Buscar

Geração de energia verde (energia por fontes renováveis)


Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 77 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 77 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 77 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

DEFINIÇÃO
Geração de energia por fontes renováveis.
PROPÓSITO
Reconhecer a importância das tecnologias de geração de energia por fontes renováveis para a
substituição das energias geradas por fontes não renováveis.
PREPARAÇÃO
Antes de iniciar o conteúdo deste tema, tenha em mãos papel, caneta e uma calculadora científica
ou use a calculadora de seu smartphone/computador.
OBJETIVOS
MÓDULO 1
• Aplicar os conceitos físicos envolvidos na tecnologia da geração de energia elétrica por
conversão de energia solar
MÓDULO 2
• Aplicar os conceitos físicos envolvidos na tecnologia da geração de energia elétrica por
conversão de energia eólica
MÓDULO 3
• Aplicar os conceitos físicos envolvidos na tecnologia da geração de energia elétrica por
conversão de energias: geotérmica e maremotriz
MÓDULO 1
 Aplicar os conceitos físicos envolvidos na tecnologia da geração
de energia elétrica por conversão de energia solar
INTRODUÇÃO
O Sol é o maior e mais pesado corpo celeste, contendo cerca de 98% de toda a massa do Sistema
Solar. Isso significa que aproximadamente 109 planetas Terra seriam precisos para cobrir a
superfície do disco do Sol que observamos aqui do nosso planeta. Já para preencher todo o
volume dessa estrela, seriam necessários 1,3 milhões de Terras.
Fonte: Por Designs Stock / Shutterstock
 Forte em Saint Tropez ao por do sol
O Sol é a maior e mais forte fonte de energia que conhecemos. Essa energia é gerada em seu
núcleo, onde a temperatura é estimada em 15 milhões de graus Celsius, e a sua pressão calculada
em 340 bilhões de vezes a pressão atmosférica do planeta Terra, ao nível do mar. Essa energia
solar é oriunda de reações nucleares que transformam quatro prótons (núcleos de átomos de
hidrogênio) em uma partícula alfa (núcleo de um átomo de hélio). O núcleo do átomo de hélio é
cerca de 0,7% menos massivo do que quatro prótons.
Bem, se o núcleo do átomo de hélio tem massa de 99,3% da massa de quatro prótons, para onde
vão os 0,7% restantes?
 RESPOSTA
A resposta, apesar de parecer simples, não é. A diferença da massa se transforma em energia, e
por convecção essa energia se locomove do centro do núcleo do Sol até a sua superfície, onde
então é liberada na forma de luz e calor, como de fato conhecemos. Esse processo de convecção
possui um intervalo de tempo de 1 milhão de anos, ou seja, leva 1 milhão de anos para a energia
se movimentar do núcleo do Sol até a sua superfície.
A ciência afirma que a cada segundo o Sol converte 700 milhões de toneladas de hidrogênio em
hélio, o que significa que 5 milhões de toneladas de hidrogênio nessa modificação foram
convertidos em energia e então liberados para a superfície solar. Isso significa que com o passar
do tempo, o Sol está se tornando mais leve, sendo essa teoria que garante que nossa estrela não
se tornará um buraco negro quando finalmente se apagar.
CONVECÇÃO
Movimento que um fluido toma por influência de uma variação de temperatura.
Fonte: Dicio. Dicionário Online de Português
Estima-se que o Sol tenha cerca de 4,6 bilhões de anos e que ainda tem energia para brilhar por
mais 5 bilhões de anos. O Sol fornece ao planeta Terra uma energia anual de 3.850.000EJ
(Exajoule), o que equivale a 3.850.00 x1018J por ano. Isso representa mais energia em 2 horas do
que a humanidade utiliza em um ano, mas, infelizmente, somente cerca de 1% da energia elétrica
produzida no mundo é oriunda da conversão de energia solar, isso porque as usinas solares são
caras e pouco eficientes.
javascript:void(0)
Fonte: Por Love Silhouette / Shutterstock
 Forte em Saint Tropez ao por do sol
 VOCÊ SABIA
A placa solar fotovoltaica mais efetiva converte somente 13% de toda a energia captada em
energia elétrica. No entanto, essa energia é a mais promissora para a geração e mantimento
energético para o futuro.
Diante disto, vamos compreender a partir de agora como funciona a energia solar.
ENERGIA SOLAR
A energia solar é uma energia eletromagnética, ou seja, uma radiação eletromagnética. Graças a
essa energia nós temos luz e calor aqui no planeta Terra e, consequentemente, vida.
A radiação eletromagnética é emitida em ondas, sendo compostas de um campo elétrico com um
campo magnético que se propaga transportando energia. As ondas eletromagnéticas possuem
uma peculiaridade que as ondas mecânicas não possuem que é a capacidade de se propagar no
vácuo, ou seja, a onda eletromagnética independe do meio material para se propagar, e é assim
que ela consegue sair do Sol, atravessar o vácuo existente no espaço sideral e chegar ao nosso
planeta.
Existem diversos tipos de radiação eletromagnética: infravermelha, ultravioleta, raios X, etc.
Fonte: Por trgrowth / Shutterstock
Figura 1: Classificação da onda eletromagnética perante sua frequência e comprimento de onda.
Fonte: Shutterstock.
Somente a sua frequência define a energia da onda, pois quanto maior a sua frequência maior é a
energia dessa onda, e consequentemente menor é o seu comprimento de onda. As equações (1) e
(2) demonstram a relação da energia eletromagnética com a frequência e com o seu comprimento
de onda respectivamente:
E =hf 
𝐸 = ℎ𝑐𝜆 (2)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
As duas equações representam a energia de uma onda eletromagnética em unidade do Sistema
Internacional (S.I.) que é o joule (J).
O h é a constante de Planck, e tem valor de 6,626x10-34J.s.
A letra f é a frequência em hertz (Hz).
A letra c é a representação da velocidade da luz, que no vácuo tem o valor de 3𝑥108 𝑚𝑠 .
A letra λ é o comprimento de onda em metros (m).
DEMONSTRAÇÃO
As equações (1) e (2) são equivalentes, pois pelo princípio de propagação de uma onda, a
velocidade de propagação é proporcional ao produto do comprimento da onda pela sua
frequência:
𝑣 = 𝜆 ∙ 𝑓 (3)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Porém, na Física, utilizamos o símbolo v para poder descrever a velocidade uma onda mecânica.
Para ondas eletromagnéticas, que se propagam na velocidade da luz ou muito próxima dela,
utilizamos o símbolo c para descrever as grandezas de velocidade e frequência, então a equação
(3) assume a forma:
𝑐 = 𝜆 ∙ 𝑓 (4)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Então, da (4), podemos escrever a frequência em função da velocidade da luz e do comprimento
da onda eletromagnética, assim:
𝑓 = 𝑐𝜆 (5)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Desta forma, ao substituir (5) em (1), obtemos a equação (2).
A onda eletromagnética, como a luz visível, por exemplo, é constituída por fótons, que são os
responsáveis por transportar a energia eletromagnética. Um fóton é a menor porção de uma onda
eletromagnética, e este não possui uma massa intrínseca, ou seja, até hoje ninguém conseguiu
ainda detectar a sua massa, que está sempre se movendo na velocidade da luz. Apesar de não ter
massa, o fóton transfere energia quando colide com a matéria.
Quando um fóton colide com a matéria, na verdade colide com elétrons circulando núcleos, e então
altera colidindo com o elétron arrancando-o do átomo.
Fonte: Prof. Denis Antunes / Youtube
Todavia, temos um destaque: o movimento dos elétrons gera corrente elétrica. E é esse
fenômeno físico que nos interessa para gerar energia elétrica através da utilização de placas
fotovoltaicas.
Mas, se a energia eletromagnética é uma onda, como ela pode colidir com um elétron?
O fóton possui uma dualidade, que é a dualidade onda partícula. Ora ele se comporta como onda,
ora como partícula. O comportamento dele como partícula foi descrito por Albert Einstein em seu
trabalho sobre a descoberta do efeito fotoelétrico. Trabalho este que lhe rendeu o prêmio Nobel de
Física.
Fonte: Portal da ciência / Youtube.
 Forte em Saint Tropez ao por do sol
Como a energia solar (ondas eletromagnéticas) pode ser utilizada para gerar energia?
Descubraa seguir.
CONVERSÃO DE ENERGIA SOLAR EM
ENERGIA ELÉTRICA E TÉRMICA
A energia solar é convertida em energia elétrica por auxílio de uma placa ou painel, ou célula solar
(também conhecida como placa, painel ou célula fotovoltaica). As células fotovoltaicas são
constituídas de materiais semicondutores, em geral de silício, devido à sua abundância no planeta.
Essas células absorvem a luz do Sol e geram energia elétrica por efeito fotoelétrico.
O efeito fotoelétrico ocorre quando os fótons de luz se chocam com os átomos da rede cristalina do
silício que compõem o painel solar. Esta colisão desloca os elétrons do silício, e gera uma corrente
elétrica contínua. Chamamos essa corrente de Energia Solar Fotovoltaica. Mas como ocorre a
transformação da energia cinética dos fótons em energia elétrica? Bem, primeiro, vamos observar
a figura 2:
Note que a figura possui 5 números. Esses números correspondem às etapas necessárias para
captação, transformação e utilização da corrente elétrica.
Fonte: Por BlueRingMedia / Shutterstock
Figura 2: Passo a passo da conversão da energia solar em corrente elétrica. Fonte: Shutterstock.
NÚMERO 1
Temos o painel solar convertendo a energia solar em corrente elétrica contínua, pois é na placa
solar que os fótons colidem com os elétrons do silício, que se deslocam, e como sabemos, o
deslocamento de um elétron gera corrente elétrica. Corrente elétrica é a carga elétrica em
movimento. Como o elétron possui uma carga de 1,6x10-19C, ele gera uma corrente elétrica ao ser
deslocado. Matematicamente, a corrente elétrica é dada por:
𝐼 = 𝑄∆𝑡, em que Q é a carga em coulomb e ∆𝑡 é o intervalo de tempo em segundos.
NÚMERO 2
Está posicionado um equipamento chamado de Inversor Solar. Esse inversor funciona convertendo
essa corrente elétrica contínua em uma corrente elétrica útil para a sua residência ou indústria
dependendo de onde a placa solar está instalada. Tal inversor transforma a corrente elétrica
contínua (CC) das placas solares, em corrente elétrica alternada (CA).
NÚMERO 3
Em seguida, a corrente elétrica alternada gerada no Inversor Solar é distribuída pelo quadro de luz.
NÚMERO 4
Do quadro de luz, a energia é dividida para a sua residência e para a rede elétrica.
NÚMERO 5
Essa etapa se faz necessária, pois as placas solares podem produzir uma energia maior do que
aquela que você consome, então, desta forma, quem tem placas solares, passa a alimentar a rede
elétrica cedendo e vendendo energia para a grande malha de rede elétrica que cobre toda a sua
cidade. Isso gera para o dono da placa solar créditos junto à empresa de energia e, assim, o dia
em que ele precisar utilizar a energia elétrica da rede elétrica, esses créditos serão consumidos
como forma de pagamento.
