamic.10-13 In the static test, the instrument rotates within a curved canal at a fixed length, i.e., with no axial oscillation. The dynamic model of cyclic fatigue test consists of moving the instrument back and forth in the curved canal. The aim of the present study was to assess the number of cycles to fracture of ProTaper Universal S2 instruments when subjected to static and dynamic cy- clic fatigue tests. MATERIALS AND METHODS Twenty-four ProTaper Universal rotary NiTi end- odontic instruments (Dentsply/Maillefer, Ballaigues, Switzerland) size S2 were used in this experiment. These instruments present nominal tip diameter of 0.20 mm and 25 mm of useful length. The taper of this instrument is variable along its shaft, increasing from 401 OOOOE 402 Lopes et al. September 2010 0.04 mm/mm (D1) to 0.08 mm/mm (D12) and then decreasing to 0.05 mm/mm (D16). An artificial canal was made out of a cylindric tube of stainless steel having the inner diameter of 1.4 mm, total length of 19 mm, arc located between the two straight segments of the canal, and a curvature radius of 6 mm. The arc measured 9 mm, the longest straight part was 7 mm and the shortest straight part was 3 mm. The curvature radius of the artificial canal was measured by taking into account the concave surface of the interior of the tube (Fig. 1). During the tests, the artificial canal was filled with glycerin to reduce the friction of the instrument against the canal wall and to minimize the release of heat. A bench vise was used to hold the stainless steel tube during tests. Twelve ProTaper Universal S2 instruments were used in the static test. Each instrument was placed in a contra-angle at speed reduction of 16:1 (TC-Motor 3000; Nouvag, Goldach, Switzerland) and introduced into the canal from the longest straight tube segment until the tip of the instrument reached the entire length of the canal. The contra-angle was hand-held by an experienced operator, and the instruments were worked in clockwise rotation at nominal speed of 300 rpm until fracture. The time to fracture was measured by the same operator using a digital stopwatch (Leroy) and was established when there was visual observation of the instrument separation. The number of cycles to fracture was attained by multiplying the rotational speed by the time (in seconds) that fracture of each instrument occurred. Another set of 12 ProTaper Universal S2 instruments was used in the dynamic test. The instruments were subjected to the same protocol as in the static test, except that in this group the operator promoted back- and-forth axial movements with the endodontic instru- ments inside the artificial curved canal until fracture was observed. The amplitude of axial movements was Fig. 1. Artificialcanal used in the cyclic fatigue experiment. Schematic drawing. 3 mm, with about 2 seconds for every displacement. Data obtained on the number of cycles to fracture of ProTaper Universal S2 instruments when subjected to static or dynamic cyclic fatigue tests were statistically analyzed by the Student t test with significance level set at 5% (P � .05). The length of the separated instrument fragments was measured by using a digital vernier caliper (Mitu- toyo Sul-Americana, Suzano, SP, Brazil). The fractured surface and the helical shaft of the separated instru- ments were examined under scanning electron micros- copy (SEM) (JSM 5800; Jeol, Tokyo, Japan) to deter- mine the type of fracture. RESULTS Table I depicts the means and standard deviations of the time and number of cycles to fracture of ProTaper Universal S2 instruments subjected to static or dynamic tests. Statistical analyses showed that the number of cycles to fracture was significantly increased when the instruments were tested in the dynamic model (P � .001). The average lengths of the separated segments mea- sured from the instrument’s tips were 8.87 mm and 8.97 mm after the static and dynamic tests, respectively. At these points, the instrument taper is the same (0.06 mm/mm) and the diameters are 0.69 mm and 0.7 mm, respectively. Instrument separation occurred at the point of maximum flexure within the artificial canals, i.e., the midpoint of the curved segment of the artificial canal. The SEM analysis revealed that the fractured sur- faces had ductile morphologic characteristics (Figs. 2A and 2B). The presence of dimples with varied shapes was identified on the fractured surfaces. Plastic defor- mation was not observed in the helical shaft of frac- tured instruments (Figs. 3A and 3B). The different cyclic fatigue tests (static or dynamic) had no influence on SEM results. DISCUSSION Cyclic fatigue resistance is measured by the number of cycles that an instrument endures during the fatigue test. The number of cycles is cumulative and relates to the intensity of compressive and tensile stresses, which Table I. Mean (SD) of the time and the number of cycles to fatigue fracture (NCF) of ProTaper Universal S2 instruments Test n Time, s NCF Static 12 68.1 (14.7) 340.5 (73.65) Dynamic 12 125.1 (13.4) 625 (67.2) in turn are related to the curvature radius, arc length, OOOOE Volume 110, Number 3 Lopes et al. 403 and instrument size.10-12,14 According to Tobushi et al.,15 the cyclic fatigue test is a simple and reliable approach to determine the fatigue behavior of instru- ments manufactured from NiTi alloy. In the present study, a metallic tube was used to standardize the entire length of the canal, the length of the curvature radius and the length of the arc. However, one should bear in mind that the actual lengths of arc and radius of the cylindric curved canal are not the same as the instru- ment positioned inside the tube.16 It is also important to point out that because the inner diameter of the tube was larger than that of the endodontic instrument and a lubricant was used throughout the experiments, in- struments were allowed to rotate within the canal with- out significant resistance during the cyclic fatigue tests.10,11,14,17 This study was intended to evaluate whether cyclic fatigue resistance of ProTaper Universal S2 instruments Fig. 2. Fractured surfaces of instruments showing morpho- logic characteristics of the ductile type. A, Static test; B, dynamic test (original magnification �1,500). was different when these instruments were subjected to either static or dynamic test. The results demonstrated that the number of cycles to fracture were significantly higher in the dynamic test. These results are consistent with those reported by Li et al.13 Because in the static test the endodontic instrument is not subjected to an axial movement, the alternating compressive and tensile stresses are concentrated at the same area of the instrument.13 These stresses are cu- mulative and induce microstructural changes in the metallic alloy. The present results indicated that stress concentration at the same area of the instrument shaft significantly reduced the number of cycles to fracture. On the other hand, in the dynamic test, compressive and tensile stresses are distributed along the tapered helical shaft of the instruments, owing to the axial movement of the instruments within the curved canal. Therefore, by avoiding stress concentration at the same instrument area, the fatigue fracture resistance was augmented. Fig. 3. Fractured surfaces. No plastic deformation is ob- served on the helical shaft. A, Static test; B, dynamic test (original magnification �100). The present results and those from Li et al.13 indicate OOOOE 404 Lopes et al. September 2010 that this principle conceivably holds for other instru- ments. The SEM analysis of fractured ProTaper Universal S2 instruments did not reveal any morphologic differ- ence between the cyclic fatigue tests. No evidence of plastic deformation in the helical shafts of fractured instruments was observed. The fracture surface of the instruments tested had morphologic characteristics of the ductile type, which is in consonance with several earlier studies.10,11,14,18,19 The average length of the separated instrument seg- ments was not influenced by the different cyclic fatigue tests. All instruments tested fractured at the point of movement flexure within the curved segment of the tube. At this point, the stress on the instrument was conceivably greater. In conclusion, the results of the present study showed that the number of cycles to fracture ProTaper Univer- sal S2 instruments under rotary bending test increased with the use of instruments in a dynamic cyclic fatigue test compared with a static model. These findings rein- force the need for performing continuous pecking mo- tions during rotary instrumentation of curved root ca- nals. No plastic deformation was visible along the helical shaft of the fractured instruments, and the frac- tured surfaces were of the ductile type. REFERENCES 1. Coleman CL, Svec TA. Analysis of Ni-Ti versus stainless steel instrumentation in resin simulated canals. J Endod 1997;23: 232-5. 2. Peters OA. Current challenges and concepts in the preparation of root canal systems: a review. J Endod 2004;30:559-67. 3. Hulsmann M, Peters OA, Dummer PMH. Mechanical prepara- tion of root canals: shaping goals, techniques and means. Endod Topics 2005;10:30-76. 4. Short JA, Morgan LA, Baumgartner JC. A comparison of canal centering ability of four instrumentation techniques. J Endod 1997;23:503-7. 5. Yoshimine Y, Ono M, Akamine A. The shaping effects of three nickel-titanium rotary instruments in simulated S-shaped canals. J Endod 2005;31:373-5. 6. Siqueira JF, Jr Lima KC, Magalhaes FA, Lopes HP, de Uzeda M. Mechanical reduction of the bacterial population in the root canal by three instrumentation techniques. J Endod 1999;25:332-5. 7. Rollison S, Barnett F, Stevens RH. Efficacy of bacterial removal from instrumented root canals in vitro related to instrumentation technique and size. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002;94:366-71. 8. Card SJ, Sigurdsson A, Orstavik D, Trope M. The effectiveness of increased apical enlargement in reducing intracanal bacteria. J Endod 2002;28:779-83. 9. Usman N, Baumgartner JC, Marshall JG. Influence of instrument size on root canal debridement. J Endod 2004;30:110-2. 10. Pruett JP, Clement DJ, Carnes DL Jr. Cyclic fatigue testing of nickel-titanium endodontic instruments. J Endod 1997;23:77-85. 11. Lopes HP, Ferreira AA, Elias CN, Moreira EJ, de Oliveira JC, Siqueira Jr JF. Influence of rotational speed on the cyclic fatigue of rotary nickel-titanium endodontic instruments. J Endod 2009; 35:1013-6. 12. Yao JH, Schwartz SA, Beeson TJ. Cyclic fatigue of three types of rotary nickel-titanium files in a dynamic model. J Endod 2006;32:55-7. 13. Li UM, Lee BS, Shih CT, Lan WH, Lin CP. Cyclic fatigueof endodontic nickel titanium rotary instruments: static and dy- namic tests. J Endod 2002;28:448-51. 14. Lopes HP, Moreira EJ, Elias CN, de Almeida RA, Neves MS. Cyclic fatigue of ProTaper instruments. J Endod 2007;33:55-7. 15. Tobushi H, Shimeno Y, Hachisuka T, Tanaka K. Influence of strain rate on superelastic properties of TiNi shape memory alloy. Mechanics Mater 1998;30:141-50. 16. Plotino G, Grande NM, Mazza C, Petrovic R, Testarelli L, Gambarini G. Influence of size and taper of artificial canals on the trajectory of NiTi rotary instruments in cyclic fatigue studies. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109: e60-6. 17. Inan U, Aydin C, Tunca YM. Cyclic fatigue of ProTaper rotary nickel-titanium instruments in artificial canals with 2 different radii of curvature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;104:837-40. 18. Wei X, Ling J, Jiang J, Huang X, Liu L. Modes of failure of ProTaper nickel-titanium rotary instruments after clinical use. J Endod 2007;33:276-9. 19. Haikel Y, Serfaty R, Bateman G, Senger B, Allemann C. Dy- namic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments. J Endod 1999;25:434-40. Reprint requests: José F. Siqueira Jr., PhD Faculty of Dentistry Estácio de Sá University Av. Alfredo Baltazar da Silveira, 580/cobertura, Recreio Rio de Janeiro, RJ Brazil 22790-701 siqueira@estacio.br mailto:siqueira@estacio.br 21 ARTIGO N° 2 Rodrigues RCV, Lopes HP, Elias CN, Amaral G, Vieira VTL, De Martin AS (2011). Influence of different manufacturing methods on the cyclic fatigue of rotary nickel-titanium endodontic instruments. J Endod 37: 1553-1557. Basic Research—Technology Influence of Different Manufacturing Methods on the Cyclic Fatigue of Rotary Nickel-Titanium Endodontic Instruments Renata C.V. Rodrigues, DDS,* H�elio P. Lopes, LD,† Carlos N. Elias, PhD,‡ Georgiana Amaral, PhD,§ Victor T.L. Vieira, DDS, ‡ and Alexandre S. De Martin, PhD* Abstract Introduction: The aim of this study was to evaluate, by static and dynamic cyclic fatigue tests, the number of cycles to fracture (NCF) 2 types of rotary NiTi instru- ments: Twisted File (SybronEndo, Orange, CA), which is manufactured by a proprietary twisting process, and RaCe files (FKG Dentaire, La Chaux-de-Fonds, Switzerland), which are manufactured by grinding. Methods: Twenty Twisted Files (TFs) and 20 RaCe files #25/.006 taper instruments were allowed to rotate freely in an artificial curved canal at 310 rpm in a static or a dynamic model until fracture occurred. Results: Measurements of the fractured fragments showed that fracture occurred at the point of maximum flexure in the midpoint of the curved segment. The NCF was signif- icantly lower for RaCe instruments compared with TFs. The NCF was also lower for instruments subjected to the static test compared with the dynamic model in both groups. Scanning electron microscopic analysis re- vealed ductile morphologic characteristics on the frac- tured surfaces of all instruments and no plastic deformation in their helical shafts. Conclusions: Rotary NiTi endodontic instruments manufactured by twisting present greater resistance to cyclic fatigue compared with instruments manufactured by grinding. The frac- ture mode observed in all instruments was of the ductile type. (J Endod 2011;37:1553–1557) Key Words Cyclic fatigue, endodontic instruments, nickel-titanium, Twisted File, RaCe From the *Department of Endodontics, S~ao Leopoldo Man- dic, Dental Research Center, Campinas, S~ao Paulo; †Department of Endodontics, Faculty of Dentistry, Est�acio de S�a University, Rio de Janeiro, Rio de Janeiro; ‡Department of Materials Science, Military Institute of Engineering, Rio de Janeiro, Rio de Janeiro; and §Department of Endodontics, S~ao Leopoldo Mandic, Dental Research Center, Rio de Janeiro, Rio de Janeiro, Brazil. Address requests for reprints to Dr Alexandre S. De Martin, Av Julio de Mesquita, 983/92, Campinas, SP, Brazil CEP 13025- 063. E-mail address: a-sigrist@uol.com.br 0099-2399/$ - see front matter Copyright ª 2011 American Association of Endodontists. doi:10.1016/j.joen.2011.08.011 JOE — Volume 37, Number 11, November 2011 Most nickel-titanium (NiTi) rotary endodontic instruments are machined bygrinding although some are produced by twisting the alloy after heat treatment (1). Low-cycle fatigue fracture is a concern during the clinical use of rotary NiTi instru- ments (2–4). Fracture is defined as low cycle when it occurs in less than 104 cycles. This type of failure may be induced by rotating bending stresses when instrumenting curved canals (5). Resistance to fracture is determined by the number of cycles an instrument can endure under a specific loading condition before fracture occurs (6–8). Cyclic fatigue tests can be static or dynamic (5, 9, 10). In static tests, the instrument rotates at a fixed length (ie, with no axial oscillation) (5, 6, 10), whereas in the dynamic model the instrument is moved back and forth within the canal (7, 11, 12). The aim of this study was to assess the influence of the manufacturing process (grinding or twisting) on the number of cycles to fracture (NCF) of rotary NiTi instruments through static and dynamic fatigue tests. Materials and Methods Forty-four rotary NiTi instruments were used in this study: 22 Twisted files (TFs) (SybronEndo, Orange, CA), which are machined by twisting, and 22 RaCe files (FKG Dentaire, La Chaux-de-Fonds, Switzerland), which are manufactured by grinding. Both sets of files had a nominal size of 0.25 mm at D0, a taper of 0.06 mm/mm, and a triangular cross-section. The RaCe files had a total length of 25 mm, and the TFs had a total length of 27 mm. Instrument Geometry (Design Features) For standardization of the instruments tested, 10 files of each brand were exam- ined under a stereomicroscope (Pantec-Panambra, Cambuci, SP, Brazil) to determine their diameters at D3 and D13; the number of spirals in the working portion; and their helical angle at D3, D6, and D13. The taper of the working portion was calculated by subtracting the diameters at D3 and D13 as described by Stenman and Spangberg (13) using the following equation: Taper ðTÞ ¼ D13� D3=10 The diameter at D0 was calculated based on the values of D3 and T using the following equation: D0 ¼ D3� T� 3 The helical angle is the acute angle formed by the spiral and the long axis of the instrument. It was obtained by tracing a line tangent to the spirals; this line formed an acute angle with the plane containing the instrument axis. The number of spirals per millimeter was obtained by dividing the number of spirals by the length of the working portion. Two instruments of each brand were embedded in acrylic resin and prepared for scanning electron microscopic (SEM) analysis of their cross- sections (JSM 5800; JEOL, Tokyo, Japan). Cyclic Fatigue of 2 Types of NiTi Rotary Instruments 1553 mailto:a-sigrist@uol.com.br http://dx.doi.org/10.1016/j.joen.2011.08.011 Figure 1. A schematic representation of the artificial canal used in the cyclic fatigue tests. Figure 2. An apparatus used for the cyclic fatigue test. Basic Research—Technology Bending Resistance Tests The bending resistance was evaluated using a universal testing machine (DL 10.000; Emic, S~ao Jos�e dos Pinhais, Brazil) as described in previous studies (14, 15). A 20-N load was applied at 15 mm/min by means of a flexible stainless steel wire with 1 end fastened to the testing machine head and the other end attached 3 mm from the instrument tip until it displayed a 45� deflection. The maximum load to bend each file was recorded, and data were statistically analyzed by the Student t test, with the significance level set at 5%. Bending resistance was tested in 10 instruments of each brand. Cyclic Fatigue Tests For these tests, an artificial canal measuring 1.4 mm in diameter and 19 mm in total length was fabricated from a stainless steel tube. A 9- mm-long curved segmentwith a 6-mm radius (measured at the internal concave surface of the tube) was created between 2 straight segments that measured 7 mm and 3 mm (Fig. 1). Static Test A stainless steel apparatus with a square base and a vertical axis was constructed. The vertical axis allowed for the fixture and move- ment of a handpiece. At the base, a bench vise held the artificial canal. A gap at the base of the apparatus allowed the bench vise TABLE 1. The Mean Values for the Working Portion Length (WP); the Diameter at D3 the Diameter at D0; and the Number of Spirals per Millimeter in the Working Port Instruments No. Taper (mm/mm) Diameter (mm) D0 D3 D13 RaCe 10 0.06 0.30 0.48 1.09 TF 10 0.06 0.22 0.40 0.98 1554 Rodrigues et al. to move horizontally while maintaining the axis of the instrument aligned with the straight segment of the artificial canal created between 2 straight segments that measured 7 mm and 3 mm. (Fig. 2). The canal was filled with glycerin to reduce friction, mini- mizing the release of heat. Each file was attached to a contra-angle/ micromotor handpiece with 10:1 gear reduction (TC–Motor 3000; Nouvag AG/AS/LTD, Goldach, Switzerland) and introduced into the canal until the file tip touched a shield positioned at the simulated apical foramen. Ten instruments of each brand were rotated clock- wise at 310 rpm until fracture. The time of fracture was recorded by the same operator using a digital stopwatch (Leroy) and estab- lished by visual observation of instrument separation. The NCF was obtained by multiplying the rotational speed by the time (in seconds) when fracture occurred. Dynamic Test Another set of 10 instruments of each brand was used for the dynamic test. The instruments were subjected to the same protocol described in the static test, but for these experiments a mechanical device promoted back and forth axial movements while the files rotated inside the canal. The amplitude of the axial movements was 3 mm, with approximately 2 seconds between oscillations. Data ob- tained from the static and dynamic tests for both brands of files were statistically analyzed by the Student t test, with the significance level set at 5%. The fractured surfaces and the helical shaft of the separated instruments were analyzed under SEM (JSM 5800) to determine the type of fracture and the presence of plastic deformation in the shaft. and D13; the Helical Angle at D3, D6, and D13; the Number of Spirals; the Taper; ion of the Files WP (mm) Helical angle No. of spirals Per mmD3 D6 D13 17.61 14.55 17.73 19.56 7 0.4 15.36 20.64 24.97 31.16 11 0.7 JOE — Volume 37, Number 11, November 2011 TABLE 2. Means (� standard deviation) of the Maximum Load (g) to Bend RaCe and TF Instruments Instruments No. of instruments Maximum load (g) RaCe 10 333.4 (16.5) TF 10 218.2 (15.26) TABLE 3. Mean (� standard deviation) of the Time(s) and Numbers of Cycles to Fracture (NCF) for the Instruments Tested Test Time NCF RaCe TF RaCe TF Static 25.2 (5.43) 80.4 (8.57) 130.03 (28.03) 414.86 (44.27) Dynamic 45.4 (14.41) 153.25 (36.53) 234.26 (26.33) 790.77 (188.5) Basic Research—Technology Results Instrument Geometry (Design Features) The mean length of the working portion; the diameter at D3 and D13; the helical angle at D3, D6, and D13; the number of spirals in the working portion; the mean taper; the diameter at D0; and the number of spirals per millimeter in the working portion of the files are shown in Table 1. SEM analyses of fractured surface showed that TFs and RaCe files had a triangular cross-section. Bending Resistance The mean bending resistance, represented by the maximum load (in grams) to bend the instruments, is shown in Table 2. A significant difference was observed between the 2 groups (P = 0). Statistically less force was required for TFs with respect to RaCe files in the bending test. Cyclic Fracture The means and standard deviation for the time (in seconds) and NCF are shown in Table 3. TFs presented a significantly higher NCF compared with RaCe files (P = 0). SEM analysis revealed that both brands of files displayed ductile morphologic characteristics on the fracture surfaces. No plastic deformation occurred in the helical shaft of the instruments (Figs. 3 and 4). The cyclic fatigue testing model (static or dynamic) had no influence on the SEM results. Figure 3. The fractured surface of TFs subjected to static (A to B) and dynamic (C TF (100� magnification). (B and D) Cracks following machining grooves are obs JOE — Volume 37, Number 11, November 2011 Discussion The NCF of rotary NiTi endodontic files is affected by their shape, dimensions, and bending resistance. Therefore, these were the param- eters evaluated in the present study. Slight variations in design may have a significant impact on the behavior of endodontic instruments (13). The greater diameter at D0 and the lower flexibility of RaCe files compared with TFs may partly explain their lower resistance to cyclic fatigue (5, 6, 16–19). The performance of rotary instruments in cyclic fatigue assays is directly related to their bending resistance (6, 20, 21). In our experiments, RaCe files required significantly greater loads than TF to display 45� deflection. Therefore, it can be inferred that RaCe files are less flexible than TFs. Rigid instruments present lower a NCF because of the buildup of tensions at the point of maximum flexure, as observed in the present work and in previous studies (19, 22–24). According to Yao et al (7), the use of standardized artificial canals in cyclic fatigue experiments minimizes the influence of other variables. In the present study, a metallic tube was used to standardize the entire length of the canal, the length of the curvature radius, and the length of the arc. However, one should bear in mind that the actual lengths of the arc and the radius of the cylindric curved canal are not the same as the instrument positioned inside the tube (25). It is also important to point out that because the inner diameter of the tube was larger than that of the endodontic instrument and a lubricant was used throughout the experiments, instruments were allowed to rotate within the canal without significant resistance during the cyclic fatigue tests. Friction to D) tests. (A and C) The absence of plastic deformation in the helical shaft of erved near the fractured surface of TF (1,000�). Cyclic Fatigue of 2 Types of NiTi Rotary Instruments 1555 Figure 4. RaCe instruments fractured in the static (A to B) and dynamic (C to D) tests. (A and C) The absence of plastic deformation in the helical shaft (100� magnification). (B and D) No cracks were observed on RaCe instruments (1,600� and 1,000� magnification, respectively). Basic Research—Technology was further reduced by using a lubricant throughout the assays (5, 6, 14, 21, 25). The TF instruments displayed significantly higher NCF values than RaCe files in both fatigue assays (static and dynamic), as observed in previous studies with similar methodologies (26–28). Our observations suggest that the new manufacturing process involving twisting coupled with heat treatment along with the unique longitudinal features of TF files (ie, the helical angle, arrangement and number of spirals/mm in the fluted portion, and longitudinally oriented surface texture) may have positively affected their performance (26). The number of spirals in the working portion may have favored the higher flexibility and fatigue resistance of TFs compared with RaCe files. The morphological features of NiTi rotary instruments and their effect on cyclic fatigue resistance have been the object of several studies (17, 18, 26–28). According to the manufacturer, Twisted File instruments are produced by a proprietary process of heating and cooling of NiTi that leads to a molecular structure known as the R phase. In this state, NiTi can be twisted, resulting in instruments with opti- mized properties (29). The alloy in the R phase displays super elasticity and shape memory, allowing theproduction of more flex- ible instruments compared with their ground counterparts (26, 29). Regardless of the instrument brand and manufacturing process, in the present work, the NCF was significantly higher during dynamic versus static fatigue testing; our findings, which are similar to those from other studies (7–11), indicate that a concentration of stresses in the same area of the instrument shaft significantly reduces the NCF. Because in the static test the file does not move axially, alternating compressive and tensile stresses are concentrated in one area of the instrument. These cumulative stresses induce microstructural changes in the alloy. In contrast, in the dynamic model, the file moves axially within the canal, allowing stresses to be distributed along the instrument shaft. By preventing stress concentration in the same area, resistance to fracture 1556 Rodrigues et al. is enhanced. Our results along with those from Li et al (9) and Lopes et al (10) suggest that this principle may hold true for other types of instruments. SEM analysis of the instruments showed that both file types had a triangular cross-section. Analysis of the fractured surfaces did not reveal morphologic differences between the 2 types of instruments or between instruments fractured during static versus dynamic tests. Moreover, no evidence of plastic deformation was detected in the helical shafts of any fractured instruments. All fracture surfaces displayed ductile morphologic characteristics as observed by other authors (5, 21, 26). In conclusion, TF endodontic instruments, which are manufac- tured by a twisting technology, display higher NCF values compared with RaCe instruments, which are manufactured by grinding. The NCF for both instruments was higher in the dynamic fatigue test than in the static model. Therefore, it can be inferred that TFs are more flexible than RaCe files. These results highlight the importance of applying a continuous pecking motion during rotary instrumentation of curved root canals in order to avoid concentration of stresses in the same area of the instrument shaft. Acknowledgments The authors thank FKG Dentaire for providing the instruments used in this study. The authors deny any conflicts of interest related to this study. References 1. Peters OA, Paque F. Current developments in rotary root canal instrument tech- nology and clinical use: a review. Quintessence Int 2010;41:479–88. 2. Martin B, Zelada G, Varela P, et al. Factors influencing the fracture of nickel-titanium rotary instruments. Int Endod J 2003;36:262–6. 3. Zelada G, Varela P, Martin B, et al. The effect of rotational speed and the curvature of root canals on the breakage of rotary endodontic instruments. J Endod 2002;28: 540–2. JOE — Volume 37, Number 11, November 2011 Basic Research—Technology 4. Varela-Pati~no P, Iba~nez-P�araga A, Rivas-Mundi~na B, et al. Alternating versus continuous rotation: a comparative study of the effect on instrument life. J Endod 2010;36:157–9. 5. Pruett JP, Clement DJ, Carnes DL Jr. Cyclic fatigue testing of nickel-titanium endodontic instruments. J Endod 1997;23:77–85. 6. Lopes HP, Ferreira AA, Elias CN, et al. Influence of rotational speed on the cyclic fatigue of rotary nickel-titanium endodontic instruments. J Endod 2009;35:1013–6. 7. Yao JH, Schwartz SA, Beeson TJ. Cyclic fatigue of three types of rotary nickel-titanium files in a dynamic model. J Endod 2006;32:55–7. 8. Kramkowski TR, Bahcall J. An in vitro comparison of torsional stress and cyclic fatigue resistance of ProFile GT and ProFile GT Series X rotary nickel-titanium files. J Endod 2009;35:404–7. 9. Li UM, Lee BS, Shih CT, et al. Cyclic fatigue of endodontic nickel-titanium rotary instruments: static and dynamic tests. J Endod 2002;28:448–51. 10. Lopes HP, Britto IMO, Elias CN, et al. Cyclic fatigue resistance of Protaper Universal instruments when subjected to static and dynamic tests. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:401–4. 11. Dederich DN, Zakariasen KL. The effects of cyclical axial motion on rotary endodontic instrument fatigue. Oral Surg Oral Med Oral Pathol 1986;61:192–6. 12. Ray JJ, Kirkpatrick TC, Rutledge RE. Cyclic fatigue of EndoSequence and K3 rotary files in a dynamic model. J Endod 2007;33:1469–72. 13. Stenman E, Spangberg LSW. Root canal instruments are poorly standardized. J Endod 1993;19:327–34. 14. Lopes HP, Elias CN, Vieira VTL, et al. Effects of electropolishing surface treatment on the cyclic fatigue resistance of BioRace nickel-titanium rotary instruments. J Endod 2010;36:1653–7. 15. Serene TP, Adams JD, Saxena A. Nickel-titanium instruments applications in endodontics. St Louis, MO: Ishiyaku Euroamerica Inc; 1995. 16. Parashos P, Messer HH. Rotary NiTi instrument fracture and its consequences. J Endod 2006;32:1031–43. JOE — Volume 37, Number 11, November 2011 17. Cheung GSP, Shen Y, Darvell BW. Effect of environment on low-cycle fatigue of a nickel-titanium instrument. J Endod 2007;33:1433–7. 18. Cheung GSP, Darvell BW. Low-cycle fatigue of NiTi rotary instruments of various cross-sectional shapes. Int Endod J 2007;40:626–32. 19. Hani OF, Salameh Z, Al-Shalan T, et al. Effect of clinical use on the cyclic fatigue resistance of ProTaper nickel-titanium rotary instruments. J Endod 2007;33: 737–41. 20. Callister WD Jr. Cîencia e engenharia de materiais: uma introduç~ao. 5th ed. Rio de Janeiro: LTC; 2002. 21. Lopes HP, Moreira EJ, Elias CN, et al. Cyclic fatigue of ProTaper instruments. J Endod 2007;33:55–7. 22. Walia HM, Brantley WA, Gerstein H. An initial investigation of bending and torsional properties of nitinol root canal files. J Endod 1988;14:346–51. 23. Ullmann CJ, Peters OA. Effect of cyclic fatigue on static fracture loads in ProTaper nickel-titanium rotary instruments. J Endod 2005;31:183–6. 24. Inan U, Aydin C, Tunca YM. Cyclic fatigue of ProTaper rotary nickel titanium instru- ments in artificial canals with 2 different radii of curvature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;104:837–40. 25. Plotino G, Grande NM, Cordaro M, et al. A review of cyclic fatigue testing of nickel- titanium rotary instruments. J Endod 2009;35:1469–76. 26. Kim HC, Yum J, Hur B, Cheung GS. Cyclic fatigue and fracture characteristics of ground and twisted nickel-titanium rotary files. J Endod 2010;36:147–52. 27. Larsen CM, Watanabe I, Glickman GN, He J. Cyclic fatigue analysis of a new gener- ation of nickel titanium rotary instruments. J Endod 2009;35:401–3. 28. Gambarini G, Grande NM, Plotino G, et al. Fatigue resistance of engine-driven rotary nickel-titanium instruments produced by new manufacturing methods. J Endod 2008;34:1003–5. 29. Park SY, Cheung GSP, Yum J, et al. Dynamic torsional resistance of nickel-titanium rotary instruments. J Endod 2010;36:1200–4. Cyclic Fatigue of 2 Types of NiTi Rotary Instruments 1557 27 ARTIGO N° 3 Gambarra-Soares T, Lopes HP, Oliveira JCM, Souza LC, Vieira VT, Elias CN (2013). Dynamic or static fatigue tests: which best determines the lifespan of endodontic files? ENDO 7: 101-104. 32 ARTIGO N° 4 De-Deus G, Moreira EJL, Lopes HP, Elias CN (2010). Extended cyclic fatigue life of F2 ProTaper instruments used in reciprocating movement. Int Endod J 43: 1063-1068. Extended cyclic fatigue life of F2 ProTaper instruments used in reciprocating movement G. De-Deus1, E. J. L. Moreira2, H. P. Lopes3 & C. N. Elias4 1Veiga de Almeida University, Rio de Janeiro; 2UNIGRANRIO School of Dentistry, Rio de Janeiro; 3ABE/RJ and UNESA, Rio de Janeiro; and 4Military Institute of Engineering, Biomaterials Laboratory, Rio de Janeiro, RJ, Brazil Abstract De-Deus G, Moreira EJL, Lopes HP, Elias CN. Extended cyclic fatigue life of F2 ProTaper instruments used in recipro- cating movement. International Endodontic Journal, 43, 1063– 1068, 2010. Aim To evaluate the cyclic fatigue fracture resistanceof engine-driven F2 ProTaper instruments under recip- rocating movement. Methodology A sample of 30 NiTi ProTaper F2 instruments was used. An artificial canal was made from a stainless steel tube, allowing the instruments to rotate freely. During mechanical testing, different movement kinematics and speeds were used, which resulted in three experimental groups (n = 10). The instruments from the first group (G1) were rotated at a nominal speed of 250 rpm until fracture, whilst the instruments from the second group (G2) were rotated at 400 rpm. In the third instrument group (G3), the files were driven under reciprocating movement. The time of fracture for each instrument was measured, and statistical analysis was performed using parametric methods. Results Reciprocating movement resulted in a significantly longer cyclic fatigue life (P < 0.05). More- over, operating rpm was a significant factor affecting cyclic fatigue life (P < 0.05); instruments used at a rotational speed of 400 rpm (approximately 95 s) failed more rapidly than those used at 250 rpm (approxi- mately 25 s). Conclusions Movement kinematics is amongst the factors determining the resistance of rotary NiTi instruments to cyclic fracture. Moreover, the recipro- cating movement promoted an extended cyclic fatigue life of the F2 ProTaper instrument in comparison with conventional rotation. Keywords: cyclic fatigue, instruments, ProTaper, reciprocating movement. Received 17 October 2009; accepted 25 April 2010 Introduction Endodontic NiTi instruments have the shape memory effect and superelasticity of NiTi alloy that make them suitable for the enlargement of curved root canals. NiTi rotary instruments with varying cross-sectional designs and tapers have been developed and marketed in the past two decades. However, despite their clear advan- tages, NiTi instruments may undergo premature failure by fatigue (Grande et al. 2006, Inan et al. 2007, Lopes et al. 2007, Ounsi et al. 2007, Whipple et al. 2009), which is the life-limiting factor for its clinical use. As a consequence, the performance of NiTi rotary systems is under constant evaluation (Peters 2004, De-Deus & Garcia-Filho 2009). Recently, a new approach to the use of the ProTaper F2 instrument in a reciprocating movement was reported (Yared 2008). The concept of using a single NiTi instrument to prepare the entire root canal is interesting; the learning curve is reduced considerably as the technique is simplified. Moreover, the use of only one NiTi instrument is more cost-effective than the conventional multi-file NiTi rotary systems. Although the first clinical impressions of the single- file NiTi technique appear promising, other important parameters remain to be assessed by both laboratory and clinical studies. The fracture of an endodontic instrument happens as a result of torsional or bending Correspondence: Gustavo De-Deus, Av. Henrique Dodsworth, 85 ap. 808, Lagoa, 22061-030 Rio de Janeiro, RJ, Brazil (e-mail: endogus@gmail.com). doi:10.1111/j.1365-2591.2010.01756.x ª 2010 International Endodontic Journal International Endodontic Journal, 43, 1063–1068, 2010 1063 fatigue (Sattapan et al. 2000, Guilford et al. 2005, Xu & Zheng 2006, Inan et al. 2007, Ounsi et al. 2007) and is a complex event. Thus, a drastic change in the movement kinematics, as proposed by Yared (2008), needs to be assessed in terms of cyclic facture resistance. The hope of better fracture resistance with a new movement kinematic requires systematic eval- uation. The purpose of this study was to evaluate the cyclic fatigue life of the F2 ProTaper instrument, engine- driven under reciprocating movement. The conven- tional rotary movement (continuous rotation) was used as a reference for comparison. The null hypothesis tested was that there are no differences in the fatigue fracture resistance between the two movements. The instrument surface fracture morphology and the helical shaft of the instruments were made to determine the fracture patterns of the instruments. Materials and methods A sample of 30 NiTi ProTaper F2 instruments (25 mm in length; Maillefer SA, Ballaigues, Switzerland) from six different lots was used. During mechanical testing, different movement kinematics and speed settings were used, which resulted in three experimental groups (n = 10). The instruments were randomly distributed with the aid of a free computer algorithm (http:// www.random.org). One artificial canal was made from stainless steel tube with an inner diameter of 1.04 mm, a total length of 20.0 mm, and arcs on the tips with a curvature radius of 6.0 mm. The arc of the tube measured 9.4 mm and the straight portion 10.6 mm, whereas the curvature radius was approximately 90� and was measured taking into consideration the concave sur- face of the interior of the tube (Figure 1a and 1b). A stainless steel apparatus was fabricated with a square base and a vertical axis (Lopes et al. 2009). The vertical axis contained a structure that allowed for the fixture and movement of a micromotor/contra-angle headpiece; a bench vice held the stainless steel tubes. A gap at the base of the apparatus allowed for the movement of the bench vice in a horizontal direction, allowing for a connection between the axis of the instrument and the straight part of the stainless steel canal (Sattapan et al. 2000). The lengths of the instruments were measured using a digital vernier calliper (Mitutoyo Sul-Americana Ltd., Suzano, SP, Brazil). The lengths of the metallic handles (L) of the instruments were computed by subtracting the blade length from the total length. The instruments rotated freely within the stainless tube, which was filled with glycerin to reduce friction and heat production. Each instrument was positioned in a contra-angle handpiece and introduced into the canal until the tip touched a shield positioned at the other extremity. This shield was subsequently removed, as it was used to standardize the instrument penetra- tion into the canal. Three NiTi file groups were tested. The instruments from the first group (G1) were rotated at a nominal speed of 250 rpm until fracture, whilst the instruments from the second group (G2) were rotated at 400 rpm. The instruments from groups G1 and G2 were driven in right-hand rotation by an electric motor (X-Smart (a) (b) Figure 1 (a) An overview of the stainless steel apparatus used. The structure at the vertical axis allowed for the fixture and movement of the micromotor/contra-angle. (b) Closer view of the artificial root canal (stainless steel tube) used. Cyclic fatigue life of F2 ProTaper instrument De-Deus et al. International Endodontic Journal, 43, 1063–1068, 2010 ª 2010 International Endodontic Journal1064 model; Tulsa/Dentsply, Tulsa, OK, USA) using a 1 : 20 reduction contra-angle handpiece. For both G1 and G2, the instruments were driven following the manufac- turer’s instructions. For the third instrument group (G3), the files were used following the method of Yared (2008); the nominal speed was set at 400 rpm and the instruments were driven with an ATR Teknica electric micromotor (Pistoia, Tuscany, Italy) using reciprocating move- ment. The time of fracture of each instrument was measured by the same operator for all groups, using a digital chronometer. The instance of fracture was based on visual observation of the fracture occurring in the instrument. An analysis for each fractured instru- ment was performed under SEM (JEOL JSM 5800; JEOL, Mitaka, Tokyo, Japan) to determine the mode of fracture. As the preliminary analysis of the raw pooled data revealed a bell-shaped distribution (D’Agostino & Person omnibus normality test), the statistical analysis was performed using parametric methods: one-way analysis of variance. Post hoc pair-wise comparisons were performed using Tukey test for multiple compar- isons. The alpha-type error was setat 0.05. SPSS 11.0 (SPSS Inc., Chicago, IL, USA) and Origin 6.0 (Microcal Software, Inc., Northampton, MA, USA) were used as analytical tools. Results The average length of the Pro Taper F2 instruments was 25 mm. SEM evaluation demonstrated that fractured surfaces had ductile morphological characteristics (Fig. 3a,c). Dimples with varied forms were identified. In all the samples, although there were small increases in length, plastic deformation in the helical shaft of the fractured instruments was not observed (Fig. 3b). The number of cycles until fracture was a function of the movement kinematics (reciprocate and continuous rotation). Under continuous rotation, instrument frac- ture occurred after an average of 160 cycles at 250 rpm and 120 cycles at 400 rpm. Under the reciprocating movement, fracture occurred after an average of 126 completed rotations at 400 rpm, which results in 630 cycles. The average, the minimal and the maximal values, as well as the standard deviation, of the time until the fracture are shown in Fig. 2. Based on the statistical analysis, the instruments used in the reciprocating movement revealed a significantly longer cyclic fatigue life (P < 0.05). Moreover, speed of rotation had a significant effect on the cyclic fatigue life in the two rotary movement groups (P < 0.05). Figure 3a,b,c shows representative SEM micrographs illustrating the surface morphology of the fractured instruments. Discussion The results demonstrated that movement kinematics had a significant influence on the cyclic fatigue life of F2 ProTaper instruments. Therefore, the null hypoth- esis can be rejected. From a mechanical viewpoint, stress fracture in rotary endodontic instruments results from continued repetitive loading (cyclic fatigue). Research has shown that fatigue failure occurs by the formation of micro- cracks, usually at the surface of a file, with the growth of this crack increasing by small increments during each loading cycle (Christ 2008). This behavior is commonly observed in any material submitted to fatigue loading. In clinical conditions, tensile stress induces a crack nucleation and propagation in instru- ment surface irregularities, which present a region of concentrated stress (Ounsi et al. 2007, Wei et al. 2007). All new endodontic instruments show irregu- larities on the surface (Anderson et al. 2007, Wei et al. 2007). Experimental data has shown that there are Figure 2 Box-plot showing the average, median, the minimal and maximal values, as well as the standard deviation, of the time until instrument fracture occurred. Different letters indicate significant statistical differences between groups; P < 0.05. De-Deus et al. Cyclic fatigue life of F2 ProTaper instrument ª 2010 International Endodontic Journal International Endodontic Journal, 43, 1063–1068, 2010 1065 large variances in fracture strength of endodontic instruments resulting from a distribution of pre-existing defects on the surface (Anderson et al. 2007, Wei et al. 2007). Consequently, the instrument fatigue life can be regarded as a function of the tensile value, irregularities and the size of cracks on the surface. The fatigue behavior of endodontic instruments and stress analysis during canal treatment is illustrated in Fig. 4. At point 1, the concave part of the instrument is submitted to tensile stress and the crack is opened. At point 3, the convex part of the instrument is under compressive stress and the crack is closed. When the part of the instrument at point 1 turns 180 degrees, the position changes to point 3 and the material is submitted to a compressive stress and the crack closes. On the other hand, when point 3 turns 180 degrees, it undergoes tensile stress at point 1. At each cycle, the maximum tensile stress occurs at point 1 and maxi- mum compressive stress occurs at point 3. The instru- ment fails after ‘‘N’’ cycles, which is the instrument’s fatigue life. When the rotation speed increases, the instruments’ average time of fracture decreases, but the number of cycles does not change. Figure 2 shows that the fatigue life reduced when the rotation speed increased from 250 to 400 rpm. This can be viewed as a further finding of this study. Several reports have noted the effect of the rotational speed on NiTi instrument fracture, with these results being in line with the present findings, which indicate that instru- ments rotated at higher speeds are more susceptible to fracture than when used at lower rotational speeds (Gambarini 2001, Zelada et al. 2002). Figure 4b also shows that when the instrument is submitted to a reciprocating movement, the average time until fracture increases. It is well known that greater bending deflection of the instrument in each cycle results in a reduction in the number of cycles needed to break the file (Xu & Zheng 2006). Many (a) (b) (c) Figure 3 (a) Ductile surface fracture morphology. It is possible to observe dimples. (b) Surface fracture in the helical shaft of the fractured instrument with an absence of plastic deformation. (c) Ductile surface fracture morphology. It is possible to observe dimples. Cyclic fatigue life of F2 ProTaper instrument De-Deus et al. International Endodontic Journal, 43, 1063–1068, 2010 ª 2010 International Endodontic Journal1066 cycles would be required for fracture if the root canal constraint was able to produce only elastic deforma- tion. During just one reciprocating movement (Yared 2008), the instrument turns clockwise 0.4 of the cycle (144 degrees) and returns 0.2 part of the cycle (72 degrees), which means that after five reciprocating movements, the instrument completes one entire rota- tion (360 degrees). The fatigue life is measured by the number of times that the crack closes and opens. During one cycle, the crack opens and closes once. This movement rationale acts to extend the fatigue life of F2 ProTaper instruments. There are no previous reports on the effect of reciprocating movement on the cyclic fatigue life of the F2 ProTaper instrument, and further studies are needed to confirm the extended fatigue life of the F2 ProTaper instrument driven with reciprocating move- ment. The present results indicate that movement kine- matics is included amongst the factors determining the resistance of rotary NiTi instruments to cyclic fracture resistance. Under the present experimental framework, reciprocating movement extends the cyclic fatigue life of F2 ProTaper instruments when compared to the conventional rotary movement. In addition, the influ- ence of speed on the fatigue life is confirmed when the F2 instrument was driven under rotary movement. Further clinical studies are required to determine the relationship of the present experimental data with the efficacy of the F2 ProTaper file used in reciprocating movement in vivo. References Anderson ME, Price JW, Parashos P (2007) Fracture resis- tance of electropolished rotary nickel-titanium endodontic instruments. Journal of Endodontics 33, 1212–26. Christ HJ (2008) Fundamental mechanisms of fatigue and fracture. Student Health Technology Information 133, 56–67. De-Deus G, Garcia-Filho P (2009) The influence of the NiTi rotary system on the debridement quality of the root canal space. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics 108, 71–6. Gambarini G (2001) Cyclic fatigue of nickel-titanium rotary instruments after clinical use with low- and high-torque endodontic motors. Journal of Endodontics 27, 772–4. (a) (b) Figure 4 (a) Schematic drawing of the root canals used in the study; Angle 90 degrees and arc 9.4 mm. (b) Schematic drawing showing that when the instrument is submitted to a reciprocating movement, the average time of fracture increases. De-Deus et al. Cyclic fatigue life of F2 ProTaper instrument ª 2010 International Endodontic Journal International Endodontic Journal, 43, 1063–1068,2010 1067 Grande NM, Plotino G, Pecci R, Bedini R, Malagnino VA, Somma F (2006) Cyclic fatigue resistance and three- dimensional analysis of instruments from two nickel- titanium rotary systems. International Endodontic Journal 39, 755–63. Guilford WL, Lemons JE, Eleazer PD (2005) A comparison of torque required to fracture rotary files with tips bound in simulated curved canal. Journal of Endodontics 31, 468–70. Inan U, Aydin C, Tunca YM (2007) Cyclic fatigue of ProTaper rotary nickel-titanium instruments in artificial canals with 2 different radii of curvature. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics 104, 837–40. Lopes HP, Ferreira AA, Elias CN, Moreira EJ, de Oliveira JC, Siqueira JF Jr. (2009) Influence of rotational speed on the cyclic fatigue of rotary nickel-titanium endodontic instru- ments. Journal of Endodontics 35, 1013–6. Lopes HP, Moreira EJ, Elias CN, de Almeida RA, Neves MS (2007) Cyclic fatigue of ProTaper instruments. Journal of Endodontics 33, 55–7. Ounsi HF, Salameh Z, Al-Shalan T et al. (2007) Effect of clinical use on the cyclic fatigue resistance of ProTaper nickel-titanium rotary instruments. Journal of Endodontics 33, 737–41. Peters OA (2004) Current challenges and concepts in the preparation of root canal systems: a review. Journal of Endodontics 30, 559–67. Sattapan B, Nervo GJ, Palamara JE, Messer HH (2000) Defects in rotary nickel-titanium files after clinical use. Journal of Endodontics 26, 161–5. Wei X, Ling J, Jiang J, Huang X, Liu L (2007) Modes of failure of ProTaper nickel-titanium rotary instruments after clinical use. Journal of Endodontics 33, 276–9. Whipple SJ, Kirkpatrick TC, Rutledge RE (2009) Cyclic fatigue resistance of two variable-taper rotary file systems: ProTaper universal and V-Taper. Journal of Endodontics 35, 555–8. Xu X, Zheng Y (2006) Comparative study of torsional and bending properties for six models of nickel-titanium root canal instruments with different cross-sections. Journal of Endodontics 32, 372–5. Yared G (2008) Canal preparation using only one Ni-Ti rotary instrument: preliminary observations. International Endodon- tic Journal 41, 339–44. Zelada G, Varela P, Martı́n B, Bahı́llo JG, Magán F, Ahn S (2002) The effect of rotational speed and the curvature of root canals on the breakage of rotary endodontic instru- ments. Journal of Endodontics 28, 540–2. Cyclic fatigue life of F2 ProTaper instrument De-Deus et al. International Endodontic Journal, 43, 1063–1068, 2010 ª 2010 International Endodontic Journal1068 39 ARTIGO N° 5 Lopes HP, Vieira MVB, Elias CN, Siqueira Jr JF, Mangelli M, Lopes WSP et al. (2013b). Fatigue life of WaveOne and ProTaper instruments operated in reciprocating or continous rotation movements and subjected to dynamic and static tests. ENDO 7: 217-222. 46 ARTIGO N° 6 Lopes HP, Elias CN, Vieira MVB, Siqueira Jr JF, Mangelli M, Lopes WSP et al. (2013c). Fatigue life of Reciproc and Mtwo instruments subjected to static and dynamic tests. J Endod 39: 693-696. Basic Research—Technology Bending Resistance and Dynamic and Static Cyclic Fatigue Life of Reciproc and WaveOne Large Instruments Gustavo De-Deus, DDS, MS, PhD,* Victor Talarico Leal Vieira, PhD,* Emmanuel Jo~ao Nogueira da Silva, PhD,* Helio Lopes, PhD,† Carlos Nelson Elias, PhD,‡ and Edson Jorge Moreira, PhD* Abstract Introduction: The aim of the present study was to eval- uate the bending resistance and the dynamic and static cyclic fatigue life of Reciproc R40 and WaveOne large in- struments.Methods: A sample of 68 nickel-titanium in- struments (25 mm in length) for use under reciprocation movement (Reciproc and WaveOne) from 3 different lots was tested. Reciproc R40 and WaveOne Large files, both of which had a nominal size of 0.40 mm at D0, were selected. The bending resistance was performed in 10 instruments of each system by using a universal testing machine. Dynamic and static models for cyclic fatigue testing were performed by using a custom-made device. For these tests, an artificial canal measuring 1.4 mm in diameter and 19 mm total length was fabricated from a stainless steel tube. Scanning electron microscopy analysis was performed to determine the mode of frac- ture. Statistical analysis was performed by using para- metric methods, 1-way analysis of variance. Post hoc pair-wise comparisons were performed by using Tukey test for multiple comparisons. Results:WaveOne instru- ments presented significantly higher bending resistance than Reciproc (P < .05). Moreover, Reciproc revealed a significantly longer cyclic fatigue life (P < .05) in both static and dynamic tests (P < .05). Conclusions: Recip- roc R40 instruments resisted dynamic and static cyclic fatigue significantly more than WaveOne Large instru- ments. Furthermore, WaveOne instruments presented significantly less flexibility than Reciproc. (J Endod 2014;40:575–579) Key Words Cyclic fatigue, instruments, NiTi, Reciproc, reciprocating movement, WaveOne From the *Department of Endodontology, Grande Rio Uni- versity (UNIGRANRIO), Duque de Caxias, RJ; †Est�acio de S�a Uni- versity (UNESA), Rio de Janeiro; and ‡Military Institute of Engineering, Biomaterials Laboratory, Rio de Janeiro, Rio de Ja- neiro, Brazil. Address requests for reprints to Prof Gustavo Andr�e de Deus Carneiro Vianna, Av. Henrique Dodsworth, 85 ap. 808, La- goa, Rio de Janeiro, RJ, Brazil 22061-030. E-mail address: endogus@gmail.com 0099-2399/$ - see front matter Copyright ª 2014 American Association of Endodontists. http://dx.doi.org/10.1016/j.joen.2013.10.013 JOE — Volume 40, Number 4, April 2014 Nickel-titanium (NiTi) rotary instruments have become a fundamental tool formechanical root canal preparation mainly because of their superelastic behavior. However, despite their advantages, NiTi rotary instruments may undergo premature fail- ure by flexion and/or torsion (1). Cyclic fatigue fracture occurs as consequence of the continuous rotation of an instrument in a curved space in the absence of binding. In this condition, the instrument under elastic deformation is subjected to a mechanical load represented by alternating tensile and compressive stresses (2). The cyclical repetition of the load leads to instrument fracture through low-cycle fatigue (3, 4). The cyclic fatigue resistance comprises the number of cycles that an instrument can endure under a specific loading condition until fracture occurs. Because NiTi instruments may show no visible signs of permanent deformation during cyclic fatigue, instrument separation may occur unexpectedly (5). In 2008, a new approach to the use of the ProTaper F2 (DENTSPLY Ltd, Addlestone, UK) instrument in a reciprocating movement was reported as an alternative to the conventional continuous rotation (6). The reciprocation motion relieves stress on the instrument by special counterclockwise (cutting action, the instrument advances in the canal and engages dentin to cut it) and clockwise (release of the instruments, the instrument is immediately disengaged) movements and therefore extends the NiTi instrument life span, hence resistance to fatigue, in comparison with continuous rotation (7, 8). Two reciprocation NiTi systems were introduced into themarket: Reciproc (VDW, Munich, Germany) and WaveOne (Dentsply Maillefer, Ballaigues, Switzerland). The manufacturers recommended the use of these files driven by a specific motor with a preset reciprocation mode (‘‘RECIPROC ALL’’ for Reciproc and ‘‘WAVEONE ALL’’ for WaveOne). These instruments travel a shorter angular distance than rotary instruments, which are subject to lower stress values, rendering an extended fatigue life (9–11). One point to highlight is that the extended cyclic fatigue life promoted by the recip- rocationmovement can play a role in achieving larger apical preparations. There is some evidence that larger apicalpreparations allow a greater reduction of intracanal bacteria load and less hard tissue debris, mainly as result of more effective irrigation (12–14). However, achieving a larger apical diameter is not an easy clinical challenge task, essentially in curved, narrow, and long root canals. One point of concern is about the higher instrument fracture risk because the larger the instrument is, the lower the flexibility, and flexibility can directly interfere with instrument’s performance in the cyclic fatigue fracture resistance (2, 15). The aim of the present study was to evaluate the bending resistance and the dynamic and static cyclic fatigue life of Reciproc R40 and WaveOne large instru- ments. The null hypotheses tested were as follows: 1. That there are no differences in the static fatigue fracture resistance between the Re- ciproc R40 and WaveOne large instruments 2. That there are no differences in the dynamic fatigue fracture resistance between the Reciproc R40 and WaveOne large instruments 3. That there are no differences in the bending resistance between the Reciproc R40 and WaveOne large instruments The instrument surface fracture morphology and the helical shaft of the instru- ments were examined to determine the fracture patterns of the instruments. Bending and Cyclic Fatigue Life of Reciproc and WaveOne 575 Delta:1_given name Delta:1_surname Delta:1_given name Delta:1_surname Delta:1_given name Delta:1_surname mailto:endogus@gmail.com http://dx.doi.org/10.1016/j.joen.2013.10.013 Figure 1. (A) Box plot showing the average, median, minimal, and maximal values and the standard deviation of the maximum strength. (B) Box plot showing point-to-point strength distribution. Different letters indicate signifi- cant statistical differences between groups (P < .05). Basic Research—Technology Materials and Methods A sample of 68 NiTi instruments (25 mm in length) for use under reciprocation movement (Reciproc and WaveOne) from 3 different lots was tested. Reciproc R40 and WaveOne Large files, both of which had a nominal size of 0.40 mm at D0, were selected. The former have a nominal taper at the first apical millimeters of 0.06 mm/mm, whereas the latter has 0.08 mm/mm. For standardization and reliability of the experiment, the instruments tested were examined for defects or defor- mities under a stereomicroscope. Bending Resistance Test The bending resistance was performed in 10 randomly selected instruments of each system by using a universal testing machine (DL 10.000; Emic, S~ao Jos�e dos Pinhais, Brazil) as described in previous studies (2, 16). A 20-N load was applied at 15 mm/min by means of a flexible stainless steel wire with 1 end fastened to the testing machine head and the other end attached 3 mm from the instrument tip until it displayed a 45� deflection. The maximum load to bend each file was recorded and statistically analyzed. The force values were acquired in 3 points corresponding to positions 17�, 34�, and 45� for a more detailed analysis. Cyclic Fatigue Tests The instruments were randomly distributed with the aid of a free computer algorithm (http://www.random.org) in 4 experimental groups (n = 12). Dynamic and static models for cyclic fatigue testing were performed by using a custom-made device. For these tests, an artificial canal measuring 1.4 mm in diameter and 19 mm total length was fabricated from a stainless steel tube. A 9-mm-long curved segment with 6-mm radius (measured at the internal concave surface of the tube) was created between 2 straight segments that measured 7 mm and 3 mm (17). The canal was filled with glycerin, reducing friction and heat release. Fatigue tests were performed under static or dynamic conditions. Static Test Twelve instruments of each reciprocate system were activated by using a 6:1 reduction handpiece (Sirona Dental Systems GmbH, Ben- sheim, Germany) powered by a torque-controlled motor (Silver Recip- roc; VDW) by using the pre-setting programs for each one (‘‘RECIPROC ALL’’ for Reciproc and ‘‘WAVEONE ALL’’ for WaveOne). All instruments were reciprocated following the manufacturer’s instructions until a fracture occurred. A stainless steel apparatus was fabricated with a square base and a vertical axis (8). The vertical axis contained a struc- ture that allowed for the fixture and movement of a micromotor/contra- angle headpiece; a bench vise held the stainless steel tubes. A gap at the base of the apparatus allowed for the movement of the bench vise in a horizontal direction, allowing for a connection between the axis of the instrument and the straight part of the stainless steel canal (5). The lengths of the instruments were measured by using a digital vernier caliper (Mitutoyo Sul-Americana Ltd, Suzano, SP, Brazil). The lengths of the metallic handles of the instruments were computed by subtracting the blade length from the total length. The instruments rotated freely within the stainless tube that was filled with glycerin to reduce friction and heat production. Each instru- ment was positioned in a contra-angle handpiece and introduced into the canal until the tip touched a shield positioned at the other extremity. This shield was subsequently removed, because it was used to stan- dardize the instrument penetration into the canal. The time was recorded and stopped as soon as a fracture was detected visually and/or audibly. To avoid human error, video recording was performed 576 De-Deus et al. simultaneously, and the recordings were then observed to cross-check the time of file separation (9). Dynamic Test Another set of 12 instruments of each reciprocate system was used for the dynamic test. The instruments were subjected to the same protocol described in the static test, but for these experiments, a mechanical device promoted back-and-forth axial movements while the files rotated inside the canal. The amplitude of the axial movements was 3 mm, with approximately 2 seconds between oscil- lations. The fractured surfaces and the helical shaft of the separated instruments in both static and dynamic tests were analyzed under scan- ning electron microscopy (JSM 5800; JEOL, Tokyo, Japan) to deter- mine the type of fracture and the presence of plastic deformation in the shaft. Statistics Because the preliminary analysis of the raw pooled and isolated data revealed a bell-shaped distribution (D’Agostino and Person omnibus normality test), statistical analysis was performed by using parametric methods, 1-way analysis of variance. Post hoc pair-wise comparisons were performed by using Tukey test for multiple compar- isons. The alpha-type error was set at 0.05. SPSS 11.0 (SPSS Inc, JOE — Volume 40, Number 4, April 2014 http://www.random.org Basic Research—Technology Chicago, IL) and Origin 6.0 (Microcal Software, Inc, Northampton, MA) were used as analytical tools. Results WaveOne instruments presented significantly higher bending resistance than Reciproc (P < .05) (Fig. 1). Moreover, Reciproc revealed a significantly longer cyclic fatigue life (P < .05) in both static and dynamic tests (P < .05). The average, the minimal and maximal values, and the standard deviation of the bending, static, and dynamic tests are shown in the graphs of Figure 2. Scanning electron microscopy visual inspection of the fractured surface indicated that all instruments showed morphologic character- istics of ductile fracture. Wide-ranging forms of dimples were identified overall, and no plastic deformation in the helical shaft of the fractured instruments was observed (Fig. 3). Discussion The first results of this study showed that the dynamic and static cyclic fatigue of Reciproc R40 instrument was significantly higher than that of the WaveOne larger instrument. Therefore, the first and sec- ond null hypotheses were rejected. Previous studies demonstrated that Reciproc R25 instrument has a higher cyclic fatigue resistance than WaveOne primary files (18–22); however, to the best of the authors’ knowledge, this is the first attempt to evaluatethe bending resistance and the dynamic and static cyclic fatigue by using Reciproc and WaveOne large files (tip #40). The dynamic cyclic fatigue average time of Reciproc instruments showed an increase of 31% compared with static test, whereasWaveOne instruments showed 22% improvement in time. Thus, it is important to note that even by using the reciprocating motion, the instrument should not be static inside the root canal to reduce the risk of fracture. Figure 2. Box plot showing the average, median, minimal, and maximal values and letters indicate significant statistical differences between groups (P < .05). (A) Dyna One, (C) dynamic WaveOne versus static WaveOne, (D) dynamic Reciproc versus JOE — Volume 40, Number 4, April 2014 The average fatigue time of Reciproc instrument was 69% and 73% greater than the WaveOne for the static and dynamic tests, respectively. The percentages of time difference of either instrument were very similar in both types of fatigue test, and this shows that the experimental model used has enough sensitiveness to detect the odds of the instru- ments Reciproc at the 2 tested conditions. Theoretically, this advantage should be similar even with the change of kinematics of the experiment, and this difference was approximately 4%. The third result from the current study indicated that WaveOne files required significantly greater loads than Reciproc to reach 45� deflection. This means that WaveOne larger instruments are less flexible than Reciproc R40 ones. Thus, the third null hypothesis was also rejected. Overall, rigid instruments present a lower number of cycles to fracture because of the buildup of tensions at the point of maximum flexure, as observed in the present study and in line with previous studies (23, 24). Within our knowledge, there is only limited information about flexibility of WaveOne and Reciproc instruments. Therefore, the current results can be used to shine some light on the mechanical behavior of these larger instruments specifically designed to be driven under reciprocation movement. The tip sizes (diameter at D0) of Reciproc R40 and WaveOne Large were the same, although the taper differed. A design point of Reciproc and WaveOne instruments is that the former have a nominal taper at the first apical millimeters of 0.06 mm/mm, whereas the latter has 0.08 mm/mm. This difference also helps to explain the greater stiffness of WaveOne instruments. Both reciprocating file systems are made of the same NiTi alloy (M-wire); however, they have different cross sec- tions. Reciproc instruments have an S-shaped cross section with 2 cut- ting blades, whereas WaveOne instruments have a modified convex triangular cross section and the tip and a convex triangular cross sec- tion in the middle and coronal portions. It has been reported that the larger the cross-sectional area is, the higher the flexural and torsional stiffness (25, 26); in this way, file design (cross-sectional shape, the standard deviation of the time until instrument fracture occurred. Different mic Reciproc versus dynamic WaveOne, (B) static Reciproc versus static Wave- static Reciproc. Bending and Cyclic Fatigue Life of Reciproc and WaveOne 577 Figure 3. Fractured surfaces of instruments showing morphologic characteristics of the ductile type. (A) Reciproc static test, (B) WaveOne static test, (C) Reciproc dynamic test, (D) WaveOne dynamic test (original magnification, �150). Basic Research—Technology diameters of core, etc) would have a significant influence on the torsional and bending (hence, fatigue) resistance (26). The current study compared the bending resistance and the dynamic and static cyclic fatigue of Reciproc R40 and WaveOne Large instruments. The rationale behind the selection of these instruments to test is the current trend to promote larger apical preparations with the purpose of optimizing root canal disinfection (12–14, 27) and thus rendering better conditions for tissue repair (28). The best way of reproducing this type of fatigue is repeating the movement for all tested files under well-standardized experimental con- ditions, mainly in terms of predefined curvature. Experimental models where the instruments can bind should be avoided because additional torsional stress points will appear (21). Although the use of extracted teeth simulates clinical situations, they are not ideal for the analysis of cyclic fatigue because they are not anatomically standardized, and there may be other confounding factors (21). A metallic tube was used in the present study to standardize the entire length of the canal, the length of the curvature radius, and the length of the arc. One limitation of the metallic simulators is that the instrument works in a passive way, whereas clinically it can lock on dentin, leading to torsional fracture. Static and dynamic models were used to test the cyclic fatigue resis- tance in the present study. Regardless of the instrument brand, the cyclic fatigue was significantly higher during dynamic versus static fatigue test. This result is similar to previous studies (17, 21, 22, 29, 30), suggesting that a concentration of stress in a small area of the instrument reduces the cyclic fatigue of the instrument. As in the dynamic model, the file moves axially within the canal; a better distribution of stress along the instrument reduces the compressive and tensile stresses’ concentration at the instrument area located at the center of the metallic tube curve, enhancing fracture resistance (17). The scanning electron microscopy analysis showed typical fracto- graphic appearances of cyclic fatiguewith nomorphologic differences be- tween the 2 types of instruments or between instruments fractured during 578 De-Deus et al. static versus dynamic tests. All fracture surfaces displayed ductilemorpho- logic characteristics as observed in previous studies (3, 8, 17, 19). Under the present experimental framework, Reciproc R40 instru- ments resisted dynamic and static cyclic fatigue significantly more than WaveOne Large instruments. Furthermore, WaveOne instruments pre- sented significantly less flexibility than Reciproc. Acknowledgments The authors deny any conflicts of interest related to this study. References 1. Arens FC, Hoen MM, Steiman HR, Dietz GC Jr. Evaluation of single-use rotary nickel- titanium instruments. J Endod 2003;29:664–6. 2. Lopes HP, Elias CN, Vieira VT, et al. Effects of electropolishing surface treatment on the cyclic fatigue resistance of BioRace nickel-titanium rotary instruments. J Endod 2010;36:1653–7. 3. Pruett JP, Clement DJ, Carnes DL Jr. Cyclic fatigue testing of nickel-titanium end- odontic instruments. J Endod 1997;23:77–85. 4. Zelada G, Varela P, Martin B, et al. The effect of rotational speed and the curvature of root canals on the breakage of rotary endodontic instruments. J Endod 2002;28: 540–2. 5. Sattapan B, Nervo GJ, Palamara JE, Messer HH. Defects in rotary nickel-titanium files after clinical use. J Endod 2000;26:161–5. 6. Yared G. Canal preparation using only one Ni-Ti rotary instrument: preliminary observations. Int Endod J 2008;41:339–44. 