Buscar

Tabela Periódica

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

História da Tabela Periódica
A tabela periódica dos elementos químicos é conhecida como uma ótima fonte de informação quando se deseja saber características sobre os elementos, como: verificar quais são metais, quais os mais densos, os mais pesados ou reativos. Entretanto, a tabela periódica nem sempre foi assim, organizada e completa: dispor os elementos obedecendo as suas semelhanças já foi motivo de muita discussão e estudo científico, e, embora a tabela atual seja mais eficiente, sua formação é derivada de tantas outras mais primitivas.
Classificação de Döbereiner - Lei das Tríades (1829)
Johann W. Döbereiner (1780-1849), cientista alemão, observou que muitos elementos podiam ser agrupados três a três (tríades) de acordo a certas semelhanças com as massas atômicas:
· Proximidade:
Fe = 56u
Co = 59u
Ni = 58u
Como se pode perceber, o Ferro, o Cobalto e o Níquel possuem massas atômicas muito próximas.
· Diferença comum:
Li = 7u
Na = 23u
K = 39u
Observe que, a diferença entre as massas dos elementos consecutivos na ordem crescente é igual a 16. De fato: 23 - 7 = 16; 39 - 23 = 16.
· Média aritmética
Ca = 40u
Sr = 88u
Ba = 137u
Efetuando-se a média aritmética entre as massas do Cálcio e do Bário obtém-se a massa atômica aproximada do Estrôncio: 137+40 = 177; 177/2 = 88,5.
Classificação de Chancourtois - Parafuso Telúrico (1862)
Alexander Béguyer de Chancourtois (1820-1886), químico inglês, organizou os elementos da seguinte forma: inicialmente, dividiu a superfície de um cilindro em 16 colunas e inúmeras horizontais; atribuiu ao oxigênio a massa 16u; traçou uma linha helicoidal que começava pelo oxigênio (ponto 0) e terminava no décimo sexto elemento mais pesado, até onde a linha alcançava. Repetiu esse procedimento até que todos os elementos fossem alocados nas linhas divisórias.
Considera-se elementos semelhantes aqueles que se encontram na mesma vertical, como o Carbono e o Silício; Nitrogênio e Fósforo.
Classificação de Newlands - Lei das Oitavas (1864)
John A. R. Newlands (1838-1898), professor de química e industrial inglês, idealizou a classificação dos elementos pela ordem crescente de massa atômica, em grupos de 7 e dispostos lado a lado. Logo percebeu que as propriedades químicas eram semelhantes ao primeiro e oitavo elementos – a contar da esquerda para a direita -, como as notas musicais que se repetem a cada oitava.
Assim, os elementos que seguem a mesma linha vertical possuem as mesmas características químicas, como o Lítio, o Sódio e o Potássio; o Magnésio e o Cálcio.
O Fracasso das classificações antigas e o modelo atual
Apesar de promissoras, os modelos antigos de classificação dos elementos apresentaram muitas incompatibilidades:
· Lei das Tríades:
Esse método de distribuição foi considerado ineficaz porque era muito restrito e só atendia a alguns elementos.
· Parafuso Telúrico:
A aceitação desse método foi pequena, pois os valores das massas atômicas eram, muitas vezes, errôneos e imprecisos.
· Lei das Oitavas:
Esse modelo também foi banido por apresentar problemas, novamente, com os valores das massas atômicas. Ou seja, alguns elementos estavam em lugares errados: o cloro e o flúor, por exemplo, não possuem características semelhantes ao Cobalto ou ao Níquel.
Apesar de fracassados, esses modelos contribuíram para o constante aperfeiçoamento sobre a classificação dos elementos químicos.
Dois cientistas trabalharam isoladamente um do outro, mas chegaram a resultados parecidos, foram eles: Julius Lothar Meyer (1830-1895) e Dmitri Ivanovitch Mendeleev (1834-1907), sendo o trabalho de Mendeleev mais ousado.
Mendeleev apresentou seu modelo de classificação dos elementos à real Sociedade Russa de Química, onde obteve grande aceitação. A sua teoria pode ser confirmada com algumas observações suas:
1. “Os elementos, se dispostos de acordo com as massas atômicas, revelam evidente periodicidade de propriedades;
2. Devemos esperar a descoberta de muitos elementos ainda desconhecidos; por exemplo, elementos análogos ao alumínio (eka-Alumínio) e ao silício (exa-Silício), cujas massas atômicas ficariam compreendidas entre 65 e 75”
Ou seja, Mendeleev afirmava que as propriedades dos elementos são uma função periódica de suas massas atômicas.
A tabela periódica atual não é uma cópia fiel da tabela de Mendeleev: é mais aperfeiçoada. Não pela aparição de elementos que ocupam os espaços vazios destinados a eles, mas por causa de um conceito estabelecido em 1913: o número atômico.