A energia solar é convertida em energia térmica da mesma maneira? A resposta é não.
 RESPOSTA
A energia solar é convertida em energia térmica, utilizando as placas solares somente para
conversão de transferência de calor para um líquido presente em suas tubulações. Neste caso,
quando a luz solar colide com os elétrons da placa solar, eles não geram só eletricidade, mas
também aumentam consideravelmente a temperatura dessas placas, que transfere essa energia
térmica para o líquido em forma de calor. O líquido é então transportado para o acumulador solar,
aquecido e utilizado, por exemplo, em chuveiros.
A figura 3 demonstra um esquema do funcionamento da energia solar para o aquecimento da água
de uma piscina:
Fonte: Produção interna.
Figura 3: Aquecimento da água de uma piscina por placas solares. Essas placas são as mesmas
que geram energia elétrica para a residência
TEORIA NA PRÁTICA
Vamos agora entender como os conceitos físicos são utilizados para compreender e determinar o
quanto de corrente elétrica pode ser gerado por uma placa solar. Consideremos que uma placa
solar é capaz de captar 1 bilhão de fótons com frequência de 6,7 x 1014 hertz por segundo e que
somente 10% de toda a energia solar incidida é convertida em energia elétrica, deslocando 1
milhão de elétrons. Primeiramente, vamos determinar a tensão elétrica gerada pela placa, antes de
passar pelo inversor solar, ou seja, a tensão elétrica existente na corrente contínua de elétrons,
considerando que os fótons transferem sua energia para os elétrons, fornecendo a eles energia
cinética que é dada pela equação (6):
𝐸𝑐 = 𝑒𝑉 (6)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Na qual e é a carga do elétron que possui módulo de 1,6x10-19 C e V é a tensão elétrica em volts.
Para determinar a energia convertida, é necessário determinar a energia de incidência dos fótons
na placa solar pela equação (1), assim:
𝐸𝑓𝑜𝑡𝑜𝑛 = ℎ𝑓
𝐸𝑓ó𝑡𝑜𝑛 = 6,626𝑥10
-34 . 6, 4𝑥1014 = 42,41𝑥10-20 𝐽
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Agora que temos o conhecimento da quantidade de energia que é gerada por 1 fóton, temos que
multiplicar por 1 bilhão, pois a placa capta essa quantidade de fótons, logo:
𝐸0 = 1𝑥10
9 · 42,41𝑥10-20 = 42,41𝑥109 - 20 𝐽 = 4,241𝑥10-10 𝐽
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Diante desta informação, podemos determinar a tensão elétrica em volts, utilizando informação de
que a placa converte somente 10% da energia incidente na placa em energia cinética dos elétrons,
a equação (7) e o princípio da conservação da energia. Diante disto, temos:
𝐸𝑐 = 10%𝐸0
𝐸𝑐 = 0,1 · 4,241𝑥10
-10 = 4,241𝑥10-11 𝐽
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Utilizando a equação (7), modificada para atender ao número de elétrons deslocados, temos:
𝐸𝐶 = 𝑛𝑒𝑉 (7)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Na qual n é o número de elétrons que se movem.
Sabemos que n é um milhão, logo:
4,241𝑥10-11 = 1𝑥106 · 1, 6𝑥10-19 ·𝑉
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Isolando o V, temos:
𝑉 = 4, 241𝑥10
-11
1𝑥106 · 1, 6𝑥10-19
= 4, 2411, 6 𝑥10
-11 + 19 - 6
V = 265,06 V
javascript:void(0)
javascript:void(0)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Esse V é a letra utilizada na Física para determinar tensão elétrica
Esse V é da unidade em volts.
Agora, vamos verificar outra forma de utilizar a energia solar.
Uma vez que os utensílios elétricos funcionam em 127 volts ou 220 volts, é notório que há excesso
de tensão, logo, há excesso de energia, sendo esse excesso enviado para a rede elétrica
municipal, estadual ou federal.
Mas, por que ao invés de mandar, eu não a armazeno em baterias? A resposta é simples: é caro.
Manter um conjunto de baterias para armazenar o excesso de energia é caro e não reciclável, além
do fato de que uma bateria tem em média uma vida útil de 2 anos, o que iria gerar um gasto
dispendioso para troca de diversas baterias a cada biênio. Por fim, vale ressaltar que essa energia
convertida calculada ocorre a cada segundo na placa solar.
Agora, vamos considerar a situação de esta mesma placa solar aquecendo água. Digamos que a
água está inicialmente a 22°C e que ela deve ser aquecida para 26°C, para uso em chuveiros, que
o calor específico da água seja 𝑐 = 1𝑐𝑎𝑙𝑔 °𝐶, e que a placa solar consiga aquecer uma massa de 0,025L
de água por segundo. Diante disso, vamos calcular a quantidade de energia necessária, em
joules, para aquecer 0,025L de água de 22°C para 26°C:
Como a água é aquecida de 22°C para 26°C, não há mudança de estado físico da água, assim,
podemos utilizar a teoria da energia térmica de calor sensível, desta maneira:
𝑄 = 𝑚𝑐∆𝑇 (8)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Um fato interessante que ocorre para a água é que o seu volume em litros é proporcional à sua
massa, ou seja, 1kg de água tem 1L de água. Desta forma, podemos dizer que 0,025L de água tem
25kg de água. Isso ocorre porque a densidade da águaé 𝑑 = 1𝑔𝑐𝑚³. Voltando ao cálculo utilizando a
equação (8), temos:
𝑄 = 25 · 1 · (26 - 22) = 100 𝑐𝑎𝑙
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A massa foi utilizada como 25 e não como 0,025, porque para esse cálculo, utilizando o calor
específico da água como 𝑐 = 1𝑐𝑎𝑙𝑔 °𝐶, a massa deve estar em gramas, por isso o 0,025 foi multiplicado
por 1000.
Agora, é necessário converter essa energia para joules, utilizando a relação de que 1 cal = 4,18J,
assim:
1𝑐𝑎𝑙 - - - - 4, 18𝐽
100 𝑐𝑎𝑙 -𝑄
𝑄 = 418 𝐽
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Note que a energia incidente é de 4,241x10-10 J, como foi calculada em E0.
Então, seria impossível aquecer a água de 22°C para 26°C?
A resposta é: utilizando somente uma única placa solar como consideramos até o presente
momento, sim, é impossível. Todavia, uma placa solar não funciona sozinha (vide figura 3), dessa
forma, com um conjunto de placas solares é possível.
Vamos, então, determinar a quantidade de placas solares necessárias:
1 placa solar- - - - - - - - - - - - 4, 241𝑥10-10 𝐽
𝑥 - - - - - - - - - - - - - - - 418𝐽
4,241𝑥10-10 𝑥 = 418 · 1
𝑥 = 418
4, 241𝑥10-10
𝑥 = 9,86x1011 placas solares
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Você pode ter se assustado com os valores encontrados tanto de tensão quanto de número de
placas, porém não se assuste, os valores tratados aqui são apenas hipotéticos para ilustrar como
ocorre a conversão da energia dos fótons solares em energia elétrica e energia térmica.
Assista ao vídeo abaixo e entenda mais sobre a energia solar:
USINA HELIOTÉRMICA
Uma usina heliotérmica funciona com o princípio da conversão de energia solar térmica
concentrada em energia elétrica. A conversão ocorre através da concentração dos raios solares,
que podem chegar a temperaturas acima de 1000°C. Veja um esquema representativo deste tipo
de usina:
Fonte: Por Cristina Romero Palma / Shutterstock.
 Usina heliotérmica.
Por Macrovector; Por Adazhiy Dmytro / Shutterstock
Torre solar. Captação de raios solares.
Produção interna.
Esquema demonstrativo das etapas de conversão da energia solar em energia elétrica.
 ATENÇÃO
De uma forma simples, os raios solares são concentrados no foco de espelhos esféricos, onde se
encontra um receptor. Neste receptor, funciona um fluido de trabalho, em geral a água. Tal fluido de
trabalho se expande e então começa a circular em um circuito, realizando trabalho sobre uma
turbina, que gira um dínamo, e assim produz energia elétrica.
DÍNAMO
Máquina que transforma energia cinética em elétrica.
javascript:void(0)
Na verdade, as usinas helioelétricas funcionam com turbinas a gás, ou seja, a usina produz
energia térmica o suficiente para fazer a mudança de estado do líquido de trabalho para o estado
gasoso, e com o movimento deste gás, realizar trabalho sobre a turbina.
Os espelhos responsáveis pela coleta de luz solar são chamados de coletores. Esses espelhos,
em geral, são móveis e acompanham o movimento do Sol, para garantir a máxima eficiência em
reflexão. A luz refletida por eles é refletida para as torres solares, que são posicionadas de tal
forma a se encontrarem no foco dos espelhos, sendo nessa torre que o líquido de trabalho é
aquecido a temperaturas entre 150°C e 2000°C.
Diante disso, uma usina heliotérmica funciona com o princípio do ciclo termodinâmico de Rankine,
em que o fluido de trabalho (em geral a água) é transformado em vapor e aquecido até uma
temperatura crítica que lhe fornece uma determinada expansão, que realiza trabalho sobre uma
turbina que está acoplada a um dínamo, que produz energia elétrica. Após o trabalho realizado na
turbina, esse vapor é conduzido a uma condensadora, onde retorna ao estado líquido e por meio
da ação de uma bomba d’água, retorna para a torre, retroalimentando o circuito do líquido de
trabalho.
O rendimento de uma usina heliotérmica é encontrado utilizando-se o rendimento do ciclo de
Rankine, que é dado por:
𝜀 = 𝑊𝑡𝑢𝑟𝑏𝑖𝑛𝑎 - 𝑊𝑏𝑜𝑚𝑏𝑎𝑄𝑠𝑜𝑙𝑎𝑟 (9)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em que Wturbina é o trabalho realizado na turbina, Wbomba é o trabalho realizado pela bomba, e
Qsolar é a energia solar transmitida para a torre.
Por que o trabalho da bomba está ali na equação (9) e, já que ele está ali, por que é negativo?
 RESPOSTA
Bem, o trabalho da bomba está ali porque precisamos lidar com o trabalho líquido do sistema, e ele
é negativo porque realiza trabalho sobre o líquido, o que significa que a bomba transfere energia
para o líquido, o que é o inverso do trabalho da turbina. O gás realiza trabalho sobre a turbina, ou
seja, retira energia do gás.
Vamos considerar que em uma usina helioelétrica, o rendimento seja de 63%, e que a bomba
d’água fornece uma energia de -2800J ao fluido de trabalho, enquanto que a turbina opera com
45% da energia solar total absorvida pela torre. Qual o valor dessa energia total absorvida pela
torre?
Vamos utilizar a equação (9) substituindo os dados:
0,63 = 0, 45𝑄𝑠𝑜𝑙𝑎𝑟 -
( - 2800)
𝑄𝑠𝑜𝑙𝑎𝑟
0,63𝑄𝑠𝑜𝑙𝑎𝑟 = 0,45𝑄𝑠𝑜𝑙𝑎𝑟 + 2800
𝑄𝑠𝑜𝑙𝑎𝑟 = 15 .555,56𝐽
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Mais uma vez você deve estar estranhando o trabalho da bomba d’água. Mas ele possui valor
negativo porque neste ciclo, considera-se o trabalho realizado sobre o líquido como negativo, e o
trabalho realizado pelo líquido como positivo.