7. You SY, Bae KS, Baek SH, et al. Lifespan of one nickel-titanium rotary file with recip- rocating motion in curved root canals. J Endod 2010;36:1991–4. 8. De-Deus G, Moreira EJ, Lopes HP, Elias CN. Extended cyclic fatigue life of F2 Pro- Taper instruments used in reciprocating movement. Int Endod J 2010;43:1063–8. 9. Pedull�a E, Grande NM, Plotino G, et al. Influence of continuous or reciprocating motion on cyclic fatigue resistance of 4 different nickel-titanium rotary instruments. J Endod 2013;39:258–61. 10. Castell�o-Escriv�a R, Alegre-Domingo T, Faus-Matoses V, et al. In vitro comparison of cyclic fatigue resistance of ProTaper, WaveOne, and Twisted Files. J Endod 2012;38: 1521–4. 11. Wan J, Rasimick BJ, Musikant BL. A comparison of cyclic fatigue resistance in recip- rocating and rotary nickel-titanium instruments. Aust Endod J 2011;37:122–7. JOE — Volume 40, Number4, April 2014 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref1 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref1 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref2 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref2 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref2 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref3 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref3 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref4 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref4 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref4 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref5 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref5 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref6 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref6 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref7 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref7 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref8 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref8 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref9 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref9 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref9 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref9 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref10 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref10 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref10 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref10 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref10 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref11 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref11 Basic Research—Technology 12. Yared GM, Dagher FE. Influence of apical enlargement on bacterial infection during treatment of apical periodontitis. J Endod 1994;20:535–7. 13. Coldero LG, McHugh S, MacKenzie D, Saunders WP. Reduction in intracanal bacteria during root canal preparation with and without apical enlargement. Int Endod J 2002;35:437–46. 14. Rollison S, Barnett F, Stevens RH. Efficacy of bacterial removal from instrumented root canals in vitro related to instrumentation technique and size. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002;94:366–71. 15. Callister WD Jr. Cîencia e Engenharia de Materiais: Uma Introduç~ao, 5th ed. Rio de Janeiro: LTC; 2002. 16. Serene TP, Adamns JD, Saxena A. Nickel-Titanium Instruments Application in Endodontics. St Louis, MO: Ishiyaku Euroamerica Inc; 1995. 17. Rodrigues RC, Lopes HP, Elias CN, et al. Influence of different manufacturing methods on the cyclic fatigue of rotary nickel-titanium endodontic instruments. J Endod 2011;37:1553–7. 18. Arias A, Perez-Higuerras JJ, de la Macorra JC. Differences in cyclic fatigue resistance at apical and coronal levels of Reciproc and WaveOne new files. J Endod 2012;38:1244–8. 19. Kim HC, Kwak SW, Cheung GS, et al. Cyclic fatigue and torsional resistance of two new nickel-titanium instruments used in reciprocation motion: Reciproc versus WaveOne. J Endod 2012;38:541–4. 20. Plotino G, Grande NM, Testarelli L, Gambarini G. Cyclic fatigue of Reciproc and WaveOne reciprocating instruments. Int Endod J 2012;45:614–8. 21. Yao JH, Schwartz SA, Beeson TJ. Cyclic fatigue of three types of rotary nickel-titanium files in a dynamic model. J Endod 2006;32:55–7. JOE — Volume 40, Number 4, April 2014 22. Li UM, Lee BS, Shin CT, et al. Cyclic fatigue of endodontic nickel titanium rotary instruments: static and dynamic tests. J Endod 2002;28:448–51. 23. Ullmann CJ, Peters OA. Effect of cyclic fatigue on static fracture loads in ProTaper nickel-titanium rotary instruments. J Endod 2005;31:183–6. 24. Inan U, Aydin C, Tunca YM. Cyclic fatigue of ProTaper rotary nickel titanium instru- ments in artificial canals with 2 different radii of curvature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;104:837–40. 25. Baek SH, Lee CJ, Versluis A, et al. Comparison of torsional stiffness of nickel-titanium rotary files with different geometric characteristics. J Endod 2011;37:1283–6. 26. Zhang EW, Cheung GS, Zheng YF. Influence of cross-sectional design and dimension on mechanical behavior of nickel-titanium instruments under torsion and bending: a numerical analysis. J Endod 2010;36:1394–8. 27. Saini HR, Tewari S, Sangwan P, et al. Effect of different apical preparation sizes on outcome of primary endodontic treatment: a randomized controlled trial. J Endod 2012;38:1309–15. 28. Souza-Filho FJ, Benatti O, Almeida OP. Influence of the enlargement of the apical foramen in periapical repair of contaminated teeth of dog. Oral Surg Oral Med Oral Pathol 1987;64:480–4. 29. Kramkowski TR, Bahcall J. An in vitro comparison of torsional stress and cyclic fatigue resistance of ProFile GT and ProFile GT Series X rotary nickel-titanium files. J Endod 2009;35:404–7. 30. Lopes HP, Britto IMO, Elias CN, et al. Cyclic fatigue resistance of Protaper Universal instruments when subjected to static and dynamic tests. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:401–4. Bending and Cyclic Fatigue Life of Reciproc and WaveOne 579 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref12 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref12 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref13 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref13 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref13 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref14 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref14 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref14 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref15 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref15 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref15 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref15 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref16 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref16 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref17 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref17 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref17 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref18 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref18 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref19 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref19 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref19 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref20 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref20 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref21 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref21 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref22 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref22 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref23 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref23 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref24 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref24 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref24 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref25 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref25 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref26 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref26 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref26 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref27 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref27 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref27 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref28 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref28 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref28 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref29 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref29 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref29 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref30 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref30 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref30 51 ARTIGO N° 7 De-Deus G, Vieira VTL, Nogueira da Silva EJ, Lopes HP, Elias CN, Moreira EJ (2014). Bending resistance and dynamic and static cyclicfatigue life of Reciproc and WaveOne Large instruments. J Endod 40: 575-579. Basic Research—Technology Bending Resistance and Dynamic and Static Cyclic Fatigue Life of Reciproc and WaveOne Large Instruments Gustavo De-Deus, DDS, MS, PhD,* Victor Talarico Leal Vieira, PhD,* Emmanuel Jo~ao Nogueira da Silva, PhD,* Helio Lopes, PhD,† Carlos Nelson Elias, PhD,‡ and Edson Jorge Moreira, PhD* Abstract Introduction: The aim of the present study was to eval- uate the bending resistance and the dynamic and static cyclic fatigue life of Reciproc R40 and WaveOne large in- struments.Methods: A sample of 68 nickel-titanium in- struments (25 mm in length) for use under reciprocation movement (Reciproc and WaveOne) from 3 different lots was tested. Reciproc R40 and WaveOne Large files, both of which had a nominal size of 0.40 mm at D0, were selected. The bending resistance was performed in 10 instruments of each system by using a universal testing machine. Dynamic and static models for cyclic fatigue testing were performed by using a custom-made device. For these tests, an artificial canal measuring 1.4 mm in diameter and 19 mm total length was fabricated from a stainless steel tube. Scanning electron microscopy analysis was performed to determine the mode of frac- ture. Statistical analysis was performed by using para- metric methods, 1-way analysis of variance. Post hoc pair-wise comparisons were performed by using Tukey test for multiple comparisons. Results:WaveOne instru- ments presented significantly higher bending resistance than Reciproc (P < .05). Moreover, Reciproc revealed a significantly longer cyclic fatigue life (P < .05) in both static and dynamic tests (P < .05). Conclusions: Recip- roc R40 instruments resisted dynamic and static cyclic fatigue significantly more than WaveOne Large instru- ments. Furthermore, WaveOne instruments presented significantly less flexibility than Reciproc. (J Endod 2014;40:575–579) Key Words Cyclic fatigue, instruments, NiTi, Reciproc, reciprocating movement, WaveOne From the *Department of Endodontology, Grande Rio Uni- versity (UNIGRANRIO), Duque de Caxias, RJ; †Est�acio de S�a Uni- versity (UNESA), Rio de Janeiro; and ‡Military Institute of Engineering, Biomaterials Laboratory, Rio de Janeiro, Rio de Ja- neiro, Brazil. Address requests for reprints to Prof Gustavo Andr�e de Deus Carneiro Vianna, Av. Henrique Dodsworth, 85 ap. 808, La- goa, Rio de Janeiro, RJ, Brazil 22061-030. E-mail address: endogus@gmail.com 0099-2399/$ - see front matter Copyright ª 2014 American Association of Endodontists. http://dx.doi.org/10.1016/j.joen.2013.10.013 JOE — Volume 40, Number 4, April 2014 Nickel-titanium (NiTi) rotary instruments have become a fundamental tool formechanical root canal preparation mainly because of their superelastic behavior. However, despite their advantages, NiTi rotary instruments may undergo premature fail- ure by flexion and/or torsion (1). Cyclic fatigue fracture occurs as consequence of the continuous rotation of an instrument in a curved space in the absence of binding. In this condition, the instrument under elastic deformation is subjected to a mechanical load represented by alternating tensile and compressive stresses (2). The cyclical repetition of the load leads to instrument fracture through low-cycle fatigue (3, 4). The cyclic fatigue resistance comprises the number of cycles that an instrument can endure under a specific loading condition until fracture occurs. Because NiTi instruments may show no visible signs of permanent deformation during cyclic fatigue, instrument separation may occur unexpectedly (5). In 2008, a new approach to the use of the ProTaper F2 (DENTSPLY Ltd, Addlestone, UK) instrument in a reciprocating movement was reported as an alternative to the conventional continuous rotation (6). The reciprocation motion relieves stress on the instrument by special counterclockwise (cutting action, the instrument advances in the canal and engages dentin to cut it) and clockwise (release of the instruments, the instrument is immediately disengaged) movements and therefore extends the NiTi instrument life span, hence resistance to fatigue, in comparison with continuous rotation (7, 8). Two reciprocation NiTi systems were introduced into themarket: Reciproc (VDW, Munich, Germany) and WaveOne (Dentsply Maillefer, Ballaigues, Switzerland). The manufacturers recommended the use of these files driven by a specific motor with a preset reciprocation mode (‘‘RECIPROC ALL’’ for Reciproc and ‘‘WAVEONE ALL’’ for WaveOne). These instruments travel a shorter angular distance than rotary instruments, which are subject to lower stress values, rendering an extended fatigue life (9–11). One point to highlight is that the extended cyclic fatigue life promoted by the recip- rocationmovement can play a role in achieving larger apical preparations. There is some evidence that larger apical preparations allow a greater reduction of intracanal bacteria load and less hard tissue debris, mainly as result of more effective irrigation (12–14). However, achieving a larger apical diameter is not an easy clinical challenge task, essentially in curved, narrow, and long root canals. One point of concern is about the higher instrument fracture risk because the larger the instrument is, the lower the flexibility, and flexibility can directly interfere with instrument’s performance in the cyclic fatigue fracture resistance (2, 15). The aim of the present study was to evaluate the bending resistance and the dynamic and static cyclic fatigue life of Reciproc R40 and WaveOne large instru- ments. The null hypotheses tested were as follows: 1. That there are no differences in the static fatigue fracture resistance between the Re- ciproc R40 and WaveOne large instruments 2. That there are no differences in the dynamic fatigue fracture resistance between the Reciproc R40 and WaveOne large instruments 3. That there are no differences in the bending resistance between the Reciproc R40 and WaveOne large instruments The instrument surface fracture morphology and the helical shaft of the instru- ments were examined to determine the fracture patterns of the instruments. Bending and Cyclic Fatigue Life of Reciproc and WaveOne 575 Delta:1_given name Delta:1_surname Delta:1_given name Delta:1_surname Delta:1_given name Delta:1_surname mailto:endogus@gmail.com http://dx.doi.org/10.1016/j.joen.2013.10.013 Figure 1. (A) Box plot showing the average, median, minimal, and maximal values and the standard deviation of the maximum strength. (B) Box plot showing point-to-point strength distribution. Different letters indicate signifi- cant statistical differences between groups (P < .05). Basic Research—Technology Materials and Methods A sample of 68 NiTi instruments (25 mm in length) for use under reciprocation movement (Reciproc and WaveOne) from 3 different lots was tested. Reciproc R40 and WaveOne Large files, both of which had a nominal size of 0.40 mm at D0, were selected. The former have a nominal taper at the first apical millimeters of 0.06 mm/mm, whereas the latter has 0.08 mm/mm. For standardization and reliability of the experiment, the instruments tested were examined for defects or defor- mities under a stereomicroscope. Bending Resistance Test The bending resistance was performed in 10 randomly selected instruments of each system by using a universal testing machine (DL 10.000; Emic, S~ao Jos�e dos Pinhais, Brazil) as described in previous studies (2, 16). A 20-N load was applied at 15 mm/min by means of a flexible stainless steel wire with 1 end fastened to the testing machine head and the other end attached 3 mm from the instrument tip until it displayed a 45� deflection. The maximum load to bend each file was recorded and statistically analyzed. The force values were acquired in 3 points corresponding to positions 17�, 34�, and 45� for a more detailed analysis. Cyclic Fatigue Tests The instruments were randomlydistributed with the aid of a free computer algorithm (http://www.random.org) in 4 experimental groups (n = 12). Dynamic and static models for cyclic fatigue testing were performed by using a custom-made device. For these tests, an artificial canal measuring 1.4 mm in diameter and 19 mm total length was fabricated from a stainless steel tube. A 9-mm-long curved segment with 6-mm radius (measured at the internal concave surface of the tube) was created between 2 straight segments that measured 7 mm and 3 mm (17). The canal was filled with glycerin, reducing friction and heat release. Fatigue tests were performed under static or dynamic conditions. Static Test Twelve instruments of each reciprocate system were activated by using a 6:1 reduction handpiece (Sirona Dental Systems GmbH, Ben- sheim, Germany) powered by a torque-controlled motor (Silver Recip- roc; VDW) by using the pre-setting programs for each one (‘‘RECIPROC ALL’’ for Reciproc and ‘‘WAVEONE ALL’’ for WaveOne). All instruments were reciprocated following the manufacturer’s instructions until a fracture occurred. A stainless steel apparatus was fabricated with a square base and a vertical axis (8). The vertical axis contained a