Henry G. L. Moseley definiu que a verdadeira identidade de um elemento não está relacionada diretamente com a massa dele, mas com a carga nuclear do átomo que o representa. Assim, modificou levemente a tabela proposta por Mendeleev, permanecendo sua essência até hoje.
Estrutura da tabela
Na tabela, os elementos estão arranjados horizontalmente, em sequência numérica, de acordo com seus números atômicos, resultando o aparecimento de sete linhas horizontais (ou períodos). Cada período, com exceção do primeiro, começa com um metal e termina com um gás nobre. Os períodos diferem entre si no comprimento, sendo que alguns possuem apenas 2 elementos (período curto) e outros já contam com 32 elementos (período longo).
Os grupos correspondem às linhas verticais, que foram agrupadas baseando-se nas estruturas similares da camada externa (como no exemplo do grupo 2). Em alguns desses grupos, os elementos estão relacionados tão intimamente em suas propriedades, que são denominados de famílias, por exemplo, o grupo 1 A é a família dos Metais Alcalinos.
Propriedades periódicas dos elementos químicos 
As propriedades periódicas dos elementos químicos são as características inerentes à esses elementos que variam de acordo com sua posição na tabela periódica, ou seja, com o número atômico.
As propriedades periódicas são: eletronegatividade, eletropositividade, raio atômico, afinidade eletrônica, potencial de ionização, densidade atômica, volume atômico, temperatura de fusão e temperatura de ebulição. As quatro últimas propriedades muitas vezes são consideradas aperiódicas por apresentarem um certo desordenamento: o volume atômico cresce, no período, do centro para as extremidades; as temperaturas de fusão e ebulição crescem com o raio atômico nas famílias da esquerda (1A e 2A), e decrescem nas da direita (gases nobres e halogênios).
Vejamos um pouco de cada propriedade:
Eletronegatividade:
É a tendência que um átomo tem de atrair elétrons. E muito característico dos não metais. Linus Pauling através de experimentos, tentou quantificar esta tendência e criou uma escala de eletronegatividade. Essa escala existe em muitas tabelas periódicas. 
A eletronegatividade aumenta conforme o raio atômico diminui. Quanto maior o raio atômico, menor será a atração do núcleo pelos elétrons mais afastados e então, menos a eletronegatividade. 
Na tabela periódica, os gases nobres não são considerados, já que não tem tendência a ganhar ou perder elétrons. Já estão estabilizados.
A eletronegatividade aumenta nas famílias, de baixo para cima e nos períodos da esquerda para a direita.
Eletropositividade:
E a tendência que um átomo tem de perder elétrons. E muito característico dos metais. Pode ser também chamado de caráter metálico. É o inverso da eletronegatividade.
A eletropositividade aumenta conforme o raio atômico aumenta. Quanto maior o raio atômico, menor será a atração do núcleo pelo elétron mais afastado, maior facilidade do átomo em doar elétrons, então maior será a eletropositividade.
Os gases nobres também não são considerados, por conta da sua estabilidade.
A eletropositividade aumenta nas famílias, de cima para baixo, e nos períodos da direita para esquerda. 
Raio atômico:
Representa a distância entre o centro do núcleo de um átomo e a camada mais externa da eletrosfera (camada de valência). É calculado a partir de uma molécula diatômica de um mesmo elemento como a metade da distância entre os respectivos núcleos. Pois, como o átomo não é uma esfera, o cálculo do raio quando isolado é demasiadamente impreciso.
Geralmente, o raioatômico cresce conforme aumenta o número de camadas e diminui com o aumento do número atômico. Assim, numa mesma família, o raio aumenta de cima para baixo. E, no mesmo período, da direita para a esquerda.
O raio atômico está, também, intrinsecamente ligado à propriedade periódica da eletronegatividade. Pois, quanto maior essa propriedade, com maior força o núcleo atrai a eletrosfera e menor é o raio.
De forma análoga, quanto maior o raio atômico, menor o potencial de ionização – já que a eletrosfera não é tão fortemente atraída pelo núcleo e o elétron de valência pode ser removido com mais facilidade; e menor a afinidade eletrônica – pois, com menos força de atração sobre a eletrosfera, uma menor quantidade de energia é liberada ao recebimento de um elétron.
Afinidade eletrônica:
A afinidade eletrônica ou eletro afinidade é uma propriedade periódica (pois é correspondente ao número atômico dos elementos e apresenta uma ordem de crescimento nos períodos e grupos da tabela periódica) relacionada com a quantidade de energia liberada por um átomo ao receber um elétron ou a um ânion ao perdê-lo. 