MÃO NA MASSA
1. CONSIDERE QUE UM FÓTON DE ENERGIA 4MJ VIAJA NO VÁCUO COM
VELOCIDADE DA LUZ. PODEMOS AFIRMAR QUE A SUA FREQUÊNCIA DE
PROPAGAÇÃO É IGUAL A:
A) 6,04x1037 Hz
B) 6,04x1038 Hz
C) 6,04x1039 Hz
D) 6,04x1040 Hz
2. CONSIDERE UM FÓTON SE LOCOMOVENDO À VELOCIDADE DE 97% DA
VELOCIDADE DA LUZ NO VÁCUO E COM COMPRIMENTO DE ONDA DE 4M.
SUA ENERGIA É IGUAL A:
A) 4,82x10-27 J
B) 4,82x10-26 J
C) 4,82x10-25 J
D) 4,82x10-24 J
3. UMA PLACA FOTOVOLTAICA CONVERTE ENERGIA CINÉTICA DO FÓTON
SOLAR EM ENERGIA ELÉTRICA. VAMOS CONSIDERAR QUE UM ÚNICO
FÓTON EXCITE UM ÚNICO ELÉTRON. CONSIDERANDO A TOTAL
TRANSFERÊNCIA DE ENERGIA DO FÓTON PARA O ELÉTRON, QUE SUA
MASSA É ME = 9,11X10-31KG E QUE A FREQUÊNCIA DO FÓTON É 154KHZ,
A VELOCIDADE ADQUIRIDA PELO ELÉTRON É DE:
A) 14,98 m/s
B) 16,63 m/s
C) 17,67 m/s
D) 18,69 m/s
4. UMA USINA HELIOTÉRMICA, CAPTA POR SEGUNDO, UMA QUANTIDADE
DE 1569MJ. ESSA USINA CONSEGUE UMA EFICIÊNCIA DE 68% E
CONSEGUE A FAÇANHA DE CONVERTER 79% DA ENERGIA CAPTADA EM
TRABALHO ÚTIL. O TRABALHO REALIZADO PELA BOMBA É IGUAL A:
A) a) 6% da energia solar captada.
B) 11% da energia solar captada.
C) 32% da energia solar captada.
D) 21% da energia solar captada.
5. UMA USINA HELIOTÉRMICA TRABALHA CONVERTENDO O LÍQUIDO DE
TRABALHO EM VAPOR. SE NA CALDEIRA DE CONVERSÃO CABEM 60KG
DESTE LÍQUIDO, E O CALOR EVAPORAÇÃO DESTE LÍQUIDO É IGUAL A
540CAL/G, QUAL É O PERCENTUAL DE ENERGIA SOLAR NECESSÁRIA
PARA EVAPORAR ESSE VOLUME, SABENDO QUE A TORRE PRODUZ
666GJ POR SEGUNDO?
A) 0,002%
B) 0,02%
C) 0,2%
D) 2%
6. EM UMA PLACA FOTOVOLTAICA, UM ÚNICO FÓTON CONSEGUE
DESLOCAR 105 ELÉTRONS DEVIDO AO CHOQUE DOS ELÉTRONS
PRIMARIAMENTE EXCITADOS PELA ONDA ELETROMAGNÉTICA
COLIDIREM COM MAIS ELÉTRONS NO INTERIOR DA PLACA DE SILÍCIO.
CONSIDERANDO QUE A TENSÃO ELÉTRICA NA PLACA FOTOVOLTAICA É
DE 1000V, A ENERGIA DO FÓTON INCIDENTE É IGUAL A: (CONSIDERE E =
1,6X10-19 C)
A) 1,6x10-11 J
B) 1,6x10-13 J
C) 1,6x10-15 J
D) 1,6x10-19 J
GABARITO
1. Considere que um fóton de energia 4MJ viaja no vácuo com velocidade da luz. Podemos
afirmar que a sua frequência de propagação é igual a:
A alternativa "C " está correta.
𝐸 = ℎ𝑓
Assim:
4𝑥106 = 6,626𝑥10-34 𝑓
𝑓 = 4𝑥10
6
6, 626𝑥10-34
𝑓 = 46, 626 = 10
6 𝑥1034
𝑓 = 46, 626 = 10
6 𝑥1034
𝑓 = 0,604𝑥1040
𝑓 = 6,04𝑥1039𝐻𝑧
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
2. Considereum fóton se locomovendo à velocidade de 97% da velocidade da luz no vácuo
e com comprimento de onda de 4m. Sua energia é igual a:
A alternativa "B " está correta.
A energia de uma onda eletromagnética é dada por:
𝐸 = ℎ𝑐𝜆
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Como a velocidade da luz no vácuo é de 3,0x108m/s, 97% temos:
𝐸 = 0,97 ℎ𝑐𝜆
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Substituindo os valores do enunciado chegamos a:
𝐸 = 0,976, 626x10
-34 - 3x108
4 = 4,82x10
-26 𝐽
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
3. Uma placa fotovoltaica converte energia cinética do fóton solar em energia elétrica. Vamos
considerar que um único fóton excite um único elétron. Considerando a total transferência
de energia do fóton para o elétron, que sua massa é me = 9,11x10-31kg e que a frequência do
fóton é 154kHz, a velocidade adquirida pelo elétron é de:
A alternativa "A " está correta.
4. Uma usina heliotérmica, capta por segundo, uma quantidade de 1569MJ. Essa usina
consegue uma eficiência de 68% e consegue a façanha de converter 79% da energia
captada em trabalho útil. O trabalho realizado pela bomba é igual a:
A alternativa "B " está correta.
Pelo ciclo de Rankine:
𝜀 = 𝑊𝑡𝑢𝑟𝑏𝑖𝑛𝑎 - 𝑊𝑏𝑜𝑚𝑏𝑎𝑄𝑠𝑜𝑙𝑎𝑟
0,68 = 0, 79𝑄𝑠𝑜𝑙𝑎𝑟 - 𝑊𝑏𝑜𝑚𝑏𝑎𝑄𝑠𝑜𝑙𝑎𝑟
𝑊𝑏𝑜𝑚𝑏𝑎 = 0,79𝑄𝑠𝑜𝑙𝑎𝑟 - 0, 68𝑄𝑠𝑜𝑙𝑎𝑟
𝑊𝑏𝑜𝑚𝑏𝑎 = 0,11𝑄𝑠𝑜𝑙𝑎𝑟
𝑊𝑏𝑜𝑚𝑏𝑎 = 11% 𝑑𝑒 𝑄𝑠𝑜𝑙𝑎𝑟
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
5. Uma usina heliotérmica trabalha convertendo o líquido de trabalho em vapor. Se na
caldeira de conversão cabem 60kg deste líquido, e o calor evaporação deste líquido é igual a
540cal/g, qual é o percentual de energia solar necessária para evaporar esse volume,
sabendo que a torre produz 666GJ por segundo?
A alternativa "A " está correta.
6. Em uma placa fotovoltaica, um único fóton consegue deslocar 105 elétrons devido ao
choque dos elétrons primariamente excitados pela onda eletromagnética colidirem com
mais elétrons no interior da placa de silício. Considerando que a tensão elétrica na placa
fotovoltaica é de 1000V, a energia do fóton incidente é igual a: (considere e = 1,6x10-19 C)
A alternativa "A " está correta.
A energia cinética dos elétrons é dada por:
𝐸𝐶 = 𝑛𝑒𝑉
𝐸𝐶 = 10
5 · 1, 6𝑥10-19 · 1000 = 1,6𝑥10-11 𝐽
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Como a energia cinética dos elétrons é igual à energia do fóton incidente, a energia do fóton é
igual a:
𝐸 = 1,6𝑥10-11 𝐽
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
GABARITO
VERIFICANDO O APRENDIZADO
1. SEJA UM FÓTON INCIDENTE COM FREQUÊNCIA DE 500MHZ EM UMA
PLACA VOLTAICA DE SILÍCIO, DETERMINE A QUANTIDADE DE ELÉTRONS
DESLOCADOS, SABENDO QUE TODA A ENERGIA DO FÓTON É
CONVERTIDA EM ENERGIA CINÉTICA DOS ELÉTRONS, SE A ENERGIA DE
LIGAÇÃO DESSES ELÉTRONS AO NÚCLEO DO ÁTOMO É DE 436 X10-50J.
A) 436x1032
B) 7,59x1022
C) 436x1022
D) 7,59x1012
2. UMA TORRE HELIOTÉRMICA CONVERTE O LÍQUIDO DE TRABALHO EM
VAPOR. SE NA CALDEIRA DE CONVERSÃO CABEM 1000KG DESTE
LÍQUIDO, E O CALOR EVAPORAÇÃO DESTE É IGUAL A 1040CAL/G, QUAL É
O PERCENTUAL DE ENERGIA SOLAR NECESSÁRIA PARA EVAPORAR
ESSE VOLUME DE LÍQUIDO, SABENDO QUE A TORRE PRODUZ 6666GJ
POR SEGUNDO?
A) 6,53x10-4%
B) 6,53x10-2%
C) 6,53%
D) 6,53x102%
GABARITO
1. Seja um fóton incidente com frequência de 500MHz em uma placa voltaica de silício,
determine a quantidade de elétrons deslocados, sabendo que toda a energia do fóton é
convertida em energia cinética dos elétrons, se a energia de ligação desses elétrons ao
núcleo do átomo é de 436 x10-50J.
A alternativa "B " está correta.
Primeiramente, devemos conhecer a energia do fóton, assim:
𝐸 = ℎ𝑓
𝐸 = 6,626𝑥10-34 · 500𝑥106 = 3,31𝑥10-25 𝐽
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Agora, vamos dizer que essa energia foi dividida igualmente entre n elétrons e vamos determinar
esses n elétrons, dividindo a energia incidente do fóton pela energia da ligação:
𝑛 = 3, 31𝑥10
-25
436𝑥10-50
= 7,59𝑥1022 𝑒𝑙é𝑡𝑟𝑜𝑛𝑠
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
2. Uma torre heliotérmica converte o líquido de trabalho em vapor. Se na caldeira de
conversão cabem 1000kg deste líquido, e o calor evaporação deste é igual a 1040cal/g, qual
é o percentual de energia solar necessária para evaporar esse volume de líquido, sabendo
que a torre produz 6666GJ por segundo?
A alternativa "B " está correta.
A energia de evaporação é dada pelo calor latente, assim:
𝑄 = 𝑚𝐿
𝑄 = 1 .000 .000 · 1040 = 1 .040 .000 .000 𝑐𝑎𝑙
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Convertendo essa energia para joules, temos:
1𝑐𝑎𝑙 - - - - - 4, 18𝐽
1 .040 .000 .000 - - - - 𝑥
𝑥 = 4,18 · 1 .040 .000 .000
𝑥 = 4,35𝑥109 𝐽
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Determinando a porcentagem, temos:
𝜀% =
4, 35𝑥109
6666𝑥109
= 6,53𝑥10-4
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Multiplicando por 100, conseguimos expressar este número em função da porcentagem, assim:
𝜀% = 6,53𝑥10
-4 · 100 = 6,53𝑥10-2 %
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
MÓDULO 2
 Aplicar os conceitos físicos envolvidos na tecnologia da geração de
energia elétrica por conversão de energia eólica
ENERGIA EÓLICA
Chamamos de energia eólica a energia elétrica gerada através da força do vento. Este processo se
dá por meio de hélices que convertem a energia cinética do vento em energia elétrica. O vento
realiza trabalho sobre as hélices do moinho, fazendo-as girar.
Fonte: Por Luis César Tejo / Shutterstock
 Figura 4: Representação de moinhos de energia eólica também chamados de aerogeradores.
 ATENÇÃO
As hélices podem girar tanto para produzir eletricidade como produzir energia mecânica, bem
como movimentação de moinhos para moer grãos. Este tipo de energia é renovável e abundante
na natureza, podendo ser produzida em qualquer região, sem gerar impacto ambiental.
Os moinhos ou aerogeradores estão dispostos em parques eólicos em conjunto de centenas.
Utilizam-se parques eólicos de pequenas dimensões para gerar energia elétrica em regiões
isoladas e geralmente de pouca população.
 COMENTÁRIO
É comum encontrar aerogeradores próximo a costas marítimas, uma vez que o vento costuma ser
mais intenso e constante nessas regiões, todavia, nestes locais, o custo da manutenção desses
equipamentos é elevado devido ao alto índice de corrosão promovido pelo ar marítimo.
Mais de 80 países utilizam aerogeradores para produzir energia elétrica. A Dinamarca, por
exemplo, possui cerca de ¼ da sua matriz energética gerada por estes equipamentos. Ao longo do
ano, a energia do vento é bastante consistente, porém sofre variações significativas em espaços
curtos de tempo. À medida que em uma região o vento fica mais forte e propicia uma maior
geração de energia, em outra diminui à mesma proporção, tornando-se necessário aumentar a
capacidade de armazenamento da rede elétrica, buscando absorver o pico de produção provocado
pelo aumento do vento. É necessário, ainda, possuir um plano de importação de energia de outras
formas de geração de energia para quando há a insuficiência de ventos.
Vamos observar a figura abaixo para compreender quais são os componentes de um aerogerador.
Conheça cada um dos componentes demonstrados na figura:
1 – Fundação
2 – Conector
3 – Torre
4 – Escada
5 – Controle do rotor do aerogerador
6 – Nacelle
7 – Gerador
8 – Anemômetro
9 – Freio
10 – Caixa de velocidades
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)javascript:void(0)
11 – Lâmina
12 – Controle de orientação
13 – Roda
Fonte: Wikipedia
 Figura 5: Representação das componentes de um aerogerador. Fonte: Wikipedia.
1 – FUNDAÇÃO
Base que suporta a estrutura.
javascript:void(0)
javascript:void(0)
javascript:void(0)
2 – CONECTOR
A ligação do aerogerador com a rede elétrica. É a ligação elétrica que transfere a energia
para a rede elétrica e torres de transmissão.
3 – TORRE
Sustenta a hélice do aerogerador.
4 – ESCADA
Permite que o ser humano se desloque por dentro do aerogerador para realizar a
manutenção.
5 – CONTROLE DO ROTOR DO
AEROGERADOR
Ele controla se o aerogerador gira no sentido horário ou no sentido anti-horário.
6 – NACELLE
Suporte que abriga o gerador, o anemômetro, freio elétrico e a caixa de velocidade. É a
proteção dada a esses equipamentos.
7 – GERADOR
Em geral, um dínamo que gera a energia elétrica que será jogada para a rede elétrica.
8 – ANEMÔMETRO
Aparelho que mede a velocidade e a direção do vento.
9 – FREIO
Pode ser eletromecânico ou mecânico e tem a serventia de parar o funcionamento do
aerogerador ou regular a sua velocidade para manter a integridade física das demais peças.
10 – CAIXA DE VELOCIDADES
Trata-se de uma caixa de marchas, que funciona trocando as engrenagens de acordo com a
velocidade do vento, assim como se troca a marcha de um carro de acordo com a sua
velocidade.
11 – LÂMINA
Hélice do aerogerador.
12 – CONTROLE DE ORIENTAÇÃO
Ativado por mecanismo eletrônico a distância, quando o vento muda de direção e é
necessário inverter o sentido de rotação das hélices.
13 – RODA
Permite às hélices girarem através do uso de rolamentos.
CLASSIFICAÇÃO DOS AEROGERADORES:
TIPOS DE ROTORES
Em relação aos seus rotores, os aerogeradores são classificados de duas formas distintas:
ROTORES DE EIXO VERTICAL
Note que suas lâminas estão dispostas de maneira que o giro do rotor é dado na horizontal. Esses
tipos de rotores são mais caros, pois não dependem da direção do vento para girar.
Fonte: Por Fouad A. Saad / Shutterstock
 Figura 6: Exemplo de um rotor com eixo vertical.
Todavia, apesar de mais caros, o desempenho quando comparado com o rotor disposto na
horizontal, é inferior.
Dentre essa classe de rotores se destacam dois, o Savonius e o rotor Darrieus:
Fonte: Wikipedia.
Exemplificação de um rotor Savonius.
O rotor Savonius é projetado para brisas leves. Ele roda utilizando a força de arrasto do movimento
do ar e possui uma eficiência máxima de 20%.
Fonte: Por meunierd / Shutterstock.
Exemplificação de um roto Darrieus.
O rotor Darrieus é construído com duas ou três lâminas, como a de um helicóptero. Esse rotor
funciona com o princípio da força de sustentação, o que permite uma eficiência maior do que a do
rotor Savonius, chegando a 40% de rendimento. O rotor Darrieus foi projetado tanto para brisas
fracas quanto para ventos fortes.
Mas o que é a força de sustentação?
A força de sustentação, também chamada de sustentação aerodinâmica, é a componente de força
aerodinâmica perpendicular à velocidade do vento, ou seja, é uma força que faz 90° com a direção
do vento. Essa força de sustentação surge devido a diferença de pressão entre o intradorso (face
interna da lâmina) e o extradorso (face externa da lâmina). Tal força ainda é auxiliada pela Terceira
Lei de Newton, devido à força de resistência das lâminas à força do vento.
A força de sustentação é função da densidade do ar e do coeficiente de sustentação, como mostra
a equação (10):
𝐿 = 𝐶𝐿
𝜌
2𝑆𝑣² (10)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
L É a força de sustentação em newtons (N)
CL
É o coeficiente de sustentação em newtons segundo quadrado por quilograma
metro 𝑁 . 𝑠²𝑘𝑔 .𝑚.
𝜌 Densidade do ar em quilograma por metro cúbico 𝑘𝑔𝑚³.
S É a área superficial da lâmina em metros quadrados (m²).
v Velocidade do vento, em metros por segundo 𝑚𝑠 .
TEORIA NA PRÁTICA
Vamos considerar esse conceito determinando a velocidade angular de giro de um rotor Darrieus.
Digamos que o aerogerador esteja localizado em uma colina onde se venta a 40km/h e a
densidade do ar nesta região seja de 1,2041kg/m3, e a área da superfície interna de uma única
lâmina do aerogerador seja igual a 12m².
Consideremos que o coeficiente de sustentação seja igual a 1,6 𝑁 . 𝑠²𝑘𝑔 .𝑚, e que o aerogerador possua
3 lâminas. Para poder determinar a velocidade angular, vamos observar a figura seguinte e a
Segunda Lei de Newton.
Fonte: Por Alex Farias / Shutterstock
Figura 7.
Podemos notar a existência de dois vetores, um em preto e outro em vermelho, sendo o preto a
força de sustentação e o vermelho a força centrípeta, uma vez que o aerogerador trabalha girando.
Como essas forças estão na mesma direção, mas em sentidos opostos, elas se subtraem, e como
o único movimento existente é o de giro, podemos escrever o somatório dessas forças da seguinte
maneira:
→
𝐹𝐶 -
→
𝐿 = 0 (11)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A força centrípeta é dada pela equação (12):
→
𝐹𝐶 = 𝑚
→
𝜔²
→
𝑅 (12)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em que m é a massa em quilogramas (kg), 
→
𝜔 é a velocidade angular e 
→
𝑅 é o raio da trajetória, e
abordaremos um pouco mais a frente no exemplo.
Assim, utilizando as equações (10) e (12), podemos reescrever a equação (11) como a equação
(13), assim:
𝑚
→
𝜔²
→
𝑅 -𝐶𝐿
𝜌
2𝑆
→
𝑣 ² = 0 (13)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Como estamos interessados em determinar a velocidade angular do aerogerador, temos que isolar
→
𝜔, e assim chegamos à equação (14):
→
𝜔 =
√𝐶𝐿𝜌𝑆
→
𝑣
2
2𝑚
→
𝑅
 (14)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Digamos que a massa de uma lâmina é de 123kg, e que a distância do centro do rotor ao ponto de
máximo da curvatura da lâmina, ou seja, o ponto onde os vetores foram desenhados, é de 8m, ou
seja, o raio 
→
𝑅 = 8𝑚 . . Agora, já temos todos os dados para poder utilizar a equação (14), todavia
ainda é necessário converter a velocidade do vento de km/h para m/s, assim:
→𝑣 = 403, 6 = 11, 11 𝑚 / 𝑠 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Então, agora, substituindo todos os dados na equação (14), temos:
→
𝜔 = √1, 6 · 1, 2041 · 12 · (11, 11)
2
2· 123 · 8 = 1,20𝑟𝑎𝑑 / 𝑠
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Esse resultado nos mostra que esse tipo de rotor trabalha à baixa velocidade, e que leva mais de
um segundo para que uma volta seja completada, pois uma volta completa possui 2πrad que é
aproximadamente 6,28 radianos, assim, para podermos encontrar o tempo em que o rotor completa
uma volta, podemos realizar uma simples regra de três:
1,20 𝑟𝑎𝑑 - - - - 1𝑠
6,28𝑟𝑎𝑑 - - - - 𝑥
𝑥 = 5,23𝑠
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Dessa forma, a cada 5,23 segundos, o rotor completa uma volta, o que caracteriza uma frequência
de 11,47 rotações por minuto (R.P.M.), uma vez que em 1 minuto existem 60 segundos, assim, se 1
volta leva 5,25s, em 60 segundos temos:
1 - - - - - - 5, 23
𝑧 - - - - - - 60𝑠
5,23𝑧 = 60
𝑧 = 605, 23 = 11,47voltas por minuto ou rotações por minuto (R.P.M.)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Falamos muito sobre a força de sustentação, e existe um termo nesta força que chama a atenção: o
coeficiente de sustentação (CL). Esse coeficiente é a relação entre a pressão de sustentação e a
aerodinâmica da lâmina, que é uma função da sua geometria e do ângulo de ataque do fluxo do ar
sobre a lâmina.
Teoria na Prática – Turbina eólica de baixo rendimento
ROTORES DE EIXO HORIZONTAL
Os rotores de eixo horizontal são os mais vistos e utilizados graças a suamaior eficiência. Eles
lembram um cata-vento, e dentre essa classe de aerogeradores, dois se destacam, os rotores de
multipás e os rotores de tripá:
Fonte: Por Inna Harlamoff / Shutterstock
Representação de um rotor multipá.
Os rotores multipá são mais utilizados para realização de trabalho mecânico, bombeando água de
poços artesianos, como também podem ser utilizados para geração de energia elétrica. Tais
rotores podem ser impulsionados tanto pela força de arrasto do fluxo de ar, quanto pela força de
sustentação, além de possuírem um pico de eficiência de cerca de 30%.
Fonte: Por Jacques Durocher / Shutterstock
Representação de um rotor Tripá.
Os rotores tripás são os mais comuns na utilização de geração de energia elétrica, sendo
impulsionados unicamente pela força de sustentação. Apesar de o rotor com duas pás ser mais
eficiente, o rotor tripá é mais utilizado por sofrer menos turbulência, o que diminui o risco de danos
à estrutura do aerogerador.
Os rotores tripás não podem ser construídos com mais de 100m de altura e possuem uma
eficiência de 45% na geração de energia elétrica.
SISTEMAS EÓLICOS
Podemos afirmar que os sistemas eólicos são classificados em três: o sistema isolado, o sistema
híbrido e o sistema de injeção na rede.
Vamos, agora, abordá-los:
SISTEMAS ISOLADOS
Não possuem interação com a energia elétrica proveniente da rede pública, armazenando a
energia gerada em baterias, o que evita que falte energia elétrica quando os aerogeradores
pararem de funcionar, seja por falta de fluxo de ar, seja por necessidade de manutenção.
SISTEMAS HÍBRIDOS
Esses sistemas produzem energia elétrica simultaneamente com outra fonte de energia, como, por
exemplo, o parque de geração de energia da figura 8, que demonstra uma usina eólica —
fotovoltaica. Esses sistemas também são isolados da rede elétrica e armazenam a energia gerada
em baterias.
Fonte: Por Francesco Carta fotografo /Shutterstock
Figura 8: Representação de um parque de geração híbrida de energia.
SISTEMAS DE INJEÇÃO NA REDE
São todos os sistemas que interagem com a rede elétrica pública. Nestes sistemas, a energia é
injetada na rede pública para armazenamento e consumo populacional, e os geradores de energia
devem ser necessariamente de alta tensão.
EFICIÊNCIA DE UM AEROGERADOR: A LEI
DE BETZ
Apesar de alguns aerogeradores possuírem rendimentos maiores do que o rendimento de motores
a combustão, por exemplo, a conversão da energia cinética do fluxo de ar em energia elétrica não
ocorre integralmente, ou seja, existem perdas durante a conversão da energia. Assim, a eficiência
de um aerogerador é determinada pela Lei de Betz.
A Lei de Betz afirma que a fração máxima de energia que pode ser aproveitada em uma turbina
eólica é de 59,3%. Isso significa que mesmo que o aerogerador seja ideal, a energia máxima
javascript:void(0)
convertida em energia elétrica é de 59,3%. Matematicamente, a Lei de Betz é:
ALBERT BETZ (1885-1968)
Físico alemão pioneiro na tecnologia de aerogeradores.
𝑃 = 1627 ·
𝜌𝐴𝑣3
2 (15)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em que:
P
Potência útil da turbina em watts (W), em que um watt é igual à razão de um joule por
1 segundo 1𝑊 = 1𝐽1𝑠
ρ Densidade da massa do ar que entra na turbina em quilogramas por metro cúbico 𝑘𝑔𝑚³
A Área varrida pela turbina em metros quadrados (m²)
v Velocidade do vento que chega na turbina em metros por segundo 𝑚𝑠
TEORIA NA PRÁTICA
Note que a Lei de Betz trata da potência e não da energia gerada por um aerogerador. Isso porque
ela aborda a energia gerada por um determinado espaço de tempo, nesse caso, a quantidade de
energia gerada por segundo.
Voltemos a considerar o aerogerador de rotor vertical Darrieus, que está disposto em uma colina
onde o fluxo de vento viaja a velocidade de 40km/h, cuja densidade do ar nesta região é de
1,2041kg/m3, e a área da superfície interna uma única lâmina do aerogerador é igual a 12m.
Vamos, então, determinar a potência desse gerador que possui três lâminas para aparar o fluxo de
ar:
Primeiro, é preciso converter a velocidade do vento de km/h para m/s, assim:
→
𝑣 = 403, 6 = 11,11𝑚 / 𝑠
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Agora, vamos substituir os dados na equação (15), da seguinte forma:
𝑃 = 1627 ·
1, 2041 · 12 · (11, 11)³
2 = 5 .871,00𝑊
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Observação: essa potência foi determinada para o caso de uma única pá (lâmina) no aerogerador.
Para três aerogeradores, temos que multiplicar a potência por três:
𝑃𝐷𝑎𝑟𝑟𝑖𝑒𝑢𝑠 = 3 · 5 .871,00 = 17 .613,00𝑊
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
MÃO NA MASSA
1. EM UM AEROGERADOR, A POTÊNCIA GERADA É DE 450.000W.
QUANTOS JOULES DE ENERGIA ELE PODE GERAR EM UM ESPAÇO DE
TEMPO DE 3 SEGUNDOS?
A) 1.325.000J
B) 1.350.000J
C) 1.375.000J
D) 1.390.000J
2. CONSIDERE UM AEROGERADOR DE ROTOR HORIZONTAL DE TRIPLA
HÉLICE QUE FUNCIONA PELO PRINCÍPIO DA FORÇA DE SUSTENTAÇÃO. A
FORÇA EM UMA DAS PÁS DA HÉLICE É DE 2400N, A DENSIDADE DO AR
NESTE LOCAL É DE 1,20KG/M³ E A ÁREA SUPERFICIAL DA PÁ QUE FICA
EM CONTATO COM O FLUXO DE AR É DE 16M2. SE A VELOCIDADE DO AR
NESTA REGIÃO É DE 9M/S, O COEFICIENTE DE SUSTENTAÇÃO É IGUAL A:
A) 3,08𝑁 . 𝑠²𝑘𝑔 .𝑚
B) 4,37𝑁 . 𝑠²𝑘𝑔 .𝑚
C) 5,37𝑁 . 𝑠²𝑘𝑔 .𝑚
D) 6,37𝑁 . 𝑠²𝑘𝑔 .𝑚
3. A POTÊNCIA DE UM ROTOR HORIZONTAL TRIPÁ DE ÁREA SUPERFICIAL
DE 48M², INSTALADO EM UM LOCAL CUJO FLUXO DE VENTO É IGUAL A
120KM/H E DENSIDADE DE 1,24 KG/M³ É IGUAL A:
A) 0,3MW
B) 0,6MW
C) 0,9MW
D) 1,1 MW
4. UM AEROGERADOR DE DARRIEUS ESTÁ DISPOSTO EM UM LOCAL
CUJA DENSIDADE DO AR É DE 1,36KG/M³ E A VELOCIDADE DO FLUXO DE
AR NESSA REGIÃO É DE 35KM/H. A ÁREA ÚTIL DAS PÁS DO
AEROGERADOR É DE 100M², TOTALIZANDO UMA MASSA DE 360KG, E A
DISTÂNCIA DO CENTRO DO ROTOR A UMA DAS PÁS É DE 10M. ASSINALE
A OPÇÃO QUE APRESENTA A VELOCIDADE LINEAR DO ROTOR DO
AEROGERADOR, EM M/S, SABENDO QUE O COEFICIENTE DE
SUSTENTAÇÃO É IGUAL A 3, 37𝑁 . 𝑠²𝑘𝑔 .𝑚:
A) 16,9m/s
B) 20,9m/s
C) 22,7m/s
D) 24,5m/s
5. A FORÇA DE SUSTENTAÇÃO EM UM AEROGERADOR DE DARRIEUS É
DE 400N. ESSE AEROGERADOR POSSUI UM COEFICIENTE DE
SUSTENTAÇÃO DE 2, 7𝑁 . 𝑠²𝑘𝑔 .𝑚 E ÁREA SUPERFICIAL ÚTIL DE 20M². SE A
DENSIDADE DO AR NESTE LOCAL É DE 1,204KG/M³ E A DISTÂNCIA DO
CENTRO DO ROTOR A UMA DAS PÁS É DE 11M, PODEMOS AFIRMAR QUE
A POTÊNCIA DESSE GERADOR É IGUAL A:
A) 36000W
B) 3600W
C) 3060W
D) 306 W
6. UM AEROGERADOR IDEAL DE MULTIPÁS GIRA COM VELOCIDADE
ANGULAR DE 75RAD/S. CONSIDERANDO QUE A CADA VOLTA COMPLETA
DO AEROGERADOR 1.000J SÃO CRIADOS, QUANTOS JOULES DE
ENERGIA SÃO CRIADOS EM 1 SEGUNDO? (CONSIDERE Π≈3,14).
A) 35.000J
B) 3140J
C) 11.940J
D) 90.000J
GABARITO
1. Em um aerogerador, a potência gerada é de 450.000W. Quantos joules de energia ele pode
gerar em um espaço de tempo de 3 segundos?
A alternativa "B " está correta.
Vamos utilizar uma regra de três simples, pois 450 .000𝑊 = 450 .000 𝐽𝑠, assim:
450 .000𝐽 - - - 1𝑠
𝑥 - - - - - 3𝑠
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Multiplicando cruzado, temos:
𝑥 = 3 · 450 .000 = 1 .350 .000𝐽
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
2. Considere um aerogerador de rotor horizontal de tripla hélice que funciona pelo princípio
da força de sustentação. A força em uma das pás da hélice é de 2400N, a densidade do ar
neste local é de 1,20kg/m³ e a área superficial da pá que fica em contato com o fluxo de ar é
de 16m2. Se a velocidade do ar nesta região é de 9m/s, o coeficiente de sustentação é igual
a:
A alternativa "A " está correta.
A força de sustentação é dada pela equação (11):
𝐿 = 𝐶𝐿𝜌2 𝑆𝑣²
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Isolando o coeficiente de sustentação (CL), temos:
𝐶𝐿 = 2𝐿𝜌𝑆𝑣²
 Atenção! Para visualização completa da equação utilizea rolagem horizontal
Substituindo os valores dados no enunciado, temos:
𝐶𝐿 = 2· 4001, 2 · 16 · 92 = 3,08
𝑁 · 𝑠2
𝑘𝑔 ·𝑚
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
3. A potência de um rotor horizontal tripá de área superficial de 48m², instalado em um local
cujo fluxo de vento é igual a 120km/h e densidade de 1,24 kg/m³ é igual a:
A alternativa "B " está correta.
