Buscar

Elementos de Máquinas - II _ TRANSMISSÕES POR RODAS DE FRICÇÃO

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 68 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 68 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 68 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Disciplina:
ELEMENTOS DE MÁQUINAS - II
3o Ano
6o Semestre
TRANSMISSÕES POR RODAS DE FRICÇÃO
Docente:
Rupava, Maulana Júlio
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• As rodas de fricção são rodas
cujas superfícies se
friccionam mutuamente
durante o funcionamento. Na
sua construção mais simples,
as superfícies de revolução
externas de dois cilindros
paralelos transmitem o
movimento de rotação
usando as forças de atrito
entre as mesmas.
Elementos de Máquinas - II 2
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Como as transmissões por rodas de fricção empregam a força
de atrito, deve existir uma força normal de aperto das
superfícies em contacto Fn , de tal modo que a força de atrito
resultante seja suficiente para transmitir a força tangencial
durante o funcionamento (Ft), sem deslizamento (notável), ou
seja:
𝐹𝑡 ≤ 𝐹𝑎𝑡 = 𝐹𝑛 ∙ 𝑓
• Onde:
✓ Ft - Força tangencial
✓ Fat - força de atrito
✓ f - Coeficiente de atrito
Elementos de Máquinas - II 3
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• As transmissões por rodas de
fricção podem ser subdivididos
em dois grupos:
✓ Transmissões sem regulação,
isto é, transmissões com relação
de transmissão constante;
✓ Transmissões com regulação,
isto é, variadores.
• Os variadores permitem a
mudança suave da relação de
transmissão, sem necessidade
de interromper o movimento.
Elementos de Máquinas - II 4
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• No variador de face, representado no esquema anterior, o rolão
motor pode deslocar-se axialmente. Deste modo, a relação de
transmissão pode variar suavemente, de acordo com a variação do
diâmetro correspondente ao ponto de contacto na face da roda
movida. O deslocamento do rolão motor para o lado diametralmente
oposto na face do disco permite mudar o sentido de rotação do
disco, o que confere reversibilidade ao movimento do veio movido.
• Também é possível subdividir as transmissões por fricção segundo,
outros critérios. Por exemplo, podem ser considerados eixos
paralelos ou cruzados, com forma cilíndrica, cónica, esférica ou
toroidal na superfície de trabalho dos rolos, com ou sem auto-
regulação da pressão entre rolos, com ou sem rodas parasitas, etc.
Elementos de Máquinas - II 5
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
Elementos de Máquinas - II 6
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Aplicações
• As transmissões por fricção com relação de transmissão constante
usam-se raramente. Como funcionam com base na força de atrito,
geralmente usam-se para pequenas potências mas podem ser usadas
para grandes potências quando o surgimento de deslizamento
(patinagem) entre as rodas serve de protecção contra sobrecargas .
Por exemplo, nas prensas dado que o uso de um material não
metálico é comum, estas transmissões são usadas nos casos em que
se pretende movimento suave e sem ruidos. Para transmissões de
carga (não cinemáticas), as rodas de fricção são preteridas a favor de
transmissões dentadas em termos de dimensões, segurança,
rendimento, etc.
Elementos de Máquinas - II 7
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Aplicações
• Os variadores por rodas de fricção permitem uma variação de
velocidades sem escalões, o que não se consegue com transmissões
dentadas. Na prática, os reguladores de velocidades com base em
rodas de fricção são empregues numa faixa de potência baixa ou
média (10-20 kW). A força de aperto dos rolos aumenta com o
aumento de potência a transmitir.
Elementos de Máquinas - II 8
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Aplicações
• Algumas das vantagens das transmissões por rodas de fricção são:
✓ Simplicidade da construção e o baixo custo associado;
✓ Suavidade de funcionamento e ausência de ruidos;
✓ Capacidade de protecção dos órgãos, em caso de sobrecarga, por
patinagem;
• As desvantagens notórias são:
✓ Existência de grandes forças de aperto que sobrecarregam os veios;
✓ Rendimento pouco elevado (cerca de 0,8 ... 0,9);
✓ Existência inevitável do deslizamento;
✓ Ocorrência de desgaste.
Elementos de Máquinas - II 9
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Aplicações
• Os variadores por rodas de fricção são indicados para a construção
de máquinas-ferramentas, máquinas têxteis, indústria química e de
papel, aparelhos, etc.
• Há vários métodos para garantir a força de aperto necessário entre
duas rodas de atrito. Alguns dos métodos garantem uma força de
aperto constante, outros têm força auto-regulável ou prevêem
regulação por outros meios (e.g., manual). Para cada caso, é preciso
ter em conta que quando a força de aperto entre as superfícies de
atrito supera certos valores, o rendimento baixa, o desgaste
aumenta, e a tensão de contacto também aumenta.
Elementos de Máquinas - II 10
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Tipos de transmissões por rodas de fricção
• Podem ser identificados diferentes tipos de rodas de fricção e
variadores, dentre os quais podemos destacar:
✓ Rodas de fricção de rolos cilíndricos;
✓ Rodas de fricção de rolos cônico;
Elementos de Máquinas - II 11
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Tipos de transmissões por rodas de fricção
• Para rodas de fricção com superfícies cilíndricas lisas, temos:
e
• Onde:
✓ 𝜀 ≈ 0,01 …0,03 – é o 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒 𝑑𝑒 𝑑𝑒𝑠𝑙𝑖𝑧𝑎𝑚𝑒𝑛𝑡𝑜 =
𝜔2𝑡𝑒ó𝑟𝑖𝑐𝑜 −𝜔2𝑟𝑒𝑎𝑙
𝜔2𝑡𝑒ó𝑟𝑖𝑐𝑜
✓ K – é a reserva da embraiagem (coeficiente de segurança) que toma os
valores 1,25 ...1,5 para transmissões de força e até 3 para transmissões de
aparelhos.
✓ O coeficiente de atrito, para os seguintes pares de atrito, tem os valores:
✓ aço-aço, com lubrificação f ≈ 0,04 ....0,05
✓ aço-aço/aço-f.fundido, sem lubrificação f ≈ 0,15 ...0,20
✓ aço – textolite ou fibra, sem lubrificação f ≈ 0,2 ...0,3
Elementos de Máquinas - II 12
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Tipos de transmissões por rodas de fricção
• Dos valores dos coeficientes de atrito, é evidente que a força de
aperto entre as superfícies pode ser várias (dezenas de) vezes maior
que força tangencial. Por isso, usam-se materiais que conferem
elevados coeficientes de atrito, tais como borracha, couro, madeira,
papel, etc.
Elementos de Máquinas - II 13
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Tipos de transmissões por rodas de fricção
• Para transmissões com eixos cruzados, para as quais se usam rolos cónicos
com qualquer ângulo entre eixos, se não se considerar o deslizamento, a
relação de transmissão é dada por: 𝑖 ≈ ൗ𝑑2 𝑑1
• Sendo: 𝑑2 = 2 ∙ 𝑅 ∙ 𝑠𝑒𝑛𝛿2 e 𝑑1 = 2 ∙ 𝑅 ∙ 𝑠𝑒𝑛𝛿1, para a transmissão cónica
teremos, então:
• E para Σ = 𝛿1 + 𝛿2 = 90
𝑜 (Transmissão ortogonal), tem-se:
Elementos de Máquinas - II 14
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Tipos de transmissões por rodas de fricção
• Os valores das forças de aperto necessárias F1 e F2 calculam-se
utilizando as seguintes fórmulas:
• Ou
Elementos de Máquinas - II 15
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Tipos de transmissões por rodas de fricção
• Destas fórmulas, tendo em conta a relação i = tgδ2 = ctgδ1,
pode-se deduzir que com o aumento da relação de transmissão
(aumento de δ2 e redução de δ1) a força externa de aperto
necessária F1 diminui e a força F2 aumenta. Para uma
transmissão cónica redutora, o dispositivo de aperto deve,
portanto, ser instalado no veio motor (1).
Elementos de Máquinas - II 16
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
• Os variadores são dispositivos utilizados para variar a velocidade do
movimento do elemento accionado. Esta variação é conseguida por
meio da variação da relação de transmissão que, por sua vez,
consegue-se por meio da mudança da posição da zona de contacto
entre os elementos motor e movido (ainda que existam elementos
intermédios). A variação da velocidade é contínua e pode ser
conseguida sem paragem da máquina.
• O diapasão de regulação caracteriza a capacidade de variar a
velocidade e é expresso por:
Elementos de Máquinas - II 17
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Variador Frontal
• O variador frontal ou de face é
compostopor um prato sobre o
qual, em uma das faces, se coloca
um rolo, com eixo perpendicular ao
seu eixo. Este rolo gira em redor do
seu eixo para a transmissão da
potência, mas também tem um
movimento de translação axial que
lhe permite variar a distância desde
o ponto de contacto com o prato
até ao eixo deste.
