Buscar

PRINCIPIOS FISICOS DE USG- MANUAL ECOMURGEM

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Princípios físicos básicos de Ultrassom aplicado a Medicina de Urgência e 
Emergência 
 
 Dr. Waldir Salvi Jr. 
Dr. Reiby C. Mustafá 
 
1-Conceitos físicos sobre ultrassom 
 
O som é uma onda mecânica, de propagação tridimensional. O som é 
produzido por qualquer fonte que gere ondas sinusoidais de compressão e 
rarefação, em frequências (Hz) variadas, resultando em vibrações no meio em 
que o som se propaga (Fig. 1). Tendo como referência a audição humana os 
sons são classificados em (Fig. 2): 
- Infrassom: frequência abaixo de 20 Hz, sendo inaudível. 
- Som audível: frequência entre 20 Hz e 2000 Hz. 
- Ultrassom (US): frequência acima de 2000 Hz, sendo inaudível. 
 
 
 
Figura 1 – Princípio físico da onda sonora. (Fonte: thoracickey.com/physics-and-instrumentation-2/) 
 
 
 
 
 
Figura 2 - frequência de ondas sonoras. (Fonte: 8ondassonoras.weebly.com/o-espectro-sonoro.html 
2- Geração e detecção do US – Transdutores 
 
Na aplicação médica de diagnóstico por imagem, o US é produzido por 
transdutores. Eles convertem energia elétrica em mecânica e vice-versa. São 
feitos de cristais piezoelétricos, como por exemplo o quartzo e a turmalina. 
Uma tensão alternada (corrente elétrica) produz oscilações nas dimensões 
desses cristais, devido ao realinhamento das moléculas polarizadas, produzindo 
ultrassom. Cada transdutor possui uma frequência de ressonância natural, de 
acordo com a espessura dos cristais. Assim, cristais mais “finos” produzem 
frequências maiores e cristais mais “grossos” produzem frequências menores 
(Fig. 3). As frequências entre 1 e 10 MHz (megahertz ou milhão de hertz) 
são as mais utilizadas. 
 
 
 
 
Figura 3 - propriedade piezoelétrica dos cristais. (Fonte: thoracickey.com/physics-and-instrumentation-2/) 
 
A medida que as ondas de US se propagam pelos tecidos do corpo, elas 
são parcialmente refletidas pelas interfaces de volta ao transdutor. Em geral, 
apenas 1% da energia incidente é refletida e o restante continua o caminho pelos 
tecidos, tendo outros comportamentos, tais como: Absorção, refração e 
espalhamento (Fig. 4). O aparelho guarda o tempo entre a emissão do pulso e 
a recepção do eco, transformando-o em distância percorrida, na representação 
da imagem na tela. Os aparelhos geralmente são calibrados para uma 
velocidade fixa de 1540 m/s. 
Deste modo, quanto mais distante uma estrutura está da superfície do 
transdutor, mais inferior ela aparecerá na tela. Ao contrário, quanto mais próxima 
uma estrutura está do transdutor, mais superior ela aparecerá na tela (Fig. 5). 
 
 
Figura 4 - Comportamentos do feixe de ultrassom ao propagar pelos tecidos. (Fonte: icurevisited.com/pt-br/lus/) 
 
 
 
Figura 5 - formação da imagem de ultrassom. (Fonte: http://www.sprawls.org/resources/USIMG). 
 
 
 
 
3- Importância do Gel Condutor: 
 
Reflexão e refração seguem as leis da óptica, dependem do ângulo de 
incidência e da desigualdade acústica (≠Z). A Z (impedância acústica) do ar é 
muito alta; logo sem o Gel, 99% do US seria refletido na interface Ar – Tecido. 
 
 
Figura 6 - gel condutor de US - https://www.philips.com.br/healthcare/ 
 
As ondas de ultrassom têm determinadas características que são 
determinantes para a compreensão do funcionamento do aparelho de 
diagnóstico ultrassonográfico. São elas: 
 
1. Ciclo: composto de compressão/rarefação. 
2. Frequência (f): Ciclos por segundo (Hz) 
3. Amplitude: Magnitude (tamanho) da onda. Medida em decibéis (dB) 
4. Comprimento (ʎ): distância entre ondas adjacