Buscar

Noções Sobre Corrente Alternada Senoidal

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 50 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 50 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 50 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

DESCRIÇÃO
Introdução à análise de circuitos em corrente alternada (CA) em regime permanente senoidal, técnicas de
análise de circuitos CA, circuitos CA trifásicos e potência CA.
PROPÓSITO
Compreender as relações entre tensão e corrente em regime de CA senoidal para fins de resolução de
circuitos no domínio da frequência. Apresentar o sistema trifásico e a relação de potências em CA.
PREPARAÇÃO
Antes de iniciar o conteúdo deste tema, tenha em mãos papel, caneta e, se possível, uma calculadora
científica para facilitar seus cálculos com números complexos.
OBJETIVOS
MÓDULO 1
Formular a relação entre tensão e corrente em regime permanente senoidal
MÓDULO 2
Aplicar técnicas de resolução de circuitos em CA no domínio da frequência
MÓDULO 3
Reconhecer sistemas trifásicos e relações de potência CA
NOÇÕES SOBRE CORRENTE ALTERNADA
SENOIDAL
MÓDULO 1
 Formular a relação entre tensão e corrente em regime permanente senoidal
RELAÇÃO ENTRE TENSÃO E CORRENTE EM
REGIME PERMANENTE SENOIDAL
RELAÇÃO ENTRE TENSÃO E CORRENTE
AS TENSÕES SENOIDAIS DISPONIBILIZADAS PARA USO EM
RESIDÊNCIAS, INDÚSTRIAS E APLICAÇÕES EM GERAL SÃO
ORIGINADAS EM GERADORES DE CA.
Entender a origem dos sinais alternados senoidais é o primeiro passo para aplicar as relações entre tensões
e correntes alternadas para solução de circuitos com fontes variáveis.
A figura a seguir ilustra a forma de onda de um sinal senoidal, que se repete em intervalos definidos. É
possível dizer então que se trata de um sinal periódico.
 Figura 1: Forma de onda senoidal.
Esse sinal periódico senoidal pode ser modelado por uma função cosseno (Equação 1). Por se tratar de
um sinal que se repete, é possível obter sua frequência, que é o número de ciclos por segundo, medida em
Hertz (Hz) ou radianos por segundo .
(1)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Na Equação 1 é possível ainda observar o ângulo ∅, denominado ângulo de fase do sinal senoidal. Ele
determina o deslocamento da função no eixo de tempo (Figura 2). Essa forma de onda senoidal pode ser a
representação de qualquer forma de onda alternada, como tensões, correntes ou potências.
 Figura 2: Defasagem entre senoides.
O valor na figura acima refere-se ao valor máximo da amplitude do sinal, tanto no semiciclo positivo
quanto no semiciclo negativo. Esse valor também é conhecido como valor de pico, de modo que a
amplitude total, entre os valores máximos positivo e negativo, é denominada valor de pico a pico ,
dado pela Equação 2:
 (ω)
Am cos  (ωt + ∅)
VM
VPP
(2)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A expressão matemática geral que representa um sinal senoidal é dada pela Equação 3.
(3)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em que é a amplitude máxima (de pico) do sinal e é o argumento do sinal, determinado pelo
produto da frequência angular com o período do ciclo desse sinal.
 EXEMPLO
Considere a forma de onda de tensão senoidal da próxima figura. Essa tensão apresenta um valor de pico
de 10 V, um período de oscilação de 0,8 s (tempo gasto para completar um ciclo de onda) e uma frequência
de 1,25 Hz (quantidade de ciclos por segundo ou o inverso do período).
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em que f é a frequência em Hertz e T, o período em segundos.
 Figura 3: Exemplo 1.
VPP = 2VM
Am sen  (α)
Am α = ωt
f = 1
T
 EXEMPLO
Sejam e duas tensões senoidais. Determine a frequência desses sinais em Hz e o ângulo de
fase entre elas.
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A frequência em Hz é dada por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Já o ângulo de fase entre os sinais é dado por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
VALOR MÉDIO DE UM SINAL SENOIDAL
O VALOR MÉDIO DE UM SINAL SENOIDAL É SIMPLESMENTE A MÉDIA
DESSE SINAL AO LONGO DE UM PERÍODO.
Tal valor pode ser entendido como a componente CC presente no sinal CA. Na figura a seguir o valor médio
do sinal é a área sob a curva do gráfico.
v1(t) v2(t)
v1(t)= 10sen(377t + 30°) V
v2(t) = 5sen(377t − 20°) V
f = = = 60  Hzω2π
377
2π
∅ = 30° −(−20°)= 50°
 Figura 4: Definição de valor médio.
 ATENÇÃO
Para um sinal senoidal simétrico ao eixo x, a média será zero, pois os valores dos semiciclos positivo e
negativo se anulam no cálculo da média.
VALOR EFICAZ (RMS) DE UM SINAL SENOIDAL
 SAIBA MAIS
O valor eficaz ou rms (do inglês root mean square, valor quadrado médio) refere-se à medida de um sinal
CA que dissipa a mesma potência em uma resistência alimentada por um sinal CC.
O valor rms para sinais senoidais é dado pela Equação 4:
(4)
Arms =
Am
√2
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em que é a amplitude máxima ou de pico do sinal.
