Buscar

DOC-20181113-WA0001

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 5 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Física Moderna
Massa relativística
Equação para o cálculo da massa relativística
Quando aplicamos em um corpo uma força de intensidade F, fazemos com que ele adquira velocidade, ou melhor, podemos aumentar sua velocidade de forma indefinida. Agora, se um corpo atingisse a velocidade da luz no vácuo, a força não mais seria capaz de acelerá-lo, pelo fato de ter sido atingida a velocidade limite, isto levando em conta a Teoria da Relatividade.
Nesse caso, poderíamos dizer que a inércia desse corpo seria finita. Sendo assim, cada vez que aumentamos a velocidade de um corpo, aumentamos também sua inércia. Caso continuemos a aumentar sua velocidade, tendendo à velocidade da luz, a sua inércia tenderá a ficar infinitamente grande.
Aprendemos que a massa de um corpo nada mais é do que a inércia desse corpo. Dessa forma, m0corresponde à massa de um determinado corpo em repouso em relação a um sistema de referencia inercial e m é sua massa quando dotado de velocidade v. As massas m e m0 relacionam-se de acordo com a equação acima.
Na equação, ou melhor, nessa fórmula, m0 é chamada de massa de repouso e m, de massa relativística.
Como:
Observe que, sendo a velocidade v desprezível quando comparada com c, podemos fazer:
Nessas condições, resulta m = m0 de acordo com a Mecânica Clássica. Por outro lado, quando v tende a c, a raiz tende a zero e m tende a infinito.
Energia relativística 
A energia relativística foi descoberta por Einstein, em 1905. Essa teoria mostra que massa e energia são grandezas equivalentes, sendo que qualquer massa possui energia associada a ela e vice-versa. Matematicamente, essa relação é definida pela famosa equação de Einstein:
E = m.c2
Sendo:
E – energia de uma partícula;
m – massa da partícula;
c – velocidade da luz no vácuo.
A equação acima é a mais conhecida da Física e teve enormes consequências, dentre as quais podemos destacar a energia nuclear.
Embora essa energia esteja vinculada a uma velocidade (c), ela também fornece a energia de repouso E0 de um corpo em um referencial em virtude de sua massa de repouso m0.
E0 = m0.c2
Porém, se o corpo estiver em movimento, com uma velocidade v, devemos levar em consideração que ele passa a ter também uma energia cinética Ec e sua massa relativística sofre dilatação, aumentando uma quantidade Δm = m – m0.
A massa relativística é dada pela equação:
Sendo a energia cinética dada pela expressão:
EC = Δm . c2
EC = ( m – m0) . c2
EC = mc2 – m0c2
Substituindo m pela expressão da massa relativística, obtemos uma expressão para a energia cinética relativística desse corpo:
Essa expressão mostra que um corpo possui energia mesmo se estiver em repouso apenas por possuir massa, sendo que o fator c2 pode ser entendido como um fator de conversão entre as unidades das duas grandezas.
As consequências da energia relativística
A equação da energia relativística mostra que a máxima energia que um corpo pode possuir é obtida pela multiplicação da massa pela velocidade da luz ao quadrado. O que também significa que uma quantidade mínima de massa pode produzir quantidades imensas de energia. Por exemplo: Um corpo com massa m=1,0 Kg pode produzir 9,0 . 1016 J de energia.
Esse conceito de equivalência entre massa e energia foi utilizado no desenvolvimento da bomba atômica, pois possibilita o cálculo da energia que pode ser liberada em uma reação nuclear. Essa descoberta foi elementar para a criação das duas bombas atômicas que destruíram as cidades de Hiroshima e Nagasaki e que levou Einstein a ser conhecido como o pai da bomba atômica.
Efeito fotoelétrico 
O efeito fotoelétrico ocorre quando uma placa metálica é exposta a uma radiação eletromagnética de frequência alta, por exemplo, um feixe de luz, e este arranca elétrons da placa metálica.
O efeito fotoelétrico parece simples, mas intrigou bastantes cientistas, só em 1905 Einstein explicou devidamente este efeito e com isso ganhou o Prêmio Nobel.
Uma das dúvidas que se tinha a respeito era que quanto mais se diminuía a intensidade do feixe de luz o efeito ia desaparecendo e a respeito da frequência da fonte luminosa também intrigava muito os cientistas, pois ao reduzir a frequência da fonte abaixo de um certo valor o efeito desaparecia (chamado de frequência de corte), ou seja, para frequências abaixo deste valor independentemente de qualquer que fosse a intensidade, não implicava na saída de nenhum único elétron que fosse da placa metálica.
Mais tarde Einstein com a teoria dos fótons explicou que, a intensidade de luz é proporcional ao número de fótons e que como consequência determina o número de elétrons a serem arrancados da superfície da placa metálica e, quanto maior a frequência maior é a energia adquirida pelos elétrons assim eles saem da placa e abaixo da frequência de corte, os elétrons não recebem nenhum tipo de energia, assim não saem da placa.
Placa metálica incidida por luz e perdendo elétrons devido o efeito fotoelétrico.
Caráter dual da luz
A luz possui comportamento dual: ora se comporta como onda, ora se comporta como partícula.
Algumas teorias foram apresentadas no mundo científico tentando explicar o comportamento da luz; dentre elas a do físico inglês Isaac Newton (1643 – 1727), que em sua proposta considerava a luz como um feixe de partículas (modelo corpuscular); essa teoria tornou-se restrita por não conseguir explicar alguns fenômenos.
James Clerk Maxell (1831 – 1879) apresentou uma teoria detalhada da luz como um efeito eletromagnético (modelo ondulatório), explicando uma gama de fenômenos, contudo, esse modelo tornou-se parcial em algumas circunstâncias, como no efeito fotoelétrico, por não conseguir explicar a emissão instantânea de elétrons de uma placa de metal em razão da interação de ondas eletromagnéticas com a mesma (a emissão deveria ocorrer após um determinado intervalo de tempo, segundo as previsões).
Albert Einstein (1879 – 1955) explicou o efeito fotoelétrico teorizando que as ondas eletromagnéticas (modelo ondulatório) que interagiam com a placa de metal só fariam com que os elétrons fossem ejetados instantâneamente se elas se comportassem como partículas (modelo corpuscular).
Essa intercalação de ideias entre ondas e partículas com relação à luz é aceita na comunidade científica como a Natureza Dual da Luz; pois em determinados fenômenos (interferência, refração, difração...) a teoria eletromagnética consegue explicar e a teoria corpuscular está associada aos fenômenos de absorção e emissão de energia.
No ano de 1924, o físico francês Louis De Broglie (1892 – 1897), utilizando da ideia de que na natureza existe simetria, trabalhou a hipótese da partícula se comportar como onda, através da expressão matemática ele relacionou o comprimento de onda de uma partícula à quantidade de movimento da mesma.
As aplicações das três últimas teorias citadas podem ser vistas respectivamente em: estudo de microestruturas através da difração da luz (comportamento ondulatório), as portas automáticas de shoppings centers têm seu princípio de funcionamento baseado no efeito fotoelétrico (modelo corpuscular) e o microscópio eletrônico que utiliza feixe de elétrons e não a luz (partícula-onda).

Outros materiais