4. Um aerogerador de Darrieus está disposto em um local cuja densidade do ar é de
1,36kg/m³ e a velocidade do fluxo de ar nessa região é de 35km/h. A área útil das pás do
aerogerador é de 100m², totalizando uma massa de 360kg, e a distância do centro do rotor a
uma das pás é de 10m. Assinale a opção que apresenta a velocidade linear do rotor do
aerogerador, em m/s, sabendo que o coeficiente de sustentação é igual a 3,37𝑁 . 𝑠²𝑘𝑔 .𝑚:
A alternativa "D " está correta.
Primeiramente, precisamos converter a velocidade de km/h para m/s, assim:
→
𝑣 = 353, 6 = 9,72 
𝑚
𝑠
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Substituindo os valores dados no enunciado, mais a velocidade convertida na equação (15),
temos:
→
𝜔 =
√𝐶𝐿𝜌𝑆
→
𝑣
2
2𝑚
→
𝑅
→
𝜔 = √3, 37 · 1, 36 · 100 · (9, 72)²2 · 360 · 10 = 2,45𝑟𝑎𝑑 / 𝑠
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Todavia, sabemos da cinemática do movimento circular que:
→
𝜔 =
→
𝑣 
→
𝑅
 
Assim:
→
𝑣 =
→
𝜔 ·
→
𝑅
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Substituindo os determinados valores, temos:
→
𝑣 = 2,45 · 10 = 24,5𝑚 / 𝑠
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
5. A força de sustentação em um aerogerador de Darrieus é de 400N. Esse aerogerador
possui um coeficiente de sustentação de 2,7𝑁 . 𝑠²𝑘𝑔 .𝑚 e área superficial útil de 20m². Se a
densidade do ar neste local é de 1,204kg/m³ e a distância do centro do rotor a uma das pás é
de 11m, podemos afirmar que a potência desse gerador é igual a:
A alternativa "D " está correta.
6. Um aerogerador ideal de multipás gira com velocidade angular de 75rad/s. Considerando
que a cada volta completa do aerogerador 1.000J são criados, quantos joules de energia
são criados em 1 segundo? (considere π≈3,14).
A alternativa "C " está correta.
Primeiro, devemos verificar quantas voltas o rotor do aerogerador completa em um segundo.
Sabemos que em uma volta há 2π rad≅6,28 rad, então, realizando uma regra de três, temos:
1 𝑣𝑜𝑙𝑡𝑎 - - - - - 6, 28𝑟𝑎𝑑
𝑥 - - - - - 75𝑟𝑎𝑑
𝑥 = 11,94 𝑣𝑜𝑙𝑡𝑎𝑠
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Esse resultado significa que o rotor completa 11,94 voltas por segundo. Sabemos também que a
cada volta 1000J são criados, assim:
𝐸 = 1 .000 · 11,94 = 11 .940𝐽
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
GABARITO
VERIFICANDO O APRENDIZADO
1. UM AEROGERADOR DE DARRIEUS TEM UMA FORÇA DE SUSTENTAÇÃO
DE 8400N, POSSUI UM COEFICIENTE DE SUSTENTAÇÃO DE 1, 8𝑁 . 𝑠²𝑘𝑔 .𝑚 E
ÁREA SUPERFICIAL ÚTIL DE 172M². CONSIDERANDO QUE A DENSIDADE
DO AR É DE 1,001KG/M³ E A DISTÂNCIA DO CENTRO DO ROTOR A UMA
DAS PÁS É DE 15M, PODEMOS AFIRMAR QUE A POTÊNCIA DESSE
GERADOR É IGUAL A:
A) a)1,34x104W
B) 2,07x104W
C) 3,96x104W
D) 2,03x104W
2. UM AEROGERADOR POSSUI POTÊNCIA ÚTIL DE 978.000W. QUANTOS
JOULES POR SEGUNDO DE ENERGIA ESSE AEROGERADOR PODE
GERAR?
A) 100.000J
B) 978.000J
C) 890.000J
D) 489.000J
GABARITO
1. Um aerogerador de Darrieus tem uma força de sustentação de 8400N, possui um
coeficiente de sustentação de 1,8𝑁 . 𝑠²𝑘𝑔 .𝑚 e área superficial útil de 172m². Considerando que a
densidade do ar é de 1,001kg/m³ e a distância do centro do rotor a uma das pás é de 15m,
podemos afirmar que a potência desse gerador é igual a:
A alternativa "D " está correta.
Para determinar a potência, precisamos determinar a velocidade do fluxo de ar, ou seja, a
velocidade do vento, assim, utilizando a equação (11), temos:
𝐿 = 𝐶𝐿
𝜌
2𝑆𝑣²
8400 = 1,8 · 1, 0012 · 172 · 𝑣²
𝑣 = 7,36𝑚 / 𝑠
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Agora que conhecemos a velocidade, utilizamos a equação (16) para determinar a potência, logo:
𝑃 = 1627 ·
1, 001 · 172 · 7, 363
2 = 20 .338,65𝑊 = 2,03 x 10
4𝑊
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
2. Um aerogerador possui potência útil de 978.000W. Quantos joules por segundo de energia
esse aerogerador pode gerar?
A alternativa "B " está correta.
Vamos utilizar uma regra de três simples, pois 978 .000𝑊 = 978 .000 𝐽𝑠, então:
978 .000𝐽 - - - 1𝑠
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Assim, o aerogerador gera uma energia útil de 978.000J em 1 segundo.
MÓDULO 3
 Aplicar os conceitos físicos envolvidos na tecnologia da geração
de energia elétrica por conversão de energias: geotérmica e maremotriz
INTRODUÇÃO
Fonte: Por Burben / Shutterstock
Figura 9: Central geotérmica.
 ATENÇÃO
A energia geotérmica, ou energia geotermal, é uma energia renovável proveniente do calor que
emana do centro do planeta Terra. Para se aproveitar esse tipo de energia, são feitas perfurações
muito profundas e largas no solo, em locais no planeta chamados de centrais geotérmicas (Figura
9).
As centrais geotérmicas se localizam em áreas em que a água surge com temperatura acima de
150°C, onde existem rochas quentes (secas e úmidas).
 VOCÊ SABIA
Apesar de esse tipo de energia ter começado a ser explorada no início do século XX para geração
de energia elétrica, alguns povos antigos já a utilizavam para banhos relaxantes e cozer alimentos
nas chamadas fontes termais.
Fonte: Por JC Photo / Shutterstock
Figura 10: Energia maremotriz.
A energia maremotriz gera energia elétrica pelo movimento das marés de duas maneiras:
PRIMEIRA
Através da conversão da energia cinética da corrente marítima em energia elétrica.
SEGUNDA
Através da variação da energia potencial entre a crista e o vale de uma onda marítima.
Porém, para poder produzir energia elétrica através do movimento das marés, é necessário
construir uma estrutura similar à de uma usina hidrelétrica, com barragens, dutos e turbinas ligadas
a dínamos.
A figura 11 demonstra um esquema de turbinas submersas que convertem a energia cinética de
correntes marítimas em energia elétrica. No entanto, para utilizar essa tecnologia, é necessário
construir barragens no litoral, bem próximas ao mar, para poder armazenar, em maré alta, a água
em diques, pois, daí, em época de maré baixa, essas águas são liberadas e conduzidas a
passarem pelas turbinas, mantendo, assim, a produção da energia constante. Essa tecnologia é
instalada nas profundezas do mar.
javascript:void(0)
javascript:void(0)
javascript:void(0)
Fonte: Por Alex Mit / Shutterstock
 Figura 11. Representação de turbinas geradoras de energia por conversão da energia cinética
da corrente marítima.
ENERGIA CINÉTICA
Energia do movimento, dependente da massa m em kg e do quadrado da velocidade em m/s:
𝐸 = 𝑚𝑣
2
2
A desvantagem nesse tipo de tecnologia está no fato de que essa energia só é aproveitada quando
o desnível entre a maré alta (crista da onda) e maré baixa (vale da onda) é superior a 7 metros.
Já a figura 12, demonstra uma esquematização de uma usina que utiliza o conceito da energia
potencial das ondas.
Podemos observar que existem dois flutuadores que ficam subindo e descendo de acordo com a
passagem das ondas. Ao subir e descer, esses flutuadores acionam bombas de água que fazem a
água doce de um circuito fechado em terra circular e realizar trabalho sobre turbinas que geram
energia elétrica. O Brasil possui esse tipo de gerador de energia elétrica, e ele se localiza no
Ceará.
Fonte: pensamentoverde.com.br
 Figura 12: Usina de Pecém- CE. Representação de flutuadores que aproveitam a variação da
energia potencial da maré alta e maré baixapara gerar energia elétrica.
USINA GEOTÉRMICA
Também chamada de central geotérmica, é o local utilizado para converter a energia proveniente
do interior da terra na forma de calor em energia elétrica. Esse tipo de usina tem sido cada vez
mais estudada devido à grande busca da humanidade por fontes de energia.
Esse tipo de usina funciona da seguinte maneira: a água contida em lençóis freáticos profundos
entra em contato com as rochas aquecidas pelo calor que emana do núcleo terrestre, se aquece, e
então é ejetada na superfície com temperaturas elevadas, tais como Gêiseres ou fontes termais. A
partir de então, utilizam-se tubos para conduzir essas águas até a usina, onde são colocadas em
uma câmara à alta pressão, o que permite que o vapor d’água se expanda e gire uma turbina a
gás, seguindo o ciclo de Rankine, gerando, assim, energia elétrica.
javascript:void(0)
javascript:void(0)
A figura a seguir demonstra o esquema da construção e do funcionamento de uma usina
geotérmica:
GÊISERES
Jatos de água quente que irrompem do solo, como altas colunas nevoentas e com vapor, de
modo intermitente ou com pausas regulares: os gêiseres muitas vezes carregam emanações
sulfúricas e resíduos minerais, como calcário ou silício.
Fonte: Dicio. Dicionário online de Português.
CICLO DE RANKINE
Um ciclo termodinâmico que funciona convertendo calor em trabalho.
Fonte: portal-energia.com
Figura 13: Esquema do funcionamento de uma usina geotérmica.
Podemos notar, na imagem, que o vapor d’água é conduzido por auxílio de dutos até uma turbina
que gira e produz energia elétrica. Por sua vez, o vapor d’água é conduzido para um condensador
e posteriormente bombeado para uma torre de refrigeração e, então, devolvido para o lençol
freático.
Como essa usina utiliza o princípio do ciclo de Rankine para funcionar, sua eficiência é dada por:
𝜀 = 𝑊𝑡𝑢𝑟𝑏𝑖𝑛𝑎 - 𝑊𝑏𝑜𝑚𝑏𝑎𝑄 (16)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A equação (16) nos mostra que a eficiência (rendimento) é dependente do calor Q retirado do
vapor d’água, do trabalho que este vapor realiza sobre a turbina e também do trabalho que a
bomba d’água realiza sobre a água arrefecida. A diferença entre o trabalho da turbina e o trabalho
da bomba é necessária, pois a eficiência é determinada pelo trabalho líquido do sistema, uma vez
que o trabalho realizado sobre a turbina retira energia do sistema e o trabalho da bomba d’água
injeta energia no sistema. Estima-se que o rendimento real de uma usina geotérmica está em torno
de 60%.
TEORIA NA PRÁTICA
Vamos compreender o rendimento dessa usina através de um exemplo. Vamos supor que em uma
usina geotérmica, a turbina sofra um trabalho de 500.000J por segundo, e que a bomba d’água
injete uma energia de 2.000J por segundo. Então, supondo uma eficiência de 60%, vamos
determinar a quantidade de energia fornecida pelo vapor d’água captado no lençol freático por
segundo. Aplicando a equação (16), temos:
𝜀 = 𝑊𝑡𝑢𝑟𝑏𝑖𝑛𝑎 - 𝑊𝑏𝑜𝑚𝑏𝑎𝑄
0,6 = 500 . 000 - 2 . 000𝑄
𝑄 = 830 .000 𝐽
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Tal resultado nos mostra que o vapor fornece à usina uma energia de 830.000J por segundo.
Mas o que ocorre com os 40% restantes da energia?
Bem, parte dessa energia é perdida na forma de calor para o meio ambiente no condensador, pois
este retira energia do vapor para que ele possa se tornar líquido, outra parte faz a água se deslocar
(ou seja, é a energia cinética da água), e mais uma parte é perdida na forma de calor na torre de
refrigeração. O atrito das peças da usina também ocasiona perdas da energia, mas este não chega
a corresponder nem a 2 % de toda a perda.
No geral, a usina geotérmica funciona de forma equivalente a uma usina termoelétrica, com a
diferença de que não é necessário queimar um combustível fóssil para obter o vapor d’água.
A tabela 1, abaixo, apresenta a relação de vantagem x desvantagem da utilização da energia
geotérmica.
Vantagens Desvantagens
Não oferece poluição ao meio ambiente por meio de
queima de combustíveis ou geração de rejeitos.
Poluição dos depósitos de
aquíferos.
Essas usinas, quando comparadas com as demais, são
pequenas, requerendo pouca área para sua construção.
Deterioração da paisagem
devido à poluição térmica.
Esse tipo de usina produz energia 24 horas por dia, sem
variações.
Não permite ser transportado.
Como possui baixos custos para construção, devido ao
seu tamanho reduzido, pode proporcionar baixo preço de
eletricidade.
Elevado impacto ambiental.
Enquanto o planeta Terra girar, essa energia será
inesgotável.
Projetos geotérmicos são
caros.
Usina geotérmica
USINA MAREMOTRIZ
Como já discutido, a energia maremotriz utiliza a força das ondas para poder girar turbinas e
produzir energia elétrica. Todavia, existem duas classes desse tipo de usina, a usina que retira
energia da correnteza, com turbinas instaladas ao fundo do mar, e usinas que utilizam plataformas
flutuantes para retirar energia da oscilação da maré. Apesar de as usinas serem divididas nessas
duas classes, existem diversas formas de configurá-las:
Abaixo, veja a demonstração do esquema de uma usina maremotriz que utiliza a energia cinética
da correnteza para gerar energia elétrica.
Fonte: Por Oleksandr Derevianko / Shutterstock
As turbinas que estão dispostas na imagem são submersas no meio do oceano, ligadas à rede
elétrica da usina para armazenar a energia que criam.
Fonte: Wikipedia
Já nessas imagens, vemos uma barragem com uma turbina ora inerte, ora em funcionamento. Essa
turbina é a auxiliar e entra em ação quando as turbinas submersas no oceano não estão sendo
suficientes para gerar energia elétrica, devido à baixa diferença de altura entre a maré alta e maré
baixa. Neste caso, a comporta da barragem é aberta e a água que escoa realiza trabalho sobre a
turbina auxiliar, que ao girar, produz energia elétrica.
Apesar de ser uma energia limpa, esse tipo de tecnologia é muito cara, pois os materiais utilizados
para a produção da usina devem ser especialmente projetados para resistir ao poder corrosivo da
água salgada. Para isso, devem ser instalados anodos de sacrifício que precisam ser trocados
javascript:void(0)
periodicamente, no entanto, a manutenção preventiva e corretiva nesses materiais é de difícil
acesso, requerendo mão de obra muito especializada, pois apesar de mecânicos, eletrônicos etc.,
os técnicos também devem ser mergulhadores.
ANODOS DE SACRIFÍCIO
Qualquer metal utilizado em estruturas que se encontram em ambientes oxidantes, para
serem oxidados no lugar dessas estruturas.
A figura abaixo demonstra como as turbinas ficam dispostas no fundo do mar, e como são ligadas à
usina.
Fonte: Por Alex Mit / Shutterstock
Figura 14. Representação de um parque de geração de energia maremotriz com turbinas
submersas.
A figura 15 apresenta a planta da usina maremotriz localizada em Pecém, no Ceará. Esse tipo de
usina funciona com dois flutuadores que ficam se movendo para cima e para baixo acompanhando
o movimento das ondas.
Fonte: Por Olha1981 / Shutterstock
Figura 15. Representação de uma usina maremotriz que utiliza a força da superfície das ondas.
Esses flutuadores acionam bombas d’água no interior da usina. A água que circula por essas
bombas em um circuito fechado é doce, e o seu movimento realiza trabalho em turbinas que, ao
girarem, produzem energia elétrica. Depois disso, a água retorna para as bombas completando um
ciclo e retorna para a turbina. Antes de girar a turbina, a água passa por uma bomba hiperbárica
para ganhar pressão e, por sua vez, energia cinética.
Através de observações e estudos, conclui-se que o rendimento de uma usina maremotriz é de
20%, o que é menor do que o rendimento de uma máquina térmica que funciona por queima de
combustível fóssil, que é cerca de 30%. Para que a produção da energia seja rentável, a usina
deve estar instalada onde a médiada diferença entre a maré alta e a maré baixa seja de 7m.
TEORIA NA PRÁTICA
Para entender melhor como funciona a usina maremotriz que utiliza dois flutuadores como
mostrado na figura 15, vamos considerar que a diferença entre a crista e o vale da onda é de 7m, e
que cada flutuador possua massa de 25 toneladas, e que a usina está situada em um local onde a
gravidade local é de 9,8m/s². Considerando que 20% dessa energia é convertida em energia
elétrica, vamos determinar a potência dessa usina.
Primeiro, observe o esquema representativo. Nele, vemos os flutuadores em uma onda. Enquanto
um está na crista da onda, o outro se encontra no vale.
Fonte: Produção interna.
 Representação dos flutuadores em uma onda.
Vamos considerar essa situação para encontrar a energia potencial gravitacional do flutuado que
se encontra em maior altitude:
𝐸0 = 𝑚𝑔ℎ (17)
𝐸0 = 25 .000 · 9,8 · 7
𝐸0 = 1 .715 .000𝐽
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
 ATENÇÃO
Note que a massa m foi convertida de toneladas (T) para quilogramas (kg), ao multiplicarmos o 25T
por 1000 = 25 x 1000 = 25.000kg.
Como somente 20% dessa energia é aproveitada para produção de energia elétrica, temos que a
energia útil é:
𝐸ú𝑡𝑖𝑙 = 0,2 · 1 .715 .000 = 343 .000𝐽
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Agora, sabemos que uma onda ocorre a cada 5 segundos, ou seja, a energia de 343.000J é
produzida a cada 5 segundos, assim, a potência pode ser determinada pela equação (18):
𝑃 = 𝐸ú𝑡𝑖𝑙𝑡 (18)
𝑃 = 2· 343 . 0005 = 137 .200𝑊
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Esse resultado nos diz que nesta usina maremotriz, uma energia mecânica de 1.715.000J gera
uma potência útil de 137.200W, ou seja, 137.200J por segundo.
Por que a potência foi multiplicada por 2? Porque são dois flutuadores, então ambos passam pela
crista e pelo vale da onda, assim, nesses 5 segundos, ambos os flutuadores sobem e descem
produzindo energia.
MÃO NA MASSA
1. CONSIDERE UMA USINA MAREMOTRIZ QUE CONVERTE 18% DA
ENERGIA CINÉTICA DA MARÉ EM ENERGIA ELÉTRICA. SABENDO QUE
PARA GIRAR UMA TURBINA SÃO NECESSÁRIOS NO MÍNIMO 1500KG DE
ÁGUA A UMA VELOCIDADE DE 3KM/H, A QUANTIDADE EM JOULES DE
ENERGIA ELÉTRICA GERADA É IGUAL A:
A) 90,71J
B) 93,01J
C) 95,11J
D) 99,04J
2. UMA USINA GEOTÉRMICA POSSUI UMA BOMBA QUE FUNCIONA
INJETANDO 6.000J DE ENERGIA PARA O BOMBEAMENTO D’ÁGUA. A
TURBINA FUNCIONA COM TRABALHO IGUAL A 35.000J, E O RENDIMENTO
DESSA USINA É DE 45%. ASSIM, A ENERGIA RETIRADA DO VAPOR D’ÁGUA
É IGUAL A:
A) Q = 64.444,44J
B) Q = 74.328,57J
C) Q = 98.618,35J
D) Q = 107.123,45J
3. CONSIDERE UMA USINA GEOTÉRMICA EM QUE O TRABALHO DA
TURBINA CORRESPONDE A 69% DO CALOR RETIRADO DO LENÇOL
FREÁTICO E QUE O TRABALHO DA BOMBA CORRESPONDE A 1 % DO
TRABALHO DA TURBINA. PODEMOS AFIRMAR QUE O RENDIMENTO
DESSA USINA É IGUAL A:
A) 59,6%
B) 60,7 %
C) 68,3 %
D) 76,8 %
4. VAMOS CONSIDERAR QUE EM UMA USINA MARÉMOTRIZ, A DIFERENÇA
ENTRE A MARÉ ALTA E A MARÉ BAIXA SEJA DE SOMENTE 1M, E DESSA
FORMA TORNA-SE NECESSÁRIO ACIONAR A TURBINA AUXILIAR. A
BARRAGEM TEM ALTURA DE 20M E ESTÁ COMPLETAMENTE CHEIA, E
QUANDO SE ABRE A COMPORTA, SOMENTE 500KG DE ÁGUA
CONSEGUEM PASSAR POR SEGUNDO PELA TURBINA. SABENDO QUE
15% DESSA ENERGIA É CONVERTIDA, A QUANTIDADE DE ENERGIA
ELÉTRICA GERADA POR SEGUNDO É DE: (CONSIDERE G = 10M/S²)
A) 10.000J
B) 15.000J
C) 18.000J
D) 20.000J
5. CONSIDERE UMA USINA MAREMOTRIZ QUE CONVERTE A ENERGIA
CINÉTICA DA CORRENTEZA EM ENERGIA ELÉTRICA. ASSINALE A OPÇÃO
QUE REPRESENTA A EFICIÊNCIA DESTA USINA EM UM DETERMINADO
INSTANTE EM QUE UMA MASSA DE 4 TONELADAS PASSA PELAS
TURBINAS, COM VELOCIDADE DE 72KM/H, SABENDO-SE QUE FORAM
GERADOS 92.000J DE ENERGIA ELÉTRICA:
A) 9,8 %
B) 11,5 %
C) 18,3 %
D) 20,0 %
6. CONSIDERE UMA USINA GEOTÉRMICA, ONDE O TRABALHO REALIZADO
PELA BOMBA É DE 5% DO TRABALHO REALIZADO PELA TURBINA. SE O
RENDIMENTO DESSA USINA É IGUAL A 55%, A RAZÃO 𝑊𝑡𝑢𝑟𝑏𝑖𝑛𝑎𝑄 É IGUAL A:
A) 0,58
B) 0,60
C) 0,95
D) 1,00
GABARITO
1. Considere uma usina maremotriz que converte 18% da energia cinética da maré em
energia elétrica. Sabendo que para girar uma turbina são necessários no mínimo 1500kg de
água a uma velocidade de 3km/h, a quantidade em joules de energia elétrica gerada é igual
a:
A alternativa "B " está correta.
Primeiramente, vamos converter a velocidade de km/h para m/s:
𝑣 = 3 𝑘𝑚ℎ 
𝑑𝑖𝑣𝑖𝑑𝑖𝑑𝑜 𝑝𝑜𝑟 3, 6→ 𝑣 = 0,83 𝑚𝑠
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Agora, vamos determinar a energia cinética:
𝐸0 = 𝑚𝑣
2
2
𝐸0 =
1500· (0, 83)2
2 = 516,7𝐽
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A energia útil é de 18%, então:
𝐸ú𝑡𝑖𝑙 = 0,18 ·𝐸0
𝐸ú𝑡𝑖𝑙 = 0,18 · 516,7 = 93,01𝐽
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
2. Uma usina geotérmica possui uma bomba que funciona injetando 6.000J de energia para
o bombeamento d’água. A turbina funciona com trabalho igual a 35.000J, e o rendimento
dessa usina é de 45%. Assim, a energia retirada do vapor d’água é igual a:
A alternativa "A " está correta.
O rendimento desse tipo de usina é determinado pela equação (16):
𝜀 = 𝑊𝑡𝑢𝑟𝑏𝑖𝑛𝑎 - 𝑊𝑏𝑜𝑚𝑏𝑎𝑄
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Substituindo os devidos valores, temos:
0,45 = 35 . 000 - 6 . 000𝑄
𝑄 = 64 .444,44𝐽
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
3. Considere uma usina geotérmica em que o trabalho da turbina corresponde a 69% do
calor retirado do lençol freático e que o trabalho da bomba corresponde a 1 % do trabalho
da turbina. Podemos afirmar que o rendimento dessa usina é igual a:
A alternativa "C " está correta.
4. Vamos considerar que em uma usina marémotriz, a diferença entre a maré alta e a maré
baixa seja de somente 1m, e dessa forma torna-se necessário acionar a turbina auxiliar. A
barragem tem altura de 20m e está completamente cheia, e quando se abre a comporta,
somente 500kg de água conseguem passar por segundo pela turbina. Sabendo que 15%
dessa energia é convertida, a quantidade de energia elétrica gerada por segundo é de:
(considere g = 10m/s²)
A alternativa "B " está correta.
5. Considere uma usina maremotriz que converte a energia cinética da correnteza em
energia elétrica. Assinale a opção que representa a eficiência desta usina em um
determinado instante em que uma massa de 4 toneladas passa pelas turbinas, com
velocidade de 72km/h, sabendo-se que foram gerados 92.000J de energia elétrica:
A alternativa "B " está correta.
Primeiramente, devemos converter a velocidade de km/h para m/s, assim:
𝑣 = 72 𝑘𝑚ℎ 
𝑑𝑖𝑣𝑖𝑑𝑖𝑑𝑜 𝑝𝑜𝑟 3, 6→ 𝑣 = 20 𝑚𝑠
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em seguida, vamos determinar a energia cinética desta massa de água:
𝐸𝐶 = 𝑚𝑣22 = 4 . 000 · 20²2 = 800 .000𝐽
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Uma vez que a usina produz 92.000J de energia neste instante, seu rendimento é de:
𝜀 = 92 . 000800 . 000 = 0,115 = 11,5%
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
6. Considere uma usina geotérmica, onde o trabalho realizado pela bomba é de 5% do
trabalho realizado pela turbina. Se o rendimento dessa usina é igual a 55%, a razão 𝑊𝑡𝑢𝑟𝑏𝑖𝑛𝑎𝑄 é
igual a:
A alternativa "A " está correta.
Utilizando o rendimento dado pela equação (17), temos:
𝜀 = 𝑊𝑡𝑢𝑟𝑏𝑖𝑛𝑎 - 𝑊𝑏𝑜𝑚𝑏𝑎𝑄
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Substituindo os valores de acordo com o enunciado:
0,55 = 𝑊𝑡𝑢𝑟𝑏𝑖𝑛𝑎 - 0, 05𝑊𝑡𝑢𝑟𝑏𝑖𝑛𝑎𝑄
0,55 = 0, 95𝑊𝑡𝑢𝑟𝑏𝑖𝑛𝑎𝑄
𝑊𝑡𝑢𝑟𝑏𝑖𝑛𝑎
𝑄 = 0,58
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
GABARITO
VERIFICANDO OAPRENDIZADO
1. EM UMA USINA GEOTÉRMICA, O TRABALHO DA TURBINA É
EQUIVALENTE A 99% DO CALOR RETIRADO DO LENÇOL FREÁTICO E O
TRABALHO DA BOMBA D’ÁGUA EQUIVALE A 10 % DO TRABALHO DA
TURBINA. PODEMOS AFIRMAR QUE O RENDIMENTO DESSA USINA É
IGUAL A:
A) 79,6%
B) 80,7 %
C) 89,1 %
D) 86,8 %
2. EM UMA USINA MAREMOTRIZ, A DIFERENÇA ENTRE A MARÉ ALTA E A
MARÉ BAIXA É DE SOMENTE 0,3M, E DESSA FORMA ACIONA-SE A
TURBINA AUXILIAR. A BARRAGEM FABRICADA TEM ALTURA DE 30M E
ESTÁ COM SUA CAPACIDADE MÁXIMA. QUANDO SE ABRE A COMPORTA,
O FLUXO DE ÁGUA QUE ATRAVESSA A TURBINA É DE 2500KG/S.
SABENDO QUE 16,4% DESSA ENERGIA É CONVERTIDA, A QUANTIDADE
DE ENERGIA ELÉTRICA GERADA POR SEGUNDO É DE: (CONSIDERE G =
9,8M/S²)
A) 10.000J
B) 120.540J
C) 18.000J
D) 20.000J
GABARITO
1. Em uma usina geotérmica, o trabalho da turbina é equivalente a 99% do calor retirado do
lençol freático e o trabalho da bomba d’água equivale a 10 % do trabalho da turbina.
Podemos afirmar que o rendimento dessa usina é igual a:
A alternativa "C " está correta.
O rendimento da turbina é dado pela equação (16):
𝜀 = 𝑊𝑡𝑢𝑟𝑏𝑖𝑛𝑎 - 𝑊𝑏𝑜𝑚𝑏𝑎𝑄
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
O trabalho da turbina corresponde a 99% do calor, assim: Wturbina=0,99Q, e o trabalho da bomba é
10% do trabalho da turbina, assim: Wbomba=0,1Wturbina=0,1(0,99Q)=0,099Q. Substituindo na
equação, temos:
𝜀 = 0, 99𝑄 - 0, 099𝑄𝑄 = 0,891 = 89,1%
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
2. Em uma usina maremotriz, a diferença entre a maré alta e a maré baixa é de somente 0,3m,
e dessa forma aciona-se a turbina auxiliar. A barragem fabricada tem altura de 30m e está
com sua capacidade máxima. Quando se abre a comporta, o fluxo de água que atravessa a
turbina é de 2500kg/s. Sabendo que 16,4% dessa energia é convertida, a quantidade de
energia elétrica gerada por segundo é de: (considere g = 9,8m/s²)
A alternativa "B " está correta.
Antes de se abrir a comporta, a energia potencial gravitacional de 2500kg de água é igual a:
𝐸0 = 𝑚𝑔ℎ
𝐸0 = 2500 · 9,8 · 30 = 735 .000𝐽
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Essa energia, então, é convertida integralmente em energia cinética, que realiza trabalho sobre a
turbina, que converte em energia elétrica, assim, a quantidade de energia elétrica é igual a:
𝐸𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑖𝑑𝑎 = 0,164 · 735 .000 = 120 .540𝐽
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
CONCLUSÃO
CONSIDERAÇÕES FINAIS
Consideramos neste tema as formas existentes de se gerar energia elétrica através de fontes de
energia renováveis, as quais estão ao nosso alcance, mas que nem sempre notamos, como o Sol
e o vento.
Aprendemos que é possível explorar uma única fonte de energia de diversas formas, e que a
alteração da abordagem nos remete a resultados distintos, o que qualifica as aplicações para fins
distintos, como as aeroturbinas multipás, utilizadas para realizar trabalho mecânico, como bombear
água de um poço artesiano, e as aeroturbinas tripás, que servem para gerar energia elétrica.
Igualmente, é possível retirar energia do subsolo através da construção de usinas geotérmicas, as
quais ocupam menos espaço e possuem alta eficiência, todavia, necessitam de locais específicos
para poderem ser construídas.
Em suma, vimos neste tema que existem diversas fontes de energia renovável com grande
potencial para substituição das energias produzidas por queima de combustível, garantindo, assim,
o abastecimento energético social para o nosso futuro.
AVALIAÇÃO DO TEMA:
REFERÊNCIAS
HALLIDAY, David; RESNICK, Robert; WALKER, Jearl. Fundamentos de Física. 10. ed. Rio de
Janeiro, RJ: LTC, 2016, v. 1.
MAUAD, F. F.; FERREIRA, L. C.; TRINDADE, T. C. G. Energia renovável no Brasil: análise das
principais fontes energéticas renováveis brasileiras. In: Portal de Livros Abertos da USP, 2017.
TIPLER, P. A.; MOSCA, G. Física para Cientistas e Engenheiros. 6. ed. Rio de Janeiro: LTC,
2014, v. 1.
TOLMASQUIM, M. T.(coordenador). Energia Renovável: Hidráulica, Biomassa, Eólica, Solar,
Oceânica. Rio de Janeiro: Empresa de Pesquisa Energética (EPE), 2016.
Site consultado:
DICIO. Dicionário Online de Português. Consultado em meio eletrônico em: 04 ago. 2020.
EXPLORE+
Para saber mais sobre os assuntos tratados neste tema, leia:
Exploração de energia maremotriz para geração de eletricidade: aspectos básicos e
principais tendências, Revista Chilena de Engenharia, 2011.
Dualidade onda-partícula: um objeto de aprendizagem baseado no interferômetro de Mach-
Zehnder, Revista Brasileira de Ensino de Física, 2009.
Uma abordagem sobre a energia eólica como alternativa de ensino de tópicos de Física
clássica, Revista Brasileira de Ensino de Física, 2014.
CONTEUDISTA
Gabriel Burlandy Mota de Melo
 CURRÍCULO LATTES
javascript:void(0);
javascript:void(0);

Mais conteúdos dessa disciplina