 COMENTÁRIO
As tensões indicadas pelas empresas de energia em instalações residenciais, por exemplo (127 V ou 220
V), já são valores rms.
FASORES
As expressões que representam um sinal CA senoidal, como o descrito na Equação 3, podem ser expressas
de forma mais simplificada utilizando fasores.
FASORES SÃO VETORES QUE GIRAM EM CÍRCULO NO SENTIDO ANTI-
HORÁRIO A DADA VELOCIDADE ANGULAR CONSTANTE.
Para exemplificar como eles são representados, considere a Equação 5 que descreve uma tensão senoidal:
(5)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Para descrever esse sinal de tensão completamente, basta conhecer seu valor máximo e seu ângulo de
fase. Dessa forma, essa tensão pode ser representada por um número complexo na forma polar:
NÚMERO COMPLEXO
Lembrando que a representação de números complexos em temas de eletricidade é feita com a letra em
vez da letra .
Am
V (t)= Vmcos(ωt + θ)
j
i
V = Vme
jθ = Vm∠θ
javascript:void(0)
(6)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A Equação 6 é definida como um fasor, representado em negrito para diferenciá-lo de outros números
complexos.
Uma senoide pode ser representada por um conjunto de fasores de amplitude constante (Figura 5).
Conforme o sinal senoidal ocorre ao longo do tempo, o fasor (vetor no ciclo trigonométrico) assume
posições angulares (ou fases) diferentes.
Quando essa senoide completa um ciclo, o fasor completa um giro, de modo que pode ser denominado
como um vetor girante.
 Figura 5: Relação gráfica entre sinal senoidal e fasor.
 ATENÇÃO
Grandezas defasadas – Quando duas ou mais senoides de mesma frequência não atingem seus
respectivos valores máximos no mesmo instante do tempo, diz-se que elas estão defasadas.
Grandezas em fase – Quando duas ou mais senoides de mesma frequência (com a mesma amplitude ou
não) atingem seus respectivos valores máximos no mesmo instante, diz-se que elas estão em fase.
RELAÇÃO DE TENSÃO E CORRENTE PARA
FASORES
Considerando que as tensões e correntes em um circuito de CA podem ser representadas na forma de
fasores, é importante conhecer a relação entre essas grandezas para os elementos do circuito, ou seja:
RESISTORES
INDUTORES
CAPACITORES
Essa relação tem como base a própria Lei de Ohm, com o fator de proporcionalidade sendo uma constante
ou uma função da frequência . No caso dos resistores, tem-se:
 Figura 6: Resistor alimentado por uma fonte senoidal.
(7)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em que:
(8)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
(9)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
ω
V = Ri
V(t)= Vm cos(ωt + θ)
i(t)= Im cos(ωt + φ)
Considerando as Equações 8 e 9 na forma polar e substituindo na Equação 7, a Lei de Ohm para os
resistores será dada por:
(10)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Sendo e os fasores detensão e corrente, respectivamente. Dessa forma, a representação
fasorial para a relação entre tensão e corrente em resistores é:
(11)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
 ATENÇÃO
Para os resistores, a relação fasorial no domínio da frequência é igual à relação do domínio do tempo, de
modo que os ângulos de tensão e corrente são iguais e são ditos em fase.
Para o indutor, é preciso primeiro relembrar a sua relação no domínio do tempo:
 
(12)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A representação complexa da Equação 12 é dada pela Equação 13:
Vme
jθ = RImejφ
Vme
jθ Ime
jφ
V = RI
(θ) (φ)
V (t) = L
di(t)
dt
Vme
j(ωt + θ) = jωLIme
j(ωt + φ)
(13)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Assim, sua representação na forma de fasores é:
(14)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
O fator de proporcionalidade para a Lei de Ohm aplicada ao indutor é . A corrente será atrasada em 90°
em relação à tensão.
Para o caso do capacitor, sua relação no domínio do tempo é dada por:
(15)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A partir da mesma análise feita para o indutor, a Equação 15 pode ser fasorialmente representada por:
(16)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A Equação 16 demonstra que a corrente e a tensão estão novamente fora de fase. Nesse caso, para o
capacitor, a corrente está adiantada 90° em relação à tensão.
A Tabela 1 traz um resumo da relação entre tensão e corrente para os três componentes abordados:
resistores, indutores e capacitores.
Elemento Domínio do tempo Domínio da frequência
V = jωLI
jωL
i(t)= C
dV (t)
dt
I = jωCV        ⇒        V = I
jωC
Tabela 1: Relação entre tensão e corrente nos elementos. Elaborado por Isabela Oliveira Guimarães.
 Atenção! Para visualização completa da tabela utilize a rolagem horizontal
TEORIA NA PRÁTICA
Considere que a equação senoidal a seguir representa tensão em um indutor. Utilizando os conceitos vistos
anteriormente, converta essa tensão para sua representação na forma fasorial.