Elementos de Máquinas - II 18
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Variador Frontal
• Os valores máximo e mínimo da relação de transmissão são:
• O diapasão de regulação é, pois:
• O diapasão de regulação é uma das características mais
importantes do variador frontal.
Elementos de Máquinas - II 19
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Variador Frontal
• Em teoria, para o variador frontal, pode-se obter d2min = 0, e D = ∞. Na
prática, o diapasão de regulação é limitado no intervalo D ≤ 3. A explicação
para tal é que para pequenos valores de d2 o deslizamento e o desgaste
aumentam significativamente e o rendimento diminui (ver adiante, em
“deslizamento geométrico”) .
• No respeitante ao rendimento e resistência ao desgaste, os variadores
frontais (de face) superam outras construções. A simplicidade e a
possibilidade de reversão da direcção do movimento conferem aos
variadores de face uma ampla aplicação em transmissões de aparelhos de
baixa potência e outras construções análogas. Para aumentar a diapasão
de regulação, usam-se variadores frontais de 2 discos, com um rolo
intermédio. Para tais variadores, o diapasão de regulação pode ter valores
até 8 e 10.
Elementos de Máquinas - II 20
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Variador Frontal
• No variador de face, o rolo com deslocamento axial pode ser o
motor ou o accionado.
Elementos de Máquinas - II 21
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Variador de cones corrediços
Elementos de Máquinas - II 22
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Variador de cones corrediços
• No variador de cones corrediços, o elemento de transmissão é uma
correia trapezoidal ou uma cadeia especial. Os elementos motor e
movido são polias bi-partidas, formando pares de cones com a
propriedade de variar a posição relativa na direcção axial.
• Existe um mecanismo de regulação com rosca e alavancas, que, de
um lado, afasta e do outro lado, aproxima os pares de cones que
formam as polias. Estes movimentos de aproximação e afastamento
ocorrem em simultâneo e na mesma magnitude. Por isso, a correia
desloca-se para outros diâmetros de trabalho sem alteração do seu
comprimento.
Elementos de Máquinas - II 23
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Variador de cones corrediços
• As relações cinemáticas para este variador são:
• E, na condição de igualdade dos diâmetros máximo e mínimo tem-
se:
Elementos de Máquinas - II 24
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Variador de cones corrediços
• O cálculo das forças de atrito é feito com base na teoria de
transmissões por correia ou com a ajuda de tabelas especiais. A
carga máxima (de cálculo) da correia determina-se na posição da
correia correspondente a imax, que corresponde a d1min.
• Pelas condições da construção, o diapasão de regulação pode
depender da largura da correia. Há correias para accionamentos
que permitem um diapasão de regulação até 1,5 e correias com
largura especial permitem diapasões de regulação até 5. Os
variadores com correias trapezoidais são simples e suficientemente
seguros.
Elementos de Máquinas - II 25
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Variador torroidal
Elementos de Máquinas - II 26
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Variador torroidal
• No variador toroidal, os veios de entrada (motor) e de saída
(movido) têm pratos 1 e 2, com superfícies na forma de toros
circulares. Entre os tais pratos são colocados os rolos 3, que
funcionam como rodas parasitas. A relação de transmissão é
mudada por meio da rotação dos eixos dos rolos 3 em torno dos
pontos 0. Os eixos dos rolos são fixos numa barra especial de forma
que eles estejam sempre posicionados simetricamente em relação
ao eixo dos pratos. O erro de posicionamento dos rolos 3 (ou seus
eixos) causa uma distribuição irregular das cargas nos rolos, o que
aumenta o deslizamento e o desgaste, em conjunto com a redução
do rendimento. As condições de deslizamento mínimo são, para
além disso, influenciadas pelo desvio mínimo dos vértices dos
cones primitivos dos rolos relativamente ao eixo dos pratos.
Elementos de Máquinas - II 27
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Variador torroidal
• O funcionamento dos pratos com os rolos 3 pode ser
condicionalmente analisado como uma sobreposição de três cones
primitivos. Por isso, o vértice dos cones dos pratos (pontos δ e b)
posicionam-se no eixo dos pratos e o vértice dos cones dos rolos
(ponto a) ocupa uma posição no arco cc, que depende do valor
corrente da relação de transmissão i. O funcionamento só é "livre"
de deslizamento quando os vértices de todos os cones convergem
para o mesmo ponto. Quanto maior for a divergência dos vértices,
maior é o deslizamento. Este tipo de deslizamento pode ser
minimizado para determinadas relações geométricas. Esta é uma
dos principais vantagens dos variadores toroidais. A principal
desvantagem é a complexidade construtiva associada à alta
exigência de precisão na fabricação e montagem.
Elementos de Máquinas - II 28
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Variador torroidal
• O valor corrente da relação de transmissão, sem ter em conta o
deslizamento, é:
• O valor limite da relação de transmissão i é determinado pelo valor
limite do ângulo de inclinação α. Para o cálculo da relação de
transmissão i, o ângulo de inclinação para a esquerda é considerado
negativo. O variador tem uma zona de regulação simétrica,
podendo funcionar como multiplicador (quando α < 0).
Elementos de Máquinas - II 29
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Variador torroidal
• Para garantir a força de compressão entre os elementos do variador
usam-se, frequentemente, dispositivos de compressão de esferas 4,
que diminuem a força externa de aperto Fn em função da
diminuição da carga. A força axial de equilíbrio necessária Fax (Fn na
figura) determina-se pela condição de equilíbrio dos pratos, pela
expressão:
Elementos de Máquinas - II 30
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Variador torroidal
• Onde:
✓ Fn1 – é a força normal de aperto dos rolos sobre os pratos em cada
ponto de contacto com o prato motor;
✓ K – é um coeficiente de segurança;
✓ f – é o coeficiente de atrito entre os pratos e os rolos;
✓ r1 – é o raio de trabalho do prato motor;
✓ m - é o número de rolos (normalmente m = 2)
Elementos de Máquinas - II 31
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Variador torroidal
• O valor máximo de Fn (Fnmax ou Faxmax) corresponde ao valor mínimo
de r1, ou seja, a α = +αmax, isto é, ao desvio máximo dos rolos para a
direita, ou imax. De Faxmax determina-se o ângulo necessário β no
dispositivo de compressão (ou aperto) de esferas (veja a figura):
• O cálculo da resistência ao contacto dos pratos e dos rolos é feito
usando Faxmax. Tendo em conta as fórmulas anteriores, obtém-se:
Elementos de Máquinas - II 32
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Variador torroidal
• Onde:
✓ Fn1max – é a força normal máxima num só ponto de contacto entre os rolos
e os pratos;
✓ T1 – é o momento torsor de trabalho;
✓ m – é o número de rolos;
✓ r3 – é o raio de disposição das esferas do dispositivo de aperto, em relação
ao eixo de rotação dos pratos;
✓ β - é o ângulo de inclinação dos planos de contacto das esferas no
dispositivo de aperto;
✓ γ - é metade do ângulo ao centro do triângulo com vérticeno centro de
rotação do eixo dos rolos O e com base igual ao diâmetro de trabalho dos
rolos;
✓ αmax – é o valor máximo do ângulo de rotação do eixo dos rolos.
Elementos de Máquinas - II 33
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Variador torroidal
• As forças normais em ambos os pratos são aproximadamente iguais, assim
como as forças tangenciais nos rolos. O valor de Fn1max corresponde a imax.
• A experiência indica que os variadores toroidais têm suficientemente alta
qualidade (pequenos deslizamentos, rendimento até 0,95). Podem ser
normalizados, para potências de 1,5... 2 kW e diapasões de regulação
6,25...3.
• Os materiais dos corpos de rolamento são aço temperado /aço
temperado, com lubrificação, ou aço temperado/textolite, sem
lubrificação.
• A coroa dos rolos pode ser feita de textolite. Como os rolos de textolite
são mais mais deformáveis, o seu uso reduz as exigências de precisão de
fabricação dos variadores.
Elementos de Máquinas - II 34
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Variador de discos
Elementos de Máquinas - II 35
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Variador de discos
• No variador de discos, o torque é transmitido por meio do atrito
entre os discos motores e os discos accionados. A variação da
relação de transmissão é conseguida por meio da variação da
posição do veio motor relativamente ao veio movido
(aproximação/afastamento).
• Isto altera a distância interaxial a e o diâmetro de trabalho d2, o que
confere:
Elementos de Máquinas - II 36
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Variador de discos
• O conceito principal da construção do variador de discos baseia-se
no aumento do número de pontos de contacto entre os elementos
de fricção, o que permite uma considerável redução das tensões de
contacto e, consequentemente, redução do desgaste dos discos. De
igual modo, a força de aperto dos discos Fn reduz
significativamente.
• Desprezando o efeito da conicidade dos discos, pode-se escrever
que:
Elementos de Máquinas - II 37
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Variador de discos
• O conceito principal da construção do variador de discos baseia-se
no aumento do número de pontos de contacto entre os elementos
de fricção, o que permite uma considerável redução das tensões de
contacto e, consequentemente, redução do desgaste dos discos. De
igual modo, a força de aperto dos discos Fn reduz
significativamente.
• Desprezando o efeito da conicidade dos discos, pode-se escrever
que:
Elementos de Máquinas - II 38
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Variador de discos
• Onde:
✓ m - é o número de pontos de contacto, equivalente ao dobro do
número de discos motores (no esquema); torna-se m = 18... 42 ou
mais;
✓ c - é o número de veios motores (o variador de discos pode ser
construído à semelhança de um mecanismo planetário).
✓ d1- e o diâmetro dos discos motores.
Elementos de Máquinas - II 39
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Variador de discos
• O aperto dos discos é feito por uma mola montada no veio ou por meio de
um dispositivo de aperto de esferas (como o do variador toroidal). Os
discos são feitos de aço e são temperados para alta dureza (HRC 50 ... 60).
O variador funciona com lubrificação, o que permite um funcionamento
estável, sem influência de factores relacionados com o atrito, e com
reduzido desgaste. A redução do coeficiente de atrito devida à lubrificação
do variador é compensada pelo aumento do número de pontos de
contacto. Produzem-se discos com forma cónica (conicidade 1º30'...3º00')
de modo a reduzir o deslizamento (e respectivas perdas). Por isso, resulta
um contacto "pontual", que se dá numa pequena zona, sob acção da
carga.
• Os discos de aço estirado permitem obter construções compactos para
potências elevadas. Os variadores de discos são fabricados para potências
até 40 kW, com diapasão de regulação até 4,5, e rendimentos 0,8...0,9
Elementos de Máquinas - II 40
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Variador de discos
• Outros esquemas têm contacto interior, diferentemente dos de
contacto exterior. Nestas construções, o disco motor assume a
forma anular e envolve o movido. O contacto interior possibilita a
redução das perdas por deslizamento, tal como a construção com
"transmissão directa" (i = 1), que tem muita importância nos
variadores de automóveis.
Elementos de Máquinas - II 41
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Outros esquemas de variadores
a) Variador cónico, com correia deslocável
b) Variador de face, com prato duplo
c) Variador cónico (interno)
d) Variador esférico simples
e) Variador esférico duplo
Elementos de Máquinas - II 42
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Variadores de velocidade
❑ Outros esquemas de variadores
• Variador cónico, com correia deslocável
• Nas figuras f, g e h (variador cônico, variador de faces e variador
esférico, respectivamente) também se mostram outros esquemas
de variadores. Estes variadores são feitos para baixas potências e
aplicam-se principalmente em cadeias cinemáticas de aparelhos.
Elementos de Máquinas - II 43
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Factores principais para a determinação da qualidade da
transmissão por fricção
❑ Deslizamento
• O deslizamento provoca desgaste, reduz o rendimento e não
permite uma relação de transmissão constante nas transmissões
por fricção. Há três tipos de deslizamento: patinagem, deslizamento
elástico e deslizamento geométrico.
Elementos de Máquinas - II 44
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Factores principais para a determinação da qualidade da
transmissão por fricção
❑ Deslizamento
❖ Patinagem
• Surge quando não se verifica a condição Ft < F, em transmissões
sobrecarregadas. O rolo movido pára e o rolo motor gira sobre ele,
com notável desgaste ou gripagem da superfície. A deterioração da
forma geométrica e qualidade das superfícies dos rolos de fricção
leva à avaria da transmissão. Por isso, prevê-se um coeficiente de
segurança "K" no projecto da transmissão, que serve para evitar a
patinagem mesmo em casos de pequenas sobrecargas. Não se
permite que as transmissões por fricção sejam usadas como
dispositivos de segurança contra sobrecargas (apesar de terem tal
propriedade). Em geral, o uso de dispositivos de aperto com
regulação automática da força elimina a patinagem.
Elementos de Máquinas - II 45
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Factores principais para a determinação da qualidade da
transmissão por fricção
❑ Deslizamento
❖ Deslizamento elástico
• Está associado à deformação elástica dos corpos. Isto pode ser
explicado, de forma elementar, tomando como exemplo a
transmissão por fricção com rolos cilíndricos, se os rolos fossem
absolutamente rígidos, então o contacto linear inicial manter-se-ia
constante, mesmo em condições de sobrecarga. Assim, as
velocidades tangenciais ao longo desta linha seriam iguais e não
haveria deslizamento. Porém, nos corpos elásticos sob a acção de
cargas, o contacto dá-se ao longo de uma superfície de contacto. A
condição de igualdade das velocidades tangenciais verifica-se só
nos pontos situados numa das linhas desta superfície. Nos restantes
pontos há deslizamento.
Elementos de Máquinas - II 46
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Factores principais para a determinação da qualidade da
transmissão por fricção
❑ Deslizamento
❖ Deslizamento elástico
Elementos de Máquinas - II 47
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Factores principais para a determinação da qualidade da transmissão por
fricção
❑ Deslizamento
❖ Deslizamento elástico
• Um modelo simples para idealizar este fenómeno é um cilindro bastante
deformável rolando sobre um plano indeformável, com velocidade
constante v. Devido à deformação, o contacto dá-se ao longo de um plano
relativamentelargo, com distância r até ao centro de rotação do cilindro
notavelmente variável. Como a velocidade é expressa pelo produto ω×r
onde o valor de r é variável por causa da deformação irregular do cilindro,
então a velocidade dos diferentes pontos do plano de contacto não pode
ser a mesma. Isto origina o deslizamento do tipo elástico. O modelo mais
realista sobre o deslizamento elástico pode ser exposto usando o facto de
haver malhas cristalinas comprimidas na entrada em contacto de uma das
rodas com a conjugada e haver malhas estiradas no ponto de saída (e vice-
versa).
Elementos de Máquinas - II 48
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Factores principais para a determinação da qualidade da transmissão por
fricção
❑ Deslizamento
❖ Deslizamento elástico
• Assim sendo, deve haver deslizamento para as malhas passarem do estado
“comprimido” ao “estirado” (e vice-versa) durante o contacto.
• Na realidade, o fenómeno ligado à deformação elástica na transmissão por
fricção é complexo. Os valores do deslizamento devido a este tipo de
deformação são determinados experimentalmente e, em geral, não
superam 2...3%.
• Para rolos de aço, o deslizamento elástico é pequeno (insignificante): ε ≈
0,002, para carga nominal; para o textolite/aço ε ≈ 0,01; para
borracha/aço ε ≈ 0,03.
• O deslizamento elástico reduz com a diminuição da carga.
Elementos de Máquinas - II 49
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Factores principais para a determinação da qualidade da
transmissão por fricção
❑ Deslizamento
❖ Deslizamento geométrico
• Está ligado à desigualdade das velocidades dos diferentes pontos
das superfícies de contacto entre os rolos motor e movido. Esta
diferença de velocidades é típica nas transmissões por fricção e a
tendência para diminuí-la motiva a procura de novas formas dos
corpos rolantes (rolos, etc), que têm deslizamento geométrico
reduzido. A natureza do deslizamento geométrico pode ser
explicada utilizando um variador de face simples.
Elementos de Máquinas - II 50
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Factores principais para a determinação da qualidade da
transmissão por fricção
❑ Deslizamento
❖ Deslizamento geométrico
Elementos de Máquinas - II 51
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Factores principais para a determinação da qualidade da transmissão por
fricção
❑ Deslizamento
❖ Deslizamento geométrico
• A velocidade tangencial na superfície de trabalho do rolo é constante ao
longo de toda a largura do rolo e é v1. A velocidade dos diversos pontos
dα superficie de trabalho do disco v2 varia proporcionalmente à distância
destes pontos até ao centro de rotação. (Na periferia do disco v2 = v2max
e no centro do disco é nula).
• Se não houver deslizamento, as velocidades v1 e v2 na linha de contacto
devem ser iguais. Contudo, na construção em estudo, a igualdade das
velocidades só pode ser conseguida para um ponto da linha de contacto.
Este ponto Π chama-se "polo de rolamento". É por este ponto que passa a
circunferência de cálculo do disco, com diâmetro d2, tal que:
Elementos de Máquinas - II 52
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Factores principais para a determinação da qualidade da
transmissão por fricção
❑ Deslizamento
❖ Deslizamento geométrico
• Em todos os restantes pontos da linha de contacto há deslizamento com
velocidade vd = v1 - v2. Na figura, os diagramas de distribuição das
velocidades ao longo da linha de contacto estão representados para uma
linha grossa. O polo de rolamento só se situa no meio da linha de contacto
quando o variador trabalha sem carga. Durante o funcionamento com
carga o polo da rolamento desloca-se do meio numa magnitude Δ. Este
deslocamento pode ser calculado a partir da análise o equilíbrio dos rolos.
O momento torsor T1 deve equilibrar o momento de força de atrito (ou de
resistência). O diagrama da força de atrito específica F' está indicado na
figura, onde a direcção da força de atrito opõe-se à direcção da velocidade
de deslizamento. A força de atrito específica (que tem natureza de uma
carga linear q, mas tem direcção tangencial) é dada por:
Elementos de Máquinas - II 53
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Factores principais para a determinação da qualidade da
transmissão por fricção
❑ Deslizamento
❖ Deslizamento geométrico
• Assim:
• Ou
• Da semelhança de triângulos:
Elementos de Máquinas - II 54
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Factores principais para a determinação da qualidade da
transmissão por fricção
❑ Deslizamento
❖ Deslizamento geométrico
• Determina-se a velocidade de deslizamento máxima à carga I1 como:
• Onde: n é expresso em rpm.
Elementos de Máquinas - II 55
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Factores principais para a determinação da qualidade da
transmissão por fricção
❑ Inconsistência da relação de transmissão
• Tal como sempre, a relação de transmissão é i≈d2/d1, onde d2 está ligado
ao valor de Δ. A análise da fórmula mostra que:
✓ Para uma força de aperto constante Fn, o valor de Δ varia
proporcionalmente à carga T1 (T1 → 0 e Δ → 0). Por isso, a relação de
transmissão não é constante. Ela varia em certos limites em função da
carga.
✓ Se o mecanismo de aperto garante a variação da força de aperto Fn
proporcional a T1, isto é, se a relação T1/Fn é constante, neste caso Δ e i
são constantes. Aqui se nota a grande vantagem dos dispositivos de
regulação com esferas e mecanismos de aperto helicoidais. Estes
dispositivos também melhoram o rendimento, conforme se analisa
adiante.
Elementos de Máquinas - II 56
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Factores principais para a determinação da qualidade da
transmissão por fricção
❑ Inconsistência da relação de transmissão
✓ O valor Δ e a variação do valor da relação de transmissão i são
proporcionais ao comprimento de contacto ou à largura do rolo b.
Para a diminuição do deslizamento e variação da relação de
transmissão usam-se rolos estreitos ou passa-se do contacto linear
ao contacto pontual (b = 0 e Δ = 0). A disposição do polo de
rolamento está ligada à disposição da distribuição da pressão ao
longo da linha de contacto. Para distribuição não uniforme o polo
desloca-se no sentido das pressões maiores. A pressão pode ser
irregular devido às deformações dos veios ou por defeitos de
fabrico. Por isso, exigem-se alta precisão de fabrico e alta rigidez do
variador.
Elementos de Máquinas - II 57
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Factores principais para a determinação da qualidade da
transmissão por fricção
❑ Inconsistência da relação de transmissão
• O rendimento dos variadores depende das perdas de energia por
deslizamento e perdas nos apoios dos veios. As perdas devidas ao
atrito de deslizamento são proporcionais à velocidade de
deslizamento vd. A fórmula:
mostra que nos variadores de face (frontais) a velocidade de
deslizamento vd diminui com o aumento da relação de transmissão i.
Para pequenos valores da relação de transmissão, o variador tem baixo
rendimento. Por causa disso, o diapasão de regulação deste tipo de
variadores é limitado.
Elementos de Máquinas - II 58
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Factores principais para a determinação da qualidade da
transmissão por fricção
❑ Rendimento
• As perdas por atrito nos apoios dependem dos valores das cargas
nos veios, que são determinadas a partir das forças de aperto Fn
(não para todas as construções). Para forças Fn constantes, as
perdas nos apoios são constantes e, por conseguinte, o rendimento
é menor nos variadores que funcionam com carga abaixo da
nominal. Por isso, usam-se mecanismos tensores com relação T1/Fn
constante. Dado o aspecto complexo do cálculo do rendimento, em
geral os valores do mesmo avaliam-se experimentalmente e
constam em manuais.