struc- ture that allowed for the fixture and movement of a micromotor/contra- angle headpiece; a bench vise held the stainless steel tubes. A gap at the base of the apparatus allowed for the movement of the bench vise in a horizontal direction, allowing for a connection between the axis of the instrument and the straight part of the stainless steel canal (5). The lengths of the instruments were measured by using a digital vernier caliper (Mitutoyo Sul-Americana Ltd, Suzano, SP, Brazil). The lengths of the metallic handles of the instruments were computed by subtracting the blade length from the total length. The instruments rotated freely within the stainless tube that was filled with glycerin to reduce friction and heat production. Each instru- ment was positioned in a contra-angle handpiece and introduced into the canal until the tip touched a shield positioned at the other extremity. This shield was subsequently removed, because it was used to stan- dardize the instrument penetration into the canal. The time was recorded and stopped as soon as a fracture was detected visually and/or audibly. To avoid human error, video recording was performed 576 De-Deus et al. simultaneously, and the recordings were then observed to cross-check the time of file separation (9). Dynamic Test Another set of 12 instruments of each reciprocate system was used for the dynamic test. The instruments were subjected to the same protocol described in the static test, but for these experiments, a mechanical device promoted back-and-forth axial movements while the files rotated inside the canal. The amplitude of the axial movements was 3 mm, with approximately 2 seconds between oscil- lations. The fractured surfaces and the helical shaft of the separated instruments in both static and dynamic tests were analyzed under scan- ning electron microscopy (JSM 5800; JEOL, Tokyo, Japan) to deter- mine the type of fracture and the presence of plastic deformation in the shaft. Statistics Because the preliminary analysis of the raw pooled and isolated data revealed a bell-shaped distribution (D’Agostino and Person omnibus normality test), statistical analysis was performed by using parametric methods, 1-way analysis of variance. Post hoc pair-wise comparisons were performed by using Tukey test for multiple compar- isons. The alpha-type error was set at 0.05. SPSS 11.0 (SPSS Inc, JOE — Volume 40, Number 4, April 2014 http://www.random.org Basic Research—Technology Chicago, IL) and Origin 6.0 (Microcal Software, Inc, Northampton, MA) were used as analytical tools. Results WaveOne instruments presented significantly higher bending resistance than Reciproc (P < .05) (Fig. 1). Moreover, Reciproc revealed a significantly longer cyclic fatigue life (P < .05) in both static and dynamic tests (P < .05). The average, the minimal and maximal values, and the standard deviation of the bending, static, and dynamic tests are shown in the graphs of Figure 2. Scanning electron microscopy visual inspection of the fractured surface indicated that all instruments showed morphologic character- istics of ductile fracture. Wide-ranging forms of dimples were identified overall, and no plastic deformation in the helical shaft of the fractured instruments was observed (Fig. 3). Discussion The first results of this study showed that the dynamic and static cyclic fatigue of Reciproc R40 instrument was significantly higher than that of the WaveOne larger instrument. Therefore, the first and sec- ond null hypotheses were rejected. Previous studies demonstrated that Reciproc R25 instrument has a higher cyclic fatigue resistance than WaveOne primary files (18–22); however, to the best of the authors’ knowledge, this is the first attempt to evaluate the bending resistance and the dynamic and static cyclic fatigue by using Reciproc and WaveOne large files (tip #40). The dynamic cyclic fatigue average time of Reciproc instruments showed an increase of 31% compared with static test, whereasWaveOne instruments showed 22% improvement in time. Thus, it is important to note that even by using the reciprocating motion, the instrument should not be static inside the root canal to reduce the risk of fracture. Figure 2. Box plot showing the average, median, minimal, and maximal values and letters indicate significant statistical differences between groups (P < .05). (A) Dyna One, (C) dynamic WaveOne versus static WaveOne, (D) dynamic Reciproc versus JOE — Volume 40, Number 4, April 2014 The average fatigue time of Reciproc instrument was 69% and 73% greater than the WaveOne for the static and dynamic tests, respectively. The percentages of time difference of either instrument were very similar in both types of fatigue test, and this shows that the experimental model used has enough sensitiveness to detect the odds of the instru- ments Reciproc at the 2 tested conditions. Theoretically, this advantage should be similar even with the change of kinematics of the experiment, and this difference was approximately 4%. The third result from the current study indicated that WaveOne files required significantly greater loads than Reciproc to reach 45� deflection. This means that WaveOne larger instruments are less flexible than Reciproc R40 ones. Thus, the third null hypothesis was also rejected. Overall, rigid instruments present a lower number of cycles to fracture because of the buildup of tensions at the point of maximum flexure, as observed in the present study and in line with previous studies (23, 24). Within our knowledge, there is only limited information about flexibility of WaveOne and Reciproc instruments. Therefore, the current results can be used to shine some light on the mechanical behavior of these larger instruments specifically designed to be driven under reciprocation movement. The tip sizes (diameter at D0) of Reciproc R40 and WaveOne Large were the same, although the taper differed. A design point of Reciproc and WaveOne instruments is that the former have a nominal taper at the first apical millimeters of 0.06 mm/mm, whereas the latter has 0.08 mm/mm. This difference also helps to explain the greater stiffness of WaveOne instruments. Both reciprocating file systems are made of the same NiTi alloy (M-wire); however, they have different cross sec- tions. Reciproc instruments have an S-shaped cross section with 2 cut- ting blades, whereas WaveOne instruments have a modified convex triangular cross section and the tip and a convex triangular cross sec- tion in the middle and coronal portions. It has been reported that the larger the cross-sectional area is, the higher the flexural and torsional stiffness (25, 26); in this way, file design (cross-sectional shape, the standard deviation of the time until instrument fracture occurred. Different mic Reciproc versusdynamic WaveOne, (B) static Reciproc versus static Wave- static Reciproc. Bending and Cyclic Fatigue Life of Reciproc and WaveOne 577 Figure 3. Fractured surfaces of instruments showing morphologic characteristics of the ductile type. (A) Reciproc static test, (B) WaveOne static test, (C) Reciproc dynamic test, (D) WaveOne dynamic test (original magnification, �150). Basic Research—Technology diameters of core, etc) would have a significant influence on the torsional and bending (hence, fatigue) resistance (26). The current study compared the bending resistance and the dynamic and static cyclic fatigue of Reciproc R40 and WaveOne Large instruments. The rationale behind the selection of these instruments to test is the current trend to promote larger apical preparations with the purpose of optimizing root canal disinfection (12–14, 27) and thus rendering better conditions for tissue repair (28). The best way of reproducing this type of fatigue is repeating the movement for all tested files under well-standardized experimental con- ditions, mainly in terms of predefined curvature. Experimental models where the instruments can bind should be avoided because additional torsional stress points will appear (21). Although the use of extracted teeth simulates clinical situations, they are not ideal for the analysis of cyclic fatigue because they are not anatomically standardized, and there may be other confounding factors (21). A metallic tube was used in the present study to standardize the entire length of the canal, the length of the curvature radius, and the length of the arc. One limitation of the metallic simulators is that the instrument works in a passive way, whereas clinically it can lock on dentin, leading to torsional fracture. Static and dynamic models were used to test the cyclic fatigue resis- tance in the present study. Regardless of the instrument brand, the cyclic fatigue was significantly higher during dynamic versus static fatigue test. This result is similar to previous studies (17, 21, 22, 29, 30), suggesting that a concentration of stress in a small area of the instrument reduces the cyclic fatigue of the instrument. As in the dynamic model, the file moves axially within the canal; a better distribution of stress along the instrument reduces the compressive and tensile stresses’ concentration at the instrument area located at the center of the metallic tube curve, enhancing fracture resistance (17). The scanning electron microscopy analysis showed typical fracto- graphic appearances of cyclic fatiguewith nomorphologic differences be- tween the 2 types of instruments or between instruments fractured during 578 De-Deus et al. static versus dynamic tests. All fracture surfaces displayed ductilemorpho- logic characteristics as observed in previous studies (3, 8, 17, 19). Under the present experimental framework, Reciproc R40 instru- ments resisted dynamic and static cyclic fatigue significantly more than WaveOne Large instruments. Furthermore, WaveOne instruments pre- sented significantly less flexibility than Reciproc. Acknowledgments The authors deny any conflicts of interest related to this study. References 1. Arens FC, Hoen MM, Steiman HR, Dietz GC Jr. Evaluation of single-use rotary nickel- titanium instruments. J Endod 2003;29:664–6. 2. Lopes HP, Elias CN, Vieira VT, et al. Effects of electropolishing surface treatment on the cyclic fatigue resistance of BioRace nickel-titanium rotary instruments. J Endod 2010;36:1653–7. 3. Pruett JP, Clement DJ, Carnes DL Jr. Cyclic fatigue testing of nickel-titanium end- odontic instruments. J Endod 1997;23:77–85. 4. Zelada G, Varela P, Martin B, et al. The effect of rotational speed and the curvature of root canals on the breakage of rotary endodontic instruments. J Endod 2002;28: 540–2. 5. Sattapan B, Nervo GJ, Palamara JE, Messer HH. Defects in rotary nickel-titanium files after clinical use. J Endod 2000;26:161–5. 6. Yared G. Canal preparation using only one Ni-Ti rotary instrument: preliminary observations. Int Endod J 2008;41:339–44. 7. You SY, Bae KS, Baek SH, et al. Lifespan of one nickel-titanium rotary file with recip- rocating motion in curved root canals. J Endod 2010;36:1991–4. 8. De-Deus G, Moreira EJ, Lopes HP, Elias CN. Extended cyclic fatigue life of F2 Pro- Taper instruments used in reciprocating movement. Int Endod J 2010;43:1063–8. 9. Pedull�a E, Grande NM, Plotino G, et al. Influence of continuous or reciprocating motion on cyclic fatigue resistance of 4 different nickel-titanium rotary instruments. J Endod 2013;39:258–61. 10. Castell�o-Escriv�a R, Alegre-Domingo T, Faus-Matoses V, et al. In vitro comparison of cyclic fatigue resistance of ProTaper, WaveOne, and Twisted Files. J Endod 2012;38: 1521–4. 11. Wan J, Rasimick BJ, Musikant BL. A comparison of cyclic fatigue resistance in recip- rocating and rotary nickel-titanium instruments. Aust Endod J 2011;37:122–7. JOE — Volume 40, Number 4, April 2014 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref1 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref1 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref2 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref2 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref2 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref3 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref3 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref4 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref4 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref4 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref5 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref5 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref6 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref6 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref7 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref7 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref8 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref8 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref9 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref9 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref9 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref9 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref10 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref10 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref10 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref10 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref10 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref11 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref11 Basic Research—Technology 12. Yared GM, Dagher FE. Influence of apical enlargement on bacterial infection during treatment of apical periodontitis. J Endod 1994;20:535–7. 13. Coldero LG, McHugh S, MacKenzie D, Saunders WP. Reduction in intracanal bacteria during root canal preparation with and without apical enlargement. Int Endod J 2002;35:437–46. 14. Rollison S, Barnett F, Stevens RH. Efficacy of bacterial removal from instrumented root canals in vitro related to instrumentation technique and size. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002;94:366–71. 15. Callister WD Jr. Cîencia e Engenharia de Materiais: Uma Introduç~ao, 5th ed. Rio de Janeiro: LTC; 2002. 16. Serene TP, Adamns JD, Saxena A. Nickel-Titanium Instruments Application in Endodontics. St Louis, MO: Ishiyaku Euroamerica Inc; 1995. 17. Rodrigues RC, Lopes HP, Elias CN, et al. Influence of different manufacturing methods on the cyclic fatigue of rotary nickel-titanium endodontic instruments. J Endod 2011;37:1553–7. 18. Arias A, Perez-Higuerras JJ, de la Macorra JC. Differences in cyclic fatigue resistance at apical and coronal levels of Reciproc and WaveOne new files. J Endod 2012;38:1244–8. 19. Kim HC, Kwak SW, Cheung GS, et al. Cyclic fatigue and torsional resistance of two new nickel-titanium instruments used in reciprocation motion: Reciproc versus WaveOne. J Endod 2012;38:541–4. 20. Plotino G, Grande NM, Testarelli L, Gambarini G. Cyclic fatigueof Reciproc and WaveOne reciprocating instruments. Int Endod J 2012;45:614–8. 21. Yao JH, Schwartz SA, Beeson TJ. Cyclic fatigue of three types of rotary nickel-titanium files in a dynamic model. J Endod 2006;32:55–7. JOE — Volume 40, Number 4, April 2014 22. Li UM, Lee BS, Shin CT, et al. Cyclic fatigue of endodontic nickel titanium rotary instruments: static and dynamic tests. J Endod 2002;28:448–51. 23. Ullmann CJ, Peters OA. Effect of cyclic fatigue on static fracture loads in ProTaper nickel-titanium rotary instruments. J Endod 2005;31:183–6. 24. Inan U, Aydin C, Tunca YM. Cyclic fatigue of ProTaper rotary nickel titanium instru- ments in artificial canals with 2 different radii of curvature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;104:837–40. 25. Baek SH, Lee CJ, Versluis A, et al. Comparison of torsional stiffness of nickel-titanium rotary files with different geometric characteristics. J Endod 2011;37:1283–6. 26. Zhang EW, Cheung GS, Zheng YF. Influence of cross-sectional design and dimension on mechanical behavior of nickel-titanium instruments under torsion and bending: a numerical analysis. J Endod 2010;36:1394–8. 27. Saini HR, Tewari S, Sangwan P, et al. Effect of different apical preparation sizes on outcome of primary endodontic treatment: a randomized controlled trial. J Endod 2012;38:1309–15. 28. Souza-Filho FJ, Benatti O, Almeida OP. Influence of the enlargement of the apical foramen in periapical repair of contaminated teeth of dog. Oral Surg Oral Med Oral Pathol 1987;64:480–4. 29. Kramkowski TR, Bahcall J. An in vitro comparison of torsional stress and cyclic fatigue resistance of ProFile GT and ProFile GT Series X rotary nickel-titanium files. J Endod 2009;35:404–7. 30. Lopes HP, Britto IMO, Elias CN, et al. Cyclic fatigue resistance of Protaper Universal instruments when subjected to static and dynamic tests. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:401–4. Bending and Cyclic Fatigue Life of Reciproc and WaveOne 579 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref12 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref12 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref13 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref13 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref13 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref14 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref14 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref14 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref15 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref15 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref15 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref15 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref16 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref16 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref17 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref17 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref17 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref18 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref18 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref19 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref19 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref19 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref20 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref20 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref21 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref21 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref22 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref22 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref23 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref23 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref24 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref24 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref24 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref25 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref25 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref26 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref26 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref26 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref27 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref27 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref27 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref28 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref28 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref28 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref29 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref29 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref29 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref30 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref30 http://refhub.elsevier.com/S0099-2399(13)00909-6/sref30 57 6. DISCUSSÃO Fratura de instrumento endodôntico A fratura de um instrumento endodôntico, durante o uso clínico ou em laboratório, consiste na separação do mesmo em duas partes, devido à aplicação de cargas externas (LOPES et al., 2010c). A fratura de um instrumento endodôntico no interior de um canal radicular durante o uso clínico pode causar danos diretos ou indiretos. Danos diretos são representados pelo custo do instrumento endodôntico. Danos indiretos são causados pela retenção do segmento do instrumento fraturado no interior de um canal radicular. A presença desse segmento fraturado pode causar, durante a instrumentação do canal radicular, iatrogenias como desvios e perfurações radiculares. A presença de um fragmento metálico no interior de um canal radicular pode levar o tratamento endodôntico ao fracasso clínico principalmente nos casos de necrose pulpar previamente existente (SPILLI et al., 2005). SPILLI et al. (2005) analisaram o impacto da permanência de um instrumento endodôntico fraturado no interior de um canal radicular no resultado de um tratamento endodôntico realizado. Foram avaliados 277 dentes contendo um ou mais fragmentos de instrumentos (total = 301 fragmentos). Destes 235 (78,1%) eram de instrumentos de NiTi mecanizados, 48 (15,9%) de instrumentos manuais de aço inoxidável, 12 (4,0%) de espiral Lentulo e 6 (2%) de espaçadores endodônticos digitais. Quanto a localização do fragmento 1 (0,5%) estava no segmento cervical, 57 (18,9%) no segmento 58 médio, 232 (77,1%) no segmento apical e em 11 (3,7%), a extremidade do fragmento estava além do forame apical. Quanto à condição perirradicular, 153 (52,2%) dentes eram portadores de lesão perirradicular pré-operatória enquanto que 124 (44,8%) não tinham lesão perirradicular. No estudo de controle, foi avaliado, um grupo de 146 dentes com instrumento fraturado retido no interior do canal e outro de 146 dentes controle equiparado. O percentual de sucesso foi de 91,8% para o grupo contendo instrumento fraturado e de 94,5% para o grupo controle equiparado. Para ambos os grupos o percentual de sucesso foi de 86,7% para dentes portadores de lesão perirradicular pré- operatória, contra 92,9% para dentes não portadores de lesão perirradicular. Finalizando, concluíram que a permanência de um instrumento fraturado no interior de um canal radicular tratado endodonticamente não teve nenhuma influência adversa no resultado. A presença de uma lesão perirradicular pré- operatória foi clinicamente um indicador de prognóstico mais significativo, do que a presença de um fragmento de um instrumento retido no interior de um canal radicular tratado endodonticamente. Ensaios Mecânicos Ensaios mecânicos são procedimentos mecânicos com o objetivo de quantificar e/ou qualificar o comportamento mecânico de um corpo-de-prova ou de um instrumento no estado como comercializado (instrumentos endodônticos acabados) (ELIAS & LOPES, 2007). Os corpos-de-prova apresentam formas e dimensões padronizadas e são testados em máquinas e equipamentos especiais. São preparados com 59 base nas especificações das normas existentes. Os instrumentosendodônticos são testados como são comercializados (acabados) (ELIAS & LOPES, 2007). Os corpos-de-prova empregados nos ensaios mecânicos têm dimensões e formas rigorosamente padronizadas. Normalmente a forma do corpo-de- prova é diferente do produto acabado (instrumento endodôntico). Os instrumentos endodônticos utilizados como corpo-de-prova apresentam variações entre as dimensões nominais e reais, defeitos de acabamento superficial (ranhuras, rebarbas e micro cavidades), variações da forma e da área das seções retas transversais das hastes de corte helicoidais cônicas, que atuam como variáveis e interferem nos resultados dos ensaios mecânicos realizados. Assim, quando do emprego de instrumentos endodônticos devemos buscar o máximo de uniformizações em relação a geometria (forma e dimensão) dos instrumentos empregados nos ensaios mecânicos. Além disso, é aconselhável o uso de um número mínimo de 10 instrumentos (ELIAS & LOPES, 2007). O uso clínico para o estudo da fratura de instrumentos endodônticos em dentes humanos permite a combinação de tensões por torção e flexão rotativa além de acrescentar inúmeras variáveis em relação à anatomia do canal radicular (raio do arco, comprimento do arco, posição do arco, dupla curvatura e dureza da dentina), ao conhecimento, experiência e habilidade do profissional. Assim sendo, optamos, para o estudo da fratura de instrumentos endodônticos, o ensaio mecânico de flexão rotativa estático e dinâmico em laboratório que permite a padronização dos carregamentos para todos os grupos ensaiados. 60 Os ensaios mecânicos de laboratórios não retratam os carregamentos reais dos instrumentos durante a instrumentação dos canais de dentes humanos, entretanto, são empregados nos ensaios por flexão rotativa para a avaliação do número de ciclos suportados pelo instrumento endodôntico até a fratura. Esses valores são fundamentais no estudo comparativo das propriedades mecânicas e da resistência à fratura entre os diversos instrumentos, na seleção da liga metálica usada na fabricação do instrumento e para o ajuste de motores elétricos, quanto ao torque e à velocidade de giro. Além disso, podemos afirmar que os ensaios mecânicos de laboratório fornecem valores e comparações entre os instrumentos endodônticos avaliados que podem e devem ser aplicados durante o uso clínico de instrumentação de um canal radicular. Em função do exposto, é provável que os resultados conflitantes existentes na literatura sejam oriundos de inúmeras variáveis existentes quanto às metodologias empregadas e ao uso de instrumentos acabados de diferentes geometrias e marcas comerciais como corpo-de-prova. Um único canal metálico foi utilizado nos estudos executados para padronizar as tensões induzidas nos instrumentos e para excluir outras causas para a falha do instrumento durante o ensaio de flexão rotativa que não a fratura por fadiga. O canal metálico usado durante os ensaios de flexão rotativa apresentou diâmetro interno de 1,4 mm o que permitiu o giro livre do instrumento sem ser submetido às tensões de torção ou de flambagem (ELIAS & LOPES, 2007). Cada instrumento posicionado em um canal artificial curvo pode seguir uma trajetória com uma curvatura diferente daquela do canal artificial. 61 Entretanto, é preciso ressaltar que instrumentos diferentes podem não descrever a mesma trajetória, quando posicionados no interior de um canal artificial cilíndrico e curvo (PLOTINO et al. 2010). Este resultado irá depender da flexibilidade do instrumento e da relação diâmetro do instrumento/ diâmetro do canal artificial. Essa diferença pode contribuir para as variações na vida útil em fadiga de instrumentos endodônticos (LOPES et al., 2010a; LOPES et al., 2013c). Quanto à integridade geométrica e dimensional do instrumento endodôntico, o ensaio mecânico é considerado: destrutivo, quando provoca a inutilização parcial ou total do instrumento. Exemplos; ensaio de torção e de flexão rotativa; não destrutivo, quando não compromete a integridade do instrumento. Exemplo, ensaio de flexão em cantilever (ELIAS & LOPES, 2007). Com os resultados obtidos nos ensaios mecânicos, é possível estimar e prever o desempenho de um instrumento endodôntico durante o seu uso clínico. Todavia o profissional, geralmente, ignora isso e seleciona o instrumento pelo D0 (diâmetro virtual) e conicidade, e não pelo comportamento mecânico do instrumento obtido em ensaios laboratoriais. Ensaio de flexão rotativa: Estático e Dinâmico Os resultados do presente estudo evidenciaram diferença significante entre os dois modelos de ensaios mecânicos. A vida útil em fadiga de um instrumento endodôntico submetido ao ensaio mecânico de flexão rotativa dinâmico, é maior quando comparado ao ensaio estático. 62 Para LOPES et al. (2010d) a vida útil em fadiga para ocorrer a fratura de um instrumento ProTaper Universal S2 (Dentsply, Maillefer, Ballaigues, Suíça) acionado com o movimento de rotação contínua, foi maior com o uso do ensaio de flexão rotativa dinâmico em comparação com o modelo estático. A separação do instrumento ocorreu no ponto máximo de flexão no interior de um canal, isto é, próximo ao ponto médio do arco de um canal. Estes resultados reforçam a necessidade de, durante a instrumentação de um canal radicular, realizar contínuos avanços e retrocessos do instrumento endodôntico em sentido apical de um canal radicular curvo. Segundo LI et al. (2002) durante o ensaio mecânico de flexão rotativa dinâmico, empregando-se uma mesma velocidade, foi propiciado ao instrumento endodôntico um intervalo de tempo maior, antes que ele passasse novamente pela área crítica de maior concentração de tensão. O avanço e retrocesso no interior de um canal curvo tem como objetivo evitar a concentração de tensão em uma determinada área do instrumento endodôntico. RODRIGUES et al. (2011) concluíram que os instrumentos TF (SybronEndo, Orange, CA, EUA), que são fabricados por torção, evidenciaram maior vida útil em fadiga, quando comparados aos instrumentos RaCe (FKG, Dentaire, Suíça) fabricados por usinagem. A vida útil em fadiga para ambos os instrumentos acionados com o movimento de rotação contínua foi maior no ensaio dinâmico quando comparado ao estático. Estes resultados são consistentes com outros reportados na literatura (LI et al., 2002; LOPES et al., 2010d). Este resultado realça a importância do avanço e retrocesso em sentido 63 apical de um instrumento endodôntico, durante a instrumentação de canais radiculares com segmentos curvos. Com este procedimento, reduzimos a concentração de tensões trativas e compressivas em uma mesma área do instrumento endodôntico. É necessário ressaltar que a natureza da liga metálica NiTi fase R para os instrumentos TF e NiTi convencional para os instrumentos RaCe assim como o processo de fabricação dos instrumentos ensaiados (TF torção, RaCe usinagem) influenciaram nos resultados obtidos. GAMBARRA-SOARES et al. (2013), realizaram um estudo procurando esclarecer qual o modelo de ensaio de flexão rotativa, estático ou dinâmico seria mais favorável na determinação da vida útil em fadiga de um instrumento endodôntico. De acordo com os autores, o ensaio dinâmico representa melhor opção clínica de uso já que, durante a instrumentação mecanizada dos canais radiculares, é preconizado realizar movimentos de avanço e retrocesso no interior de um canal curvo, sem deixar o instrumento girando na mesma posição no sentido do comprimento do canal. O movimento axial (avanço e retrocesso) proporcionado pelo ensaio dinâmico permite uma melhor distribuição das tensões trativas e compressivas ao longo da haste helicoidal cônica do instrumento endodôntico, evitando a concentração das tensões em apenas uma área. A melhor distribuição das tensões trativas e compressivas ao longo da haste helicoidalcônica do instrumento endodôntico induz aumento de sua vida útil em fadiga (LOPES et al., 2010d; GAMBARRA-SOARES et al., 2013; LOPES et al., 2013b; LOPES et al., 2013c). Estes autores concluíram que o ensaio de flexão rotativa dinâmico favorece resultados mais próximos da realidade clínica do que o ensaio de flexão rotativa estático. 64 Este trabalho corroborou com estudos prévios (LI et al., 2002; YAO et al., 2006; LOPES et al.,2010d, OH et al., 2010) que relacionaram o aumento da vida útil em fadiga de instrumentos endodônticos, quando estes são submetidos a um movimento axial de acesso e retrocesso (dinâmico). Contudo, trabalhos recentes têm proposto a instrumentação de canais radiculares com movimento único e progressivo em sentido apical (YARED, 2008; MALLET & DIEMER, 2009). Todavia, não foi possível elucidar o porquê desta orientação. Porém, é importante salientar que a velocidade de avanço único em sentido apical de um canal radicular é clinicamente difícil de ser controlada induzindo um maior risco de imobilização da ponta do instrumento endodôntico no interior de um canal radicular. Estando a ponta imobilizada e na outra extremidade do instrumento (haste de acionamento), seja aplicado um torque superior ao limite de resistência do material, ocorrerá a fratura do instrumento endodôntico por torção. Para impedir a imobilização da ponta de um instrumento endodôntico no interior de um canal radicular é necessário que a velocidade de rotação (velocidade de corte da dentina) seja maior do que a velocidade de avanço do instrumento em sentido apical. Entretanto, esta relação entre a velocidade de rotação e a velocidade de avanço é clinicamente muito difícil de ser obtida. Também, sendo a velocidade de avanço maior do que a velocidade de corte, poderá induzir a flambagem do instrumento. Consequentemente, a flambagem pode induzir a fratura por flexão rotativa (fadiga) de um instrumento endodôntico. A maior velocidade de avanço pode também induzir o roscamento do instrumento no interior de um canal radicular. 65 Flambagem é a deformação elástica (temporária) apresentada por um instrumento endodôntico, quando submetido a um carregamento compressivo na direção de seu eixo (axial). Durante esse tipo de carregamento, o instrumento encurva e forma um arco. Nesta condição, há um aumento da intensidade das tensões trativas e compressivas que reduz a vida útil em fadiga do instrumento endodôntico empregado na instrumentação de um canal radicular. A fadiga de um componente (instrumento endodôntico) é gerada através de uma carga induzida por ciclos repetitivos, que geram trincas e que são propagadas até chegar a um tamanho crítico para a integridade deste componente. Com a contínua indução da carga em ciclos, o crescimento da trinca dominante irá se propagar até o momento em que uma parte íntegra (seção resistente) do componente não suportar a carga induzida. Neste momento a resistência do material é excedida e o núcleo central remanescente experimenta uma fratura rápida (PARASHOS & MESSER, 2006; ELIAS & LOPES, 2007; LOPES et al., 2007; SHEN et al., 2012). Movimento de rotação Contínua x Reciprocante De acordo com DE-DEUS et al. (2010), o tipo de movimento aplicado nos instrumentos endodônticos mecanizados, durante o ensaio mecânico de flexão rotativa, está entre os fatores preponderantes na resistência à fratura por fadiga apresentada pelos instrumentos endodônticos. Além disso, o movimento reciprocante em comparação ao movimento de rotação contínua aumentou a 66 vida útil em fadiga de instrumentos endodônticos ensaiados em flexão rotativa estática. As pesquisas têm mostrado que a falha por fadiga ocorre pela formação de micro trincas presentes usualmente na superfície do instrumento. O crescimento das trincas por pequenos incrementos durante cada ciclo de flexão rotativa induz a fratura do instrumento endodôntico (CHRIST, 2008; DE-DEUS et al., 2010; LOPES et al., 2010d). Em condição clínica a tensão trativa induz a nucleação e a propagação da trinca até a falha do instrumento (ELIAS & LOPES, 2007; OUNSI et al., 2007; WEI et al., 2007). Consequentemente, a vida útil em fadiga de um instrumento pode ser considerada como sendo função dos valores das tensões, dos defeitos de acabamento superficial (ranhuras) e do tamanho das trincas (OUNSI et al., 2007; WEI et al., 2007; LOPES et al., 2010d). LOPES et al. (2013c) avaliando a vida útil em fadiga de instrumentos Reciproc e Mtwo fabricados pela VDW, Munique, Alemanha, concluíram que a vida útil em fadiga do instrumento Reciproc foi maior do que a do instrumento Mtwo. Este achado revelou que o tempo de fratura de um instrumento endodôntico acionado no interior de um canal curvo foi significativamente maior para o instrumento de maior flexibilidade, e para o uso do movimento de rotação reciprocante, quando submetido ao ensaio de flexão rotativa dinâmico. Os resultados obtidos nos ensaios de flexão rotativa foram avaliados de acordo com dois parâmetros: modelo do ensaio (estático e dinâmico) e o tipo de movimento aplicado ao instrumento (rotação contínua ou rotação reciprocante). Desconsiderando a marca do instrumento, o tipo de movimento 67 (reciprocante ou contínuo) e natureza da liga metálica empregada na fabricação dos instrumentos endodônticos, o tempo até a fratura por fadiga foi significativamente maior para o ensaio modelo dinâmico, do que no ensaio de flexão rotativa modelo estático (LOPES et al., 2013c). Esses resultados estão de acordo com outros trabalhos existentes na literatura (YAO et al., 2006; LI et al., 2012; PLOTINO et al., 2012). Desconsiderando a marca do instrumento, o modelo de ensaio de flexão rotativa (estático ou dinâmico) e a natureza da liga metálica empregada na fabricação do instrumento endodôntico, o tempo até a fratura por fadiga foi significativamente maior quando o instrumento foi acionado pelo movimento de