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
RESOLUÇÃO
Considerando a representação geral de um sinal senoidal, conforme a Equação 5, tem-se:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Para determinar sua representação fasorial, basta conhecer o valor máximo da tensão e seu ângulo de
fase :
R V = Ri V = RI
L  V = L di
dt
V = jωLI
C i = C dv
dt
V = I
jωC
V (t)= 5cos(20t + 30°) V
V (t)= Vmcos(ωt + θ)
Vm
(θ)
V = Vmejθ = Vm∠θ
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Assim, a representação fasorial do problema será dada por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
RESOLUÇÃO
MÃO NA MASSA
VERIFICANDO O APRENDIZADO
MÓDULO 2
 Aplicar técnicas de resolução de circuitos em CA no domínio da frequência
V = 5ej30° = 5∠30°
TÉCNICAS DE RESOLUÇÃO DE CIRCUITOS CA
NO DOMÍNIO DA FREQUÊNCIA
REATÂNCIA INDUTIVA E CAPACITIVA
Lembramos que um resistor, atravessado por uma corrente, apresenta uma oposição à passagem dessa
corrente que chamamos de resistência.
O COMPORTAMENTO DE UMA RESISTÊNCIA TANTO NA CORRENTE
CONTÍNUA (CC) QUANTO NA CORRENTE ALTERNADA (CA) É O
MESMO. O RESISTOR, QUANDO SUBMETIDO A UMA CORRENTE,
DISSIPA CALOR ATRAVÉS DO EFEITO JOULE.
No entanto, quando tratamos de indutores e capacitores, há um comportamento diferente nos regimes de
CC e CA. Um indutor em regime de CC funciona como um curto-circuito, mas, na CA, o indutor é carregado
e descarregado na mesma frequência da senoide, o que gera um comportamento de oposição à passagem
da corrente alternada. Esse efeito, semelhante ao da resistência, é a reatância indutiva, e é representado
por .
Um capacitor em regime de CC funciona como um circuito aberto, mas na CA o capacitor é carregado e
descarregado na mesma frequência da senoide, o que gera um comportamento de oposição à passagem da
corrente alternada. Esse efeito, semelhante ao da resistência, é a reatância capacitiva, e é representado
por .
IMPEDÂNCIA DO CIRCUITO
Em CA, a relação entre tensão e corrente referente às resistências e reatâncias do circuito, deve ser feita
utilizando fasores, conforme detalhado no Módulo 1.
TAL RELAÇÃO NORMALMENTE RESULTA NA EXPRESSÃO DOS
COMPONENTES DO CIRCUITO COMO NÚMEROS COMPLEXOS, O QUE
SERÁ TRATADO COMO A IMPEDÂNCIA DE CADA ELEMENTO.
Considere as relações entre tensão e corrente para os três componentes estudados: resistor, indutor e
capacitor no domínio da frequência.
(17)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
 XL
XC
V = RI                      V = jωLI                      V = I
jωC
Essas relações são a representação da Lei de Ohm na forma fasorial, de modo que é possível reescrevê-
las como:
(18)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Nessa representação, a relação é chamada de impedância do dispositivo, representada por ,
medida em ohms . Apesar de ser dada pela relação entre dois fasores, a impedância não pode ser
considerada um fasor, visto que não varia como uma senoide. A impedância dos três componentes de
circuito ( , e ) é dada por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Dessa forma, a impedância de um componente pode ser definida como sua capacidade de se opor a uma
corrente senoidal, que possui módulo e frequência.
 ATENÇÃO
Para o resistor (também chamado de elemento ativo), é possível observar que a impedância é seu próprio
valor de resistência à oposição de passagem de corrente. Para os indutores e capacitores (também
chamados de elementos passivos), sua impedância será o que definimos com reatância . A impedância
também pode representar as características de partes ou de todo um circuito formado pelos elementos , 
e .
= R                = jωL                =V
I
V
I
V
I
1
jωC
V/I Z
(Ω)
R L C
R      ⇒      Z = R
L       ⇒      Z = jωL
C      ⇒      Z = 1
jωC
X
R L
C
Assim, para um circuito elétrico, a impedância pode ser apresentada como a combinação entre as partes
ativa e reativa do circuito por um número complexo em sua forma retangular:
(19)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Na Equação 19, corresponde à parcela ativa (ou resistiva) do circuito, enquanto corresponde à parcela
reativa, também denominada reatância do circuito.
 VOCÊ SABIA
A impedância é considerada indutiva quando é positiva ou capacitiva quando é negativa. Do mesmo
modo que a impedância, a reatância também é medida em ohms.
A partir das relações trigonométricas de números complexos, é possível calcular o módulo e o ângulo da
impedância de um circuito a partir de suas componentes resistivas e reativas:
(20)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
(21)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Graficamente, essas relações são representadas da seguinte forma:
Z = R + jX
R X
X X
|Z|= √R2 + X2
θZ = tan
−1 X
R
 Figura 7: Representação gráfica da impedância.
 EXEMPLO
Em um circuito elétrico alimentado com corrente senoidal, os componentes são desconhecidos, e foram
medidas as seguintes grandezas fasoriais: e . A impedância desse circuito será
dada por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A partir da Equação 20 é possível determinar a impedância em sua forma retangular, de modo a extrair suas
componentes resistivas e reativas:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Ou seja, o circuito descrito possui uma resistência de e uma reatância indutiva de .
V = 10∠46,9° I = 2∠10°
Z = = 5∠36,9°Ω
10∠46,9°
2∠10°
Z = 5(cos 46,9° + jcos 10°)
Z = 4 + j3 Ω
4 Ω 3 Ω
ADMITÂNCIA DO CIRCUITO
Em muitas situações de análise, é indicado solucionar circuitos utilizando a grandeza inversa da impedância
. A admitância é a grandeza inversa à impedância (análoga à condutância em circuitos CC), cuja
unidade de medida é siemens (ou mhos):
(22)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Do mesmo modo que a impedância, a admitância é um número complexo; logo, pode ser descrita em seu
formato retangular:
(23)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em que é chamada condutância e é a susceptância
(24)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
 ATENÇÃO
O fato de inverter separadamente a resistência ou a reatância de um circuito não fornece a condutância e
susceptância correspondentes. Por se tratar de grandezas complexas, o cálculo leva em conta as relações
trigonométricas:
(Z) (Y)
Y = 1
Z
Y = G + jB
G = Re,  Y B = Im  Y
G + jB = 1
R+jX
(25)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
LEIS DE KIRCHHOFF PARA ANÁLISE DE
CIRCUITOS CA
Da mesma forma que na análise de circuitos CC, as Leis de Kirchhoff das Tensões (LKT) e das Correntes
(LKC) são igualmente válidas para análise de circuitos CA no domínio da frequência, através dos fasores.
Para a LKT, o somatório das tensões em uma malha de circuito é zero, de modo que, na forma fasorial, tem-
se:
(26)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em que:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Para a LKC, é válida relação semelhante. O somatório das correntes em um nó de circuito é zero, de modo
que, na forma fasorial, tem-se:
(27)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
G =                   B = −R
R2+X2
X
R2+X2
V1 + V2 + … + Vn = 0
Vn = Vn ∠ θn,          n = 1,2, 3, … . . n
I1 + I2 + … + In = 0
Sendo:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em um circuito que contém N impedâncias associadas em série e alimentadas por uma fonte senoidal
(Figura 8), fluirá uma única corrente fasorial através de todos os elementos, conforme as Leis de Kirchhoff.
Dessa forma, a tensão em cada um será dada por:
(28)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
 Figura 8: N impedâncias em série.
A partir da LKT:
In = In∠θn,  n = 1,2, 3, … . . n
V1 = Z1I,       V2 = Z2I,       V3 = Z3I,    …     , Vn = ZnI
V = V1 + V2 + … + Vn
V = (Z1 + Z2 + … + Zn)I = 0
(29)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Sendo a impedância equivalente, dada pelo somatório das impedâncias ligadas em série no circuito:
(30)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
É fácil observar que o cálculo da impedância equivalente é semelhante ao cálculo de resistência equivalente
em circuitos CC. De modo semelhante, o inverso complexo da impedância é a admitância , muito
conveniente em circuitos com componentes ligados em paralelo, conforme Figura 9:
(31)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
V = ZeqI
Zeq
Zeq = Z1 + Z2 + … + Zn
Y = 1
Z
I = I1 + I2 + … + In
I = V ( + + … + )1
Z1
1
Z2
1
Zn
 Figura 9: impedâncias em paralelo.
Neste caso, a impedância equivalente é dada por
(32)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
E a admitância equivalente é dada por
(33)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
 EXEMPLO
Para o circuito da figura abaixo, com duas impedâncias ligadas em série e alimentadas por uma fonte
senoidal, as tensões e são dadas por:
N
= = + + … +1
Zeq
I
V
1
Z1
1
Z2
1
Zn
Yeq = Y1 + Y2 + … + Yn
V1 V2
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
 Figura 10: Divisor de tensão.
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Essa é a mesma relação de divisor de tensão já conhecida para circuitos CC. A relação de divisor de
corrente também é válida em circuitos com impedâncias ligadas em paralelo.
ANÁLISE NODAL
As relações entre tensão e corrente são igualmente válidas em circuitos alimentados com fontes alternadas,
de modo que as Leis de Kirchhoff das tensões e correntes podem ser aplicadas na análise de circuitos. O
método de análise nodal para circuitos com fasores é demonstrado no exemplo a seguir, utilizando a LKC.
 EXEMPLO
V1 = Z1I
V2 = Z2I
V1 = V                     V2 = V
Z1
Z1+Z2
Z2
Z1+Z2
Determine e no circuito a seguir utilizando a análise nodal.
 Figura 11: Circuito do exemplo.
É necessário aplicar a LKC aos nós 1 e 2. Suas equações serão:
Para o nó 1:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Para o nó 2:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
As equações dos nós 1 e 2 podem ser representadas matricialmente:
V1 V2
+ + = 0V1−5∠0°0,5
V1
−j1
V1−V2
−j1
(2 + j2)V1 − jV2 = 10
+ = 5∠0°V2−V1−j1
V2
0,2+j0,4
−jV1 +(1 − j)V2 = 5
[
2 + j2 −j
−j 1 − j
][V1
V2
]=[ 10
5
]
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Resolvendo o sistema linear, os valores de e são:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
ANÁLISE DE MALHAS
Com base na LKT é possível formular o método de análise de malhas para solução de circuitos com fasores.
Veja sua aplicação ilustrada a seguir:
 EXEMPLO
Utilizando análise de malhas, determine as correntes e no circuito abaixo:
Aplicando a LKT à malha 1, tem-se:
V1 V2
V1 = 2 − j = 2,23∠ − 26,6°    V
V2 = 2 + j4 = 4,47∠63,4°    V
I1 I2
−10∠0° − j6I1 + j3(I1 − I2)= 0
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
As equações das malhas 1 e 2 podem ser representadas matricialmente como:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Resolvendo o sistema linear, as correntes e são:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
TEOREMAS DE REDE
Exceto pela característica variante no tempo das tensões e correntes senoidais, os teoremas utilizados para
análise CC são igualmente válidos a circuitos fasoriais lineares.