Praticamente, todos os elementos conhecidos liberam energia ao receber um elétron nas condições especificadas. Assim, o valor real da afinidade eletrônica é sempre um número negativo; onde quanto menor esse valor maior a energia liberada: assim, o átomo de cloro (-349 KJ/mol) libera mais energia que o de sódio (-53 KJ/mol).
De um modo geral, a afinidade eletrônica aumenta da esquerda para a direita e de baixo para cima na tabela periódica. Entretanto, algumas poucas exceções podem ser observadas (como o átomo de cloro que, embora esteja numa posição inferior na tabela, possui maior afinidade que o átomo de flúor).
Potencial de ionização:
É a energia necessária para remover um elétron de um átomo isolado no estado gasoso. À medida que aumenta o tamanho do átomo, aumenta a facilidade para a remoção de um elétron da camada de valência. Portanto, quanto maior o tamanho do átomo, menor o potencial de ionização.
O Potencial de Ionização mede o contrário da afinidade eletrônica: a energia necessária para retirar um elétron de um átomo neutro, em estado fundamental e no estado gasoso. A retirada de elétron na primeira vez utilizará uma quantidade de energia maior que na segunda retirada e assim sucessivamente.
Na tabela periódica dos elementos podemos deduzir quais elementos possuem maior energia de ionização; basta acompanhar seus raios atômicos que quanto menores, maior será a energia de ionização, e seus números atômicos que possuem seus números de prótons, ou seja, a carga positiva do átomo, sendo assim a energia de ionização cresce da esquerda para a direita e de baixo para cima.
Densidade atômica:
Densidade absoluta é a analogia, entre a massa e o volume de algum elemento, pode ser chamada também de massa específica, e é representada na seguinte formula: 
A densidade depende de diversos fatores: 
• Massa do núcleo; 
• Dimensão do átomo; 
• Se esses átomos estão comprimidos ou não; 
Portanto podemos concluir que a densidade do elemento irá depender tanto do volume dos poros deixados pelos átomos, quanto da densidade dos átomos.
Sabe-se que os metais mais densos são: Ósmio, Platina e Irídio.
De maneira experimental determinou-se a densidade para os elementos químicos, observando-se a variação na tabela periódica na famílias de cima para baixo e nos períodos das laterais para o centro. 
Volume atômico:
Chama-se volume atômico de um elemento o volume ocupado por 1 átomo-grama, ou seja, 6,10 х 1023 átomos do elemento no estado sólido, sendo que “esta propriedade não representa o volume de um átomo, mas se relaciona com a estrutura cristalina do elemento”.
Portanto, visto que o volume atômico não é o volume de um átomo mas de um conjunto de átomos, nesta propriedade influem não só o volume individual de cada átomo, como também o espaço existente entre os mesmos.
Pode-se dizer que nas famílias da tabela periódica o volume atômico aumenta de cima para baixo; nos períodos do centro para as laterais.
Temperatura de fusão e ebulição: 
Entende-se por ponto de fusão a temperatura em que uma substância passa do estado sólido passa o estado líquido, e por ponto de ebulição a temperatura em que uma substância líquida passa para o estado gasoso, à determinada pressão. Por exemplo, a água pura passa do estado sólido para o estado líquido, sob pressão de 1 atm, à temperatura de 0 ºC. Diz-se assim que o Ponto de Fusão da água pura é 0 ºC. Já essa água pura passa do estado líquido para o estado gasoso, sob a mesma pressão, à temperatura de 100 ºC. Diz-se assim que o Ponto de Ebulição da água pura é 100 ºC.
Percebe-se nas famílias da tabela periódica um aumento nos pontos de fusão e ebulição de cima para baixo, exceto nas famílias 1A e 2A, que é de baixo para cima. Nos períodos, esse aumento se dá das laterais para o centro.
Anexos
Imagem 01:
Tabela periódica idealizada por Chancourtois.
Imagem 02:
Tabela periódica idealizada por Newlands.
Imagem 03:
Tabela periódica idealizada por Mendeleev, em 1869, apresentando espaços vagos para a inclusão de novos elementos.
Imagem 04:
Tabela periódica atual.
Referências:
MAHAN Bruce M., MYERS Rollie J. “História da tabela periódica”; Info Escola. Disponível em <http://www.infoescola.com/quimica/historia-da-tabela-periodica>. Acesso em 23 de outubro de 2015.
SOUZA, Líria Alves De. "Organização da Tabela Periódica"; Brasil Escola. Disponível em <http://www.brasilescola.com/quimica/organizacao-tabela-periodica.htm>. Acesso em 28 de outubro de 2015.
MAHAN Bruce M., MYERS Rollie J. “Propriedades periódicas dos elementos”; Info Escola. Disponível em <http://www.infoescola.com/quimica/propriedades-periodicas-dos-elementos>. Acesso em 26 de outubro de 2015.
6

Outros materiais