rotação reciprocante em comparação ao movimento de rotação contínua. LOPES et al. (2013b) avaliando a vida útil em fadiga de instrumentos Wave One e ProTaper (Dentsply Maillefer, Bellaigues, Suiça) concluíram que os instrumentos operados em movimento de rotação reciprocante e no modelo dinâmico prolongaram a vida em fadiga dos instrumentos WaveOne. Este resultado está de acordo com outros trabalhos que utilizaram outros instrumentos (GAMBARINI et al., 2012a; GAMBARINI et al., 2012b; GAVINI et al., 2012; KIM et al., 2012). Para LOPES et al. (2013b) a análise por meio do MEV revelou que a superfície de fratura apresentou característica do tipo dúctil. Resultados esses em consonância com outros estudos (WEI et al.,2007; CASTELLÓ-ESCRIVA et al., 2012). Afirmaram também que a característica morfológica da superfície de fratura não foi afetada pelo modelo do ensaio de flexão rotativa estático ou 68 dinâmico e pelo tipo de movimento (reciprocante ou contínuo) empregados no acionamento do instrumento endodôntico ensaiado. Independentemente do instrumento usado (WaveOne Primário ou ProTaper F2), do tipo de movimento (reciprocante ou giro contínuo) e da liga NiTi (M-Wire ou convencional), o ensaio de flexão rotativa dinâmico revelou uma vida útil maior em fadiga do que o ensaio de flexão rotativa estático. Vida útil em fadiga prolongada no ensaio dinâmico está provavelmente relacionada com o fato de que o instrumento é movido axialmente ao longo da curvatura (arco) e isso permite uma melhor distribuição dos esforços de compressão e de tração ao longo do eixo dos instrumentos, enquanto que as tensões em um ensaio estático se acumulam em uma única região do instrumento e isto predispõe à ocorrência de fraturas em um tempo significativamente menor (LOPES et al., 2013b). LOPES et al. (2010a) reforçaram a importância do movimento de avanço e retrocesso durante a instrumentação mecanizada de canaiscurvos. Os autores utilizaram o instrumento ProTaper Universal S2 em ensaio de flexão rotativa estático e dinâmico. Os instrumentos foram submetidos a uma velocidade de rotação de 300 rpm em ambos os ensaios, posicionados no interior de um canal metálico de 6 mm de raio de curvatura para determinar o número de ciclos até a fratura. No ensaio estático não houve movimento axial, enquanto que no dinâmico houve um movimento axial de avanço e retrocesso de amplitude de 3 mm com 2 segundos para cada deslocamento. O estudo demonstrou que o ensaio dinâmico obteve um número de ciclos até a fratura do instrumento significativamente maior que o ensaio estático, e a fratura ocorreu 69 no ponto de maior flexão no interior do canal artificial. Os autores concluíram que o movimento axial aumenta significativamente a vida útil em fadiga do instrumento endodôntico. Neste estudo os instrumentos WaveOne primários acionados em movimento reciprocante tiveram uma vida útil significativamente mais longa à fadiga, quando comparados com os instrumentos ProTaper F2 acionados em rotação contínua (LOPES et al., 2013b). Isto está de acordo com vários estudos (GAVINI et al., 2012; KIM et al., 2012; PLOTINO et al., 2012; LOPES et al., 2013b) e pode ser explicado pelo fato de que, quando os instrumentos estão trabalhando com o movimento reciprocante estático ou dinâmico, em cada ciclo as tensões de tração são distribuídas em torno de diferentes pontos da haste helicoidal cônica do instrumento. Quando os instrumentos são submetidos à rotação contínua, os pontos de tensão se concentram na mesma área do instrumento, o mais próximo do centro do arco (LOPES et al., 2013b). Consequentemente, os instrumentos acionados com movimentos reciprocantes têm uma vida útil à fadiga maior que os instrumentos acionados com rotação contínua (WAN et al., 2011; CASTELLÓ- ESCRIVA et al., 2012; LOPES et al., 2013b). Para DE-DEUS et al. (2014) o instrumento Reciproc (R40), quando submetido ao ensaio de flexão rotativa estático e dinâmico, apresenta maior resistência à fratura por fadiga do que o instrumento WaveOne (Large). Este resultado pode ser atribuído à maior flexibilidade (menor rigidez) apresentada pelo instrumento Reciproc (R40) em comparação ao instrumento WaveOne (Large). 70 Diferentes estudos com outros instrumentos endodônticos e com outros ângulos de rotação reciprocante têm revelado que os instrumentos acionados por meio do movimento reciprocante têm apresentado maior vida útil à fadiga do que quando acionados por meio do movimento de giro contínuo (WAN et al., 2011; LOPES et al., 2013). Isto pode ser explicado pelo fato de que quando os instrumentos endodônticos estão acionados com o movimento reciprocante (estático ou dinâmico), em cada ciclo, as tensões trativas e compressivas são distribuídas em torno de diferentes pontos da haste helicoidal cônica do instrumento endodôntico. Quando os instrumentos são acionados com rotação contínua, os pontos de tensões trativas e compressivas se concentram na mesma área circundante do instrumento, o mais próximo do centro do arco de um canal curvo. Consequentemente, os instrumentos acionados com movimentos de rotação reciprocante tem uma vida útil à fadiga maior que os instrumentos acionados com rotação contínua (WAN et al., 2011; LOPES et al., 2013b). No movimento de rotação reciprocante quanto menor o ângulo de rotação, independentemente do modelo estático ou dinâmico, maior será a vida útil em fadiga de um instrumento endodôntico (WAN et al., 2011; LOPES et al., 2013b). Consequentemente, um instrumento endodôntico operando em movimento de rotação reciprocante pode ser empregado por um maior tempo na instrumentação de canais radiculares antes da falha. Análise por meio do MEV 71 A análise por microscopia eletrônica de varredura das hastes de corte helicoidais dos instrumentos analisados não mostrou deformação plástica. Este fato é explicado pela característica de superelasticidade da liga níquel-titânio que aumenta o grau de deformação elástica e também na utilização de um canal artificial que possui um diâmetro maior que o dos instrumentos ensaiados, garantindo a redução da resistência ao giro do instrumento durante o ensaio de flexão rotativa, impedindo que a fratura ocorra por torção. As superfícies de fratura dos instrumentos analisados mostraram características morfológicas do tipo dúctil. Identificou-se a presença de micro cavidades (dimples) geralmente arredondadas que indicaram a ruptura causada por tensão trativa. O ensaio mecânico de flexão rotativa gera a indução de tensões trativas na superfície externa e tensões compressivas na superfície interna da região flexionada do instrumento. A repetição destas tensões alternadas, mesmo estando elas abaixo do limite de escoamento do material (regime elástico), induz a nucleação de trincas que crescem, coalescem e se propagam até ocorrer a fratura do instrumento por fadiga de baixo ciclo. Esta fratura se caracteriza pela aplicação de uma tensão elevada para um número baixo de ciclos (HAIKEL et al., 1999; PARASHOS & MESSER, 2006; LOPES et al., 2010c). Considerações finais Para redução do número de fraturas dos instrumentos endodônticos é necessário que haja maior informação por parte dos fabricantes sobre a geometria e as propriedades mecânicas, além de um melhor acabamento 72 superficial dos instrumentos endodônticos principalmente dos classificados como acionados a motor. Também são fundamentais novos estudos para avaliar e analisar o comportamento mecânico dos instrumentos endodônticos, durante ensaios mecânicos de laboratório e durante o uso clínico. Além disso, é importante o profissional conhecer e saber usar os resultados laboratoriais na clínica. Os instrumentos devem ser selecionados, acionados e movimentados em função da anatomia do canal radicular. 73 7. CONCLUSÕES A partir dos resultados obtidos no presente estudo foi possível concluir que: 1. Movimento de rotação reciprocante e contínuo: Os instrumentos endodônticos de NiTi mecanizados, quando acionados por meio do movimento de rotação reciprocante resistiram maior vida útil à fadiga quando comparados ao movimento de rotação contínua, independentemente do modelo de ensaio de flexão rotativa ser estático ou dinâmico. 2. Ensaio de flexão rotativa estática e dinâmica: Os instrumentos endodônticos de NiTi mecanizados quando submetidos ao ensaio de flexão rotativa dinâmica, resistiram maior vida útil à fadiga quando comparados ao ensaio de flexão rotativa estático, independentemente do tipo de movimento rotatório, reciprocante ou contínuo. 3. Análise por meio do MEV: A análise no MEV, independentemente, do tipo e do modelo de acionamento demonstrou que as superfícies fraturadas dos instrumentos endodônticos de NiTi mecanizados apresentaram características do tipo dúctil. Não foi observada deformação plástica na haste helicoidal cônica dos instrumentos fraturados. 74 Levando-se em consideração os resultados obtidos pode-se afirmar que na instrumentação de canais radiculares curvos, o movimento de rotação reciprocante no modelo dinâmico é mais seguro em relação à fratura por flexão rotativa (fadiga) de um instrumento endodôntico de NiTi mecanizado. 75 8. REFERÊNCIAS BIBLIOGRÁFICAS Berutti E, Chiandusi G, Paolino DS, Scotti N, Cantatore G, Castellucci A et al.(2012). Canal shaping with WaveOne primary reciprocating files and ProTaper system: a comparative study. J Endod 38: 505-509. Bürklein S, Schäfer E (2013). Critical evaluation of root canal transportation by instrumentation. Endod Topics 29: 110-124. Callister WD (2002). Ciência e Engenharia de Materiais: Uma Introdução.5ª ed. Rio de Janeiro: LTC - Livros Técnicos e Científicos, 589p. Castelló-Escriva R, Alegre-Domingo T,Faus-Matoses V, Román-Richon S, Faus-Liácer VJ (2012). In vitro comparison of cyclic fatigue resistance of ProTaper, WaveOne and Twisted Files. J Endod 38: 1521-1524. Cheung GSP (2009). Instrument fracture: mechanisms, removal of fragments and clinical outcomes. Endod Topics 16: 1-26. Christ HJ (2008). Fundamental mechanisms of fatigue and fracture. Student Health Technology Information 133: 56-67. De-Deus G, Moreira EJL, Lopes HP, Elias CN (2010). Extended cyclic fatigue life of F2 ProTaper instruments used in reciprocating movement. Int Endod J 43: 1063-1068. De-Deus G, Vieira VTL, Nogueira da Silva EJ, Lopes HP, Elias CN, Moreira EJ (2014). Bending resistance and dynamic and static cyclic fatigue life of Reciproc 76 and WaveOne Large instruments. J Endod 40: 575-579. Elias CN, Lopes HP (2007). Materiais Dentários. Ensaios Mecânicos. São Paulo: Livraria Santos Editora, 180p. Gambarini G, Gergi R, Naaman A, Osta N, Al Sudani D (2012a). Cyclic fatigue analysis of twisted file rotary NiTi Instruments used in reciprocating motion. Int Endod J 45: 802-806. Gambarini G, Rubini AG, Al Sudani D et al. (2012b). Influence of different angles of reciprocation on the cyclic fatigue of nickel-titanium endodontic instruments. J Endod 38: 1408-1411. Gambarra-Soares T, Lopes HP, Oliveira JCM, Souza LC, Vieira VT, Elias CN (2013). Dynamic or static fatigue tests: which best determines the lifespan of endodontic files? ENDO 7: 101-104. Gavini G, Caldeira Cl, Akisue E, de Miranda Candeiro GT, Kawakami DAS (2012). Resistance to flexural fatigue of Reciproc R25 files under continuous rotation and reciprocating movement. J Endod 38: 684-687. Haikel Y, Serfaty R, Baterman G, Senger B, Allemann C (1999). Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments. J Endod 25: 434-440. Kim HC, Kwak SW, Cheung GSP, Ko DH, Chung SM, Lee WC (2012). Cyclic fatigue and torsional resistance of two new nickel-titanium instruments used in reciprocation motion: Reciproc versus WaveOne. J Endod 38: 541-544. 77 Li UM, Lee BS, Shih CT, Lan WH, Lin CP (2002). Cyclic fatigue of endodontic nickel-titanium rotary instruments: static and dynamic tests. J Endod 28: 448- 451. Lopes HP, Elias CN, Siqueira JF Jr (2000). Mecanismo de fratura dos instrumentos endodônticos. Rev Paul Odontol 22: 4-9. Lopes HP, Elias CN (2001). Fratura dos instrumentos endodônticos de NiTi acionados a motor. Fundamentos teóricos e práticos. Rev Bras Odontol 58: 207-209. Lopes HP, Moreira EJL, Elias CN, Almeida RA, Neves MS (2007). Cyclic fatigue of ProTaper instruments. J Endod 33: 55-57. Lopes HP, Ferreira AAP, Elias CN, Moreira EJL, Oliveira JLM, Siqueira JF Jr.(2009). Influence of rotational speed on the cyclic fatigue of rotary nickel- titanium endodontic instruments. J Endod 35: 1013-1016. Lopes HP, Elias CN, Siqueira JF Jr (2010a). Instrumentos endodônticos. In: Lopes HP, Siqueira JF Jr. Endodontia: biologia e técnica. 3ª Ed. Rio de Janeiro: Guanabara Koogan, 305-413. Lopes HP, Siqueira JF Jr, Elias CN (2010b). Preparo Químico Mecânico. In: Lopes HP, Siqueira JF Jr. Endodontia: biologia e técnica. 3ª Ed. Rio de Janeiro: Guanabara Koogan, 415-479. Lopes HP, Elias CN, Siqueira JF Jr, Batista MMD (2010c). Fratura dos instrumentos endodônticos: fundamentos teóricos e práticos. In: Lopes HP, 78 Siqueira JF Jr. Endodontia: biologia e técnica. 3ª Ed. Rio de Janeiro: Guanabara Koogan, 481-507. Lopes HP, Britto IMO, Elias CN, Oliveira JCM, Neves MS, Moreira EJL, Siqueira JF Jr (2010d). Cyclic fatigue resistance of ProTaper Universal instruments when subjected to static and dynamic tests. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 110: 401-404. Lopes HP, Vieira MVB, Elias CN, Gonçalves LS, Siqueira Jr JF, Moreira EJ et al. (2013a). Influence of the geometry of curved artificial canals on the fracture of rotary nickel-titanium instruments subjected to cyclic fatigue tests. J Endod 39: 704-707. Lopes HP, Vieira MVB, Elias CN, Siqueira Jr JF, Mangelli M, Lopes WSP et al. (2013b). Fatigue life of WaveOne and ProTaper instruments operated in reciprocating or continous rotation movements and subjected to dynamic and static tests. ENDO 7: 217-222. Lopes HP, Elias CN, Vieira MVB, Siqueira Jr JF, Mangelli M, Lopes WSP et al. (2013c). Fatigue life of Reciproc and Mtwo instruments subjected to static and dynamic tests. J Endod 39: 693-696. Mallet JP, Diemer F (2009). An instrument innovation for primary endodontic treatment: the Revo-S sequence. Smile Dent J 4: 24-26. Oh SR, Chang Sw, Lee Y et al. (2010). A comparison of nickel-titanium rotary instruments manufactured using different methods and cross-sectional areas ability to resist cyclic fatigue. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 79 109: 622-628. Ounsi HF, Salameh Z, Al-Shalan T, Ferrari M, Gandini S, Pashley DH, Tay FR (2007). Effect of clinical ose on the cyclic fatigue resistance of ProTaper nickel- titanium rotary instruments. J Endod 33: 737-741. Parashos P, Messer HH (2006). Rotary NiTi instrument fracture and its consequences. J Endod 32:1031-1043. Plotino G, Grande NM, Mazza C, Petrovic R, Testarelli L, Gambarini G (2010). Influence of size and taper of artificial canals on the trajectory of NiTi rotary instruments in cyclic fatigue studies. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109: e60-e66. Plotino G, Grande Nm, Testarelli L, Gambarini G (2012). Cyclic fatigue of Reciproc and WaveOne reciprocating instruments. Int Endod J 45: 614-618. Pruett JP, Clement DJ, Carnes DL Jr (1997). Cyclic fatigue testing of nickel- titanium endodontic instruments. J Endod 23: 77-85. Rodrigues RCV, Lopes HP, Elias CN, Amaral G, Vieira VTL, De Martin AS (2011). Influence of different manufacturing methods on the cyclic fatigue of rotary nickel-titanium endodontic instruments. J Endod 37: 1553-1557. Schäfer E, Tepel J (2001). Relationship between design features of endodontic instruments and their properties. Part 3. Resistance to bending and fracture. J Endod 27: 299-303. Serene TP, Adams JD, Saxena A (1995). Nickel-Titanium instruments - 80 applications in endodontics. St. Louis: Ishiyaku EuroAmerica, 113p. Shen Y, qian W, Abtin H, Gao Y, Haapasalo M (2012) . Effect of environment on fatigue failure of controlled memory wire nickel-titanium rotary instruments. J Endod 38: 376-380. Spilli P, Parashos P, Messesr HH (2005). The impact of instrument fracture on outcome of endodontic treatment. J Endod 31: 845-850. Tobushi H, Shimeno Y, Hachisuka T, Tanaka K (1998). Influence of strain rate on superelastic properties of TiNi shape memory alloy. Mech Mater 30: 141- 150. Wan J, Rasimick BJ, Musikant BL, Deutsch AS (2011). A comparison of cyclic fatigue resistance in reciprocating and rotary nickel-titanium instruments. Aust Endod J 37: 122-127. Wei X, Ling J, Jiang J, Huand X, Liu L (2007). Modes of failure of ProTaper nickel-titanium rotary instruments after clinical use. J Endod 33: 276-279. Yared G (2008). Canal preparation using only one NiTi rotary instrument: preliminary observations. Int Endod J 41: 339-344. Yared G, Ramli GA (2013). Single file reciprocation: a literature review. ENDO 7: 171-178. Yao JH, Schwartz SA, Beeson TJ (2006). Cyclic fatigue of three types of rotary nickel-titanium files in a dynamic model. J Endod 32: 55-57. 81 Zhang EW, Cheung GSP, Zheng YF (2010). Influence of cross-section design and dimension on mechanical behavior of nickel-titanium instruments under torsion and bending: a numerical analysis. J Endod 36: 1394-1398. 1 Cyclic fatigue Static&Dynamic.pdf Cyclic fatigue resistance of ProTaper Universal instruments when subjected to static and dynamic tests MATERIALS AND METHODS RESULTS DISCUSSION REFERENCES 2 Influence of Different Manufacturing Methods.pdf Influenceof Different Manufacturing Methods on the Cyclic Fatigue of Rotary Nickel-Titanium Endodontic Instruments Materials and Methods Instrument Geometry (Design Features) Bending Resistance Tests Cyclic Fatigue Tests Static Test Dynamic Test Results Instrument Geometry (Design Features) Bending Resistance Cyclic Fracture Discussion Acknowledgments References 7 Bending resistance Reciproc WaveOne.pdf Bending Resistance and Dynamic and Static Cyclic Fatigue Life of Reciproc and WaveOne Large Instruments Materials and Methods Bending Resistance Test Cyclic Fatigue Tests Static Test Dynamic Test Statistics Results Discussion Acknowledgments References 7 Bending resistance Reciproc WaveOne.pdf Bending Resistance and Dynamic and Static Cyclic Fatigue Life of Reciproc and WaveOne Large Instruments Materials and Methods Bending Resistance Test Cyclic Fatigue Tests Static Test Dynamic Test Statistics Results Discussion Acknowledgments References