SUPERPOSIÇÃO
−j3I1 − j3I2 = 10∠0°
j3(I2 − I1)+2I2 + 16∠0° = 0
−j3I1 +(2 + j3)I2 = −16∠0°
[
−j3 −j3
−j3 2 + j3
][ I1
I2
]=[ 10
−16
]
I1 I2
I1 = 1,7 ∠ − 23,5°  A
I2 = 7,1 ∠ 108°  A
TRANSFORMAÇÃO DE FONTES
THÉVENIN
NORTON
SUPERPOSIÇÃO
O teorema da superposição, para circuitos elétricos, afirma que a corrente elétrica total em qualquer ramo
de um circuito bilateral linear é igual à soma algébrica das correntes produzidas por cada fonte atuando
separadamente no circuito.
TRANSFORMAÇÃO DE FONTES
O teorema da transformação permite converter fontes de tensão com resistência interna em fontes de
corrente.
THÉVENIN
O teorema de Thévenin estabelece que qualquer circuito linear visto de um ponto, pode ser representado
por uma fonte de tensão em série com uma impedância.
NORTON
O teorema de Norton afirma que qualquer fontes de tensão, fonte de corrente, e resistor, com dois terminais,
é eletricamente equivalente a uma fonte de corrente ideal, , em paralelo com um único resistor, .
 ATENÇÃO
Em circuitos com fontes múltiplas operando com frequências diferentes, a resposta final deve ser dada pela
soma das contribuições dessas fontes no domínio do tempo, visto que não se deve somar fasores com
frequências distintas.
I R
TEORIA NA PRÁTICA
Determine o circuito equivalente de Thévenin para os pontos a e b:
 Figura 12: Circuito referente ao Teoria na Prática.
RESOLUÇÃO
Para encontrar a impedância equivalente de Thévenin, é necessário desativar as fontes do circuito.Neste
caso, as fontes de corrente são um circuito aberto:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Aplicando a LKT na malha que contém os pontos a e b, encontra-se a tensão equivalente de Thévenin:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Zth = 1 +(−j1)= 1 − j1 Ω
V1 = 2 .  1 = 2 V
Vth = V1 −(−j1)2V1 = 2(1 + j2)= 2 + j4 V
RESOLUÇÃO
MÃO NA MASSA
VERIFICANDO O APRENDIZADO
MÓDULO 3
 Reconhecer sistemas trifásicos e relações de potência CA
POTÊNCIA CA E SISTEMAS TRIFÁSICOS
POTÊNCIAS
Em virtude das limitações dos componentes em eletricidade, a potência é uma das mais importantes
grandezas a se conhecer para o funcionamento correto de um circuito.
A POTÊNCIA ELÉTRICA ESTÁ DIRETAMENTE RELACIONADA COM A
CAPACIDADE DE TRANSFERÊNCIA DE ENERGIA ENTRE PARTES DO
CIRCUITO, DE MODO QUE NÃO DEVE SER PERMITIDA A OPERAÇÃO
ACIMA DA CHAMADA POTÊNCIA NOMINAL, QUE É O MÁXIMO VALOR
ADMISSÍVEL PARA AQUELE COMPONENTE SEM QUE SEJA CAUSADO
ALGUM DANO.
A partir das relações entre tensão e corrente em regime senoidal, é possível definir os principais conceitos
relacionados à potência em corrente alternada (CA), como potência:
INSTANTÂNEA

MÉDIA

EFICAZ

COMPLEXA
A POTÊNCIA INSTANTÂNEA DE UM CIRCUITO É O PRODUTO DA
TENSÃO INSTANTÂNEA COM A CORRENTE INSTANTÂNEA ,
SENDO MEDIDA EM WATTS (W)
(34)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A POTÊNCIA INSTANTÂNEA VARIA COM O TEMPO, DE MODO QUE É
MUITO DIFÍCIL MEDI-LA, EM VIRTUDE DA FREQUÊNCIA DO SINAL
ALTERNADO, NORMALMENTE 60 HZ.
Uma forma comum de se medir potência em circuitos com CA é através da potência média , que se refere
à média da potência instantânea ao longo de um período do sinal alternado. Matematicamente, a potência
média é dada por:
(35)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em que e são os valores máximos da tensão e corrente, e são os ângulos dos fasores de
tensão e corrente. Já em circuitos puramente resistivos, , de modo que a Equação 35 corresponde a
uma potência nula. Dessa forma, é fácil perceber que em circuitos resistivos a potência é máxima.
P(t)
V (t) I(t)
P(t)= V (t)i(t)
P
P = ∫ T0 P(t) dt = VmIm cos(θV − θi)
1
T
1
2
Vm Im θv θi
θv = θi
 ATENÇÃO
Em circuitos reativos (indutivos ou capacitivos), , ou seja, a potência média é zero para
circuitos puramente reativos.
A POTÊNCIA EFICAZ É A QUANTIDADE DE POTÊNCIA ENTREGUE POR
UMA FONTE ALTERNADA QUE DEPENDE DE SUA FORMA DE ONDA.