Elementos de Máquinas - II 59
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Factores principais para a determinação da qualidade da
transmissão por fricção
❑ Rendimento
• As perdas por atrito nos apoios dependem dos valores das cargas
nos veios, que são determinadas a partirdas forças de aperto Fn
(não para todas as construções). Para forças Fn constantes, as
perdas nos apoios são constantes e, por conseguinte, o rendimento
é menor nos variadores que funcionam com carga abaixo da
nominal. Por isso, usam-se mecanismos tensores com relação T1/Fn
constante. Dado o aspecto complexo do cálculo do rendimento, em
geral os valores do mesmo avaliam-se experimentalmente e
constam em manuais.
Elementos de Máquinas - II 60
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Cálculos principais da resistência do par de fricção
• Critério de cálculo: No trabalho do par de fricção distinguem-se os
seguintes tipos de destruição:
✓ Lascamento por fadiga - para superfície de trabalho lubrificada, em
atrito líquido. Nestas condições, as superfícies de trabalho são
separadas por uma camada de óleo e o desgaste é mínimo.
✓ Desgaste - para transmissões que funcionam sem lubrificação.
✓ Gripagem da superfície - para transmissão com patinagem ou com
sobre-aquecimento, em cargas e velocidades altas, com deficiência
de lubrificação.
Elementos de Máquinas - II 61
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Cálculos principais da resistência do par de fricção
• Destes tipos de destruição, destaca-se a destruição causada pela
pressão nos pontos de contacto. Por isso, a resistência e a
longevidade do par de fricção são avaliadas usando as tensões de
contacto. O cálculo da tensão de contacto para o contacto linear
(corpos de rolamento: cilíndrico, cónico, toroidal e rolos de geratriz
com um raio) faz-se pela fórmula:
Elementos de Máquinas - II 62
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Cálculos principais da resistência do par de fricção
Elementos de Máquinas - II 63
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Cálculos principais da resistência do par de fricção
• Para contacto pontual (e casos similares)
• Onde:
✓ Fn - é a força de aperto, normal à superfície de contacto;
✓ b - é o comprimento da linha de contacto
✓ m - é um coeficiente que depende da forma dos corpos de
rolamento.
✓ Ered - módulo de elasticidade reduzido:
Elementos de Máquinas - II 64
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Cálculos principais da resistência do par de fricção
❑ Tensões admissíveis
• Para aço temperado com dureza maior que ou igual a HRC60,
contacto linear e boa lubrificação [σH] = 1000 ... 1200 Mpa
• Para contacto pontual [σH] = 2000 ... 2500 MPa
• Para textolite, contacto linear e sem lubrificação [σH] = 80 ... 100
MPa
Elementos de Máquinas - II 65
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Exercícios de Aplicação
❑ Problema 1 – Calcular a transmissão por rolos de fricção cilíndricos
(diâmetros) para os seguintes dados:
✓ P1 = 5 kW;
✓ n1 = 1800 min-1;
✓ i = 4;
✓ coeficiente de largura do rolo ψ = 0,3
Elementos de Máquinas - II 66
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Exercícios de Aplicação
❑ Problema 2 – Um variador toroidal (fig. 10) tem os seguintes
parâmetros construtivos:
✓ diâmetros dos discos: 300 mm
✓ comprimento dos eixos dos discos: 200 mm
✓ distância do eixo dos pratos ao pivô dos discos: r0 = 320 mm
✓ inclinação máxima dos eixos dos discos: αmax = 20º
• Calcular o diapasão de regulação.
Elementos de Máquinas - II 67
2. TRANSMISSÕES POR RODAS DE 
FRICÇÃO
• Exercícios de Aplicação
❑ Problema 3 – Uma transmissão por rolos cónicos com eixos
ortogonais (Σ = 90º) tem relação de transmissão igual a 3,14. A
transmissão funciona com deslizamento, ε, igual a 0,02 e deve
transmitir uma força tangencial de 80N. O coeficiente de atrito para
os rolos (aço-aço, com lubrificação) é f = 0,04 e o coeficiente de
segurança da força de aperto é 1,5.
a) Calcular o ângulo de cada roda cónica;
b) Calcular as forças externas de aperto nos veios motor (F1) e
movido (F2), para aço-aço, lubrificado;
Elementos de Máquinas - II 68

Outros materiais