Dessa maneira, é preciso utilizar um método capaz de comparar essa potência fornecida por diferentes
fontes, o que é possível medindo os valores eficazes dessa fonte, ou rms (do inglês root mean square, valor
quadrado médio).
O valor eficaz de uma CA (periódica) é a medida de corrente contínua (CC) que libera a mesma potência
média da CA em uma carga resistiva. Essa equivalência é representada na Equação 36.
(36)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Portanto, tensão e corrente eficazes (ou rms) podem ser descritas como:
(37)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Para o caso específico de sinais senoidais, que representam a forma de onda de tensão e corrente da rede
elétrica, o valor eficaz da corrente será:
θv − θi = ±90°
P = RI2ef = ∫
T
0 Ri
2 dt1T
Ief = Irms = √ ∫
T
0 i
2 dt                       Vef = Vrms = √ ∫
T
0 v
2 dt1T
1
T
i(t)= Im cos(ωt)
(38)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A potência média de um sinal senoidal pode ser reescrita a partir dos valores eficazes da tensão e corrente:
(39)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Os valores de tensão que são fornecidos pelas empresas de energia para alimentação dos consumidores já
são representados por seus valores eficazes.
A potência aparente (S) é o produto de tensão e corrente eficazes de uma fonte.
O termo é o fator de potência .
A S é medida em volt-ampère (VA) para diferenciá-la da potência média, que é medida em Watts (W).
A razão entre a potência média e a potência aparente em uma carga é o próprio , que é adimensional:
(40)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
O também pode ser definido como o ângulo da carga (ou ângulo da impedância), que é o ângulo
formado pelos fasores de tensão e corrente, conforme descrito a seguir:
(41)
Ief = √ ∫
T
0 I
2
m cos2(ωt)dt =
1
T
Im
√2
P = VefIef cos (θv − θi)
cos (θv − θi) (fp)
fp
fp = = cos (θv − θi)
P
S
fp
Z = = = ∠θv − θi
V
I
Vef
Ief
Vef
Ief
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
O é uma grandeza que relaciona a potência média com a potência aparente entregue a uma carga, de
modo que seu valor varia entre zero e um.
Veja como se dá o nos tipos de cargas abaixo:
Em uma carga puramente resistiva, a diferença entre os ângulos da tensão e corrente é zero, o que faz com
que o seja um, ou unitário.
Em cargas puramente reativas (indutivas ou capacitivas), o é zero, pois , o que significa
que a potência média é nula.
Em cargas reativas o pode estar adiantado (quando o ângulo da corrente é adiantado em relação ao
ângulo da tensão) ou atrasado (quando o ângulo da tensão é adiantado em relação ao ângulo da corrente).
 EXEMPLO
Uma carga drena de uma fonte senoidal uma corrente A. Essa fonte tem uma
tensão . Para essa carga, a potência aparente e seu fator de potência são
dados por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Esse está adiantado, pois o ângulo da corrente é adiantado em relação ao ângulo da tensão.
Potência complexa é o termo dado à contribuição de toda a potência aparente (parte real e imaginária) nas
cargas de um circuito.
Para uma carga alimentada por uma tensão e corrente senoidais, a potência complexa é dada pelo produto
dos fasores de tensão e conjugado da corrente:
fp
fp
fp
fp θv − θi = ±90°
fp
i(t)= 5  cos(ωt + 25°)
v(t)= 100 cos(ωt − 15°)V
S = VefIef = = 250 V A
100
√2
5
√2
FP = cos (θv − θi) = cos(−15° − 25°)= 0,76
fp
S = V I *12
(42)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em termos de valores eficazes:
(43)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
 SAIBA MAIS
O módulo da potência complexa é a potência aparente, de maneira que sua unidade também é o volt-
ampère (VA). Da mesma forma, seu ângulo corresponde ao fator de potência da carga.
Essa potência pode ser escrita em função de sua parte real e imaginária. A parte real corresponde à
potência ativa (ou potência real) absorvida pela carga e medida em watts (W), enquanto a parte imaginária
 corresponde à potência reativa trocada entre fonte e carga, medida em volt-ampère reativo (Var).
(44)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em que:
 para cargas resistivas ( unitário);

 para cargas capacitivas ( adiantado);

 para cargas indutivas ( atrasado).
S = VefI *ef
(P)
(Q)
S = P + jQ
Q  =  0 fp
Q  <  0 fp
Q  >  0  fp
Normalmente, a relação de potências complexa, ativa e reativa é representada a partir de um triângulo de
potências (Figura 21).
Do triângulo de potências é possível extrair informações a respeito da potência aparente, potência ativa,
potência reativa e do fator de potência, utilizando relações trigonométricas do triângulo retângulo.
 Figura 21: Triângulo de potências.
 EXEMPLO
Uma carga absorve uma potência de 1.000 VA, com fator de potência 0,6 adiantado. A partir da definição de
triângulo de potências, as potências ativa e reativa são dadas por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A partir do teorema de Pitágoras aplicado ao triângulo de potências, é possível determinar a potência
reativa, :
fp =⇒                  P = fp × S
P
S
P = 0,6  × 1.000 = 600 W
Q
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
CORREÇÃO DO FATOR DE POTÊNCIA
O FATOR DE POTÊNCIA É UM INDICATIVO DO PERCENTUAL DE
ENERGIA CONSUMIDA PELA CARGA QUE É EFETIVAMENTE
UTILIZADA PARA PRODUZIR TRABALHO, OU SEJA, RELACIONA A
POTÊNCIA ATIVA REAL DA CARGA COM A POTÊNCIA APARENTE.
Muitas cargas do sistema têm características indutivas ou capacitivas, como é o caso de eletrodomésticos
com motores, lâmpadas eletrônicas e até mesmo cargas industriais, como os fornos de indução. Essas
cargas fazem com que o fator de potência da instalação caia para valores fora dos recomendados pelas
concessionárias de energia. Para mitigar esse problema, é feita a correção de fator de potência.
Essa correção consiste em instalar equipamentos capazes de compensar o excesso ou a falta de reativos
na carga para reduzir o ângulo entre os fasores de tensão e corrente. Por exemplo, em uma carga com
características indutivas de baixo fator de potência, é possível fazer uma correção instalando capacitores
em paralelo com a carga, de modo a reduzir a potência reativa consumida.
Q = √S2 − P 2 = √1.0002 − 6002 = 800 V Ar
 Figura 22: Triângulo de potência para correção de fator de potência.
É importante observar que, após a correção, a potência ativa drenada pela carga permanece inalterada,
enquanto o módulo da potência aparente é reduzido. Dessa forma, a corrente drenada da rede será menor,
o que permite dizer que a correção de fator de potência permite reduzir até mesmo o carregamento dos
circuitos de alimentação.
SISTEMAS TRIFÁSICOS
A geração de energia em sistemas elétricos de potência é feita em sistemas com mais de uma fase (ou
polifásicos), mais comumente a partir do sistema trifásico.
 VOCÊ SABIA
A geração de energia em CA trifásica traz muitos benefícios ao sistema, tanto econômicos quanto
operacionais. A geração em sistemas trifásicos permite a conexão de cargas de maior potência através das
linhas de transmissão. A energia é transportada em tensões elevadas para reduzir as perdas ôhmicas nas
linhas, o que corresponde a menores custos de operação para as empresas do setor elétrico.
Uma fonte trifásica é obtida a partir de geradores CA, cujos enrolamentos responsáveis pela indução da
corrente nos terminais de saída são defasados em 120° em torno do eixo da máquina. Essa defasagem
produz tensões iguais e defasadas de 120° elétricos umas das outras. Veja as senoides geradas em um
sistema trifásico:
 Figura 23: Senoides em um sistema trifásico.
As tensões , e referem-se às tensões nas fases , e disponíveis nos terminais de um
gerador CA trifásico.
Um sistema trifásico é equivalente a três sistemas monofásicos e podem ser representados por uma ligação
em estrema ou em triângulo, conforme a figura:
 Figura 24: Fontes de tensão trifásicas: (a) em estrela; (b) em triângulo.
Em circuitos trifásicos equilibrados, cuja corrente e tensão são iguais nas três fases, são válidas as
seguintes expressões:
FONTE LIGADA EM TRIÂNGULO 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
FONTE LIGADA EM ESTRELA 
VAN VBN VCN A B C
(Δ)
VAN + VBN + VCN = 0      ⇒      |VAN |=  |VBN |=  |VCN |
(Y )
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Ou seja, a soma fasorial das tensões na ligação em triângulo equilibrado é zero e das correntes na ligação
em estrela é zero.
Veja os diagramas fasoriais que representam essa relação:
 Figura 25: Sequência de fases: (a) positiva: abc; negativa: acb.
Tomando a tensão como exemplo, os fasores podem ser expressos de duas formas:
Se os fasores giram no sentido anti-horário, diz-se que a fonte está em sequência positiva, ou seja,
 é adiantada em relação a , que por sua vez é adiantada em relação a .
Se os fasores giram no sentido horário, é dito que a fonte está em sequência negativa.
Os fasores de sequência positiva e negativa para as tensões trifásicas são:
Sequência positiva Sequência negativa
IA + IB + IC = 0      ⇒      |IA|=  |IB|=  |IC|
VAN VBN VCN
VAN = Vp∠0° VAN = Vp∠0°
VBN = Vp∠ − 120° VBN = Vp∠ + 120°
VCN = Vp∠ + 120° VCN = Vp∠ − 120°
Tabela 2: Relações de tensão em sistemas trifásicos equilibrados.
 Atenção! Para visualização completa da tabela utilize a rolagem horizontal
CIRCUITOS TRIFÁSICOS EQUILIBRADOS
Normalmente, circuitos trifásicos equilibrados (fonte e carga equilibrados) são facilmente solucionados a
partir de seu circuito monofásico equivalente. Apenas os circuitos ligados em Y podem ser resolvidos a partir
de seu circuito equivalente por fase, de modo que, caso fonte ou carga esteja ligada em triângulo, deve ser
convertida para seu equivalente em ligação estrela, conforme a Equação 45, que representa a impedância
da carga trifásica:
(45)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A partir da relação entre os fasores (Figura 25), as correntes e tensões nos circuitos equilibrados para as
ligações em triângulo e estrela são dadas por:
CIRCUITO EM 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
CIRCUITO EM 
ZY =
ZΔ
3
Δ
Iϕϕ = √3Iϕ
Vϕϕ = Vϕ
Y
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em que e são corrente e tensão de linha (entre fases) e são corrente e tensão de fase (em
relação ao neutro).
POTÊNCIA TRIFÁSICA
Em cargas trifásicas equilibradas, ligadas em triângulo ou estrela, as correntes que circulam pelas linhas
que as alimentam são iguais, de modo que a potência trifásica é dada pelo somatório da potência nas três
fases. Para uma carga ligada em estrela:
(46)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Da Tabela 2:
A potência complexa na carga pode ser reescrita em função dos valores de linha da tensão e corrente:
Iϕϕ = Iϕ
Vϕϕ = √3Vϕ
Iϕϕ Vϕϕ Iϕ Vϕ
Pϕ = Vϕ .  Iϕ .   cos(φ)
P3ϕ = 3 .  Vϕ .  Iϕ .   cos(φ)
Vϕϕ = √3Vϕ
Iϕϕ = Iϕ
S3ϕ = √3 .  Vϕϕ .  Iϕϕ 
(47)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
(48)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
(49)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Como as relações entre tensão e corrente de linha e fase apresentadas na Tabela 2 são válidas para cargas
equilibradas ligadas em qualquer ligação, as Equações 47, 48 e 49 são também aplicadas para cargas em
triângulo.
TEORIA NA PRÁTICA
Uma carga drena uma potência ativa de 5 Kw quando conectada a uma fonte de tensão de 120 volts. O
fator de potência para essa condição é de 0,85. Determine o valor da potência reativa de um capacitor
necessária para elevar o fator de potência para 0,95.
RESOLUÇÃO
O ângulo do fator de potência atual é dado por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A partir do fator de potência é possível calcular a potência aparente inicial:
P3ϕ = √3 .  Vϕϕ .  Iϕϕ .   cos(φ)
Q3ϕ = √3 .  Vϕϕ .  Iϕϕ .   sen(φ)
cos(θ1)= 0,85           →           θ1 = 31,78°
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A potência reativa é:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Para um fator de potência 0,95, o ângulo é:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Na correção do fator de potência, a potência não muda, mas a potência aparente sim:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A nova potência reativa será:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A diferença entre a potência reativa atual e a anterior é o valor do capacitor a ser inserido:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
S1 = = = 5.882,3 V A
P
fp
5.000
0,85
Q1 = S1sen(θ1)= 5.882,3 × 0,52 = 3097,96 V Ar
cos(θ2)= 0,95→           θ2 = 18,19°
P
S2 = = = 5.263,15 V A
P
fp
5.000
0,95
Q2 = S2sen (θ2)= 1.642,94 V Ar
Qc = Q1 − Q2 = 3.097,96 − 1.642,94 = 1.455,6 V Ar
RESOLUÇÃO
MÃO NA MASSA
VERIFICANDO O APRENDIZADO
CONCLUSÃO
CONSIDERAÇÕES FINAIS
Neste tema, abordamos os principais conceitos relacionados à análise de circuitos em corrente alternada.
Para isso, foram apresentadas as formas de representação dos elementos de circuito, fonte, resistor,
capacitor e indutor, no domínio da frequência. Essa representação, denominada representação fasorial,
permite avaliar a relação entre tensão e corrente desses elementos no domínio da frequência. Os métodos
tradicionais de análise de circuitos foram apresentados para análise em CA.
Demonstramos ainda as relações de potência em corrente alternada, a partir dos conceitos de potência
média e potência eficaz e fator de potência. Considerando a predominância dos circuitos CA para
transmissão de energia, introduzimos as principais relações para circuitos trifásicos equilibrados, cujos
elementos podem estar conectados em estrela ou triângulo. Por fim, apresentamos o conceito de potência
complexa e potência trifásica.
 PODCAST
AVALIAÇÃO DO TEMA:
REFERÊNCIAS
ALEXANDER, C. K.; SADIKU, M. N. O. Fundamentos de circuitos elétricos. Porto Alegre: AMGH Editora,
2013.
BOYLESTAD, R. L.; NASCIMENTO, J. L. do. Introdução à análise de circuitos. São Paulo: Pearson
Prentice Hall, 2004.
IRWIN, J. D. Análise de circuitos em engenharia. São Paulo: Pearson Education do Brasil, 2010.
JOHNSON, D. E.; HILBURN, J. L.; JOHNSON, J. R. Fundamentos de análise de circuitos elétricos. Rio
de Janeiro: LTC, 1994.
NILSSON, J. W.; RIEDEL, S. A. Circuitos elétricos. 8. ed. São Paulo: Pearson Prentice Hall, 2008.
OLIVEIRA, C. C. B. et al. Introdução a sistemas elétricos de potência. Componentes simétricas. São
Paulo: Blucher, 2000.
EXPLORE+
Para saber mais sobre os assuntos tratados neste tema, leia:
ORSINI, L. Q.; CONSONNI, D. Curso de circuitos elétricos. 2. ed. São Paulo: Blucher, 2002.
ORSINI, L. Q.; CONSONNI, D. Curso de circuitos elétricos. v. II. 2. ed. São Paulo: Blucher, 2004.
CONTEUDISTA
Isabela Oliveira Guimarães
 CURRÍCULO LATTES
javascript:void(0);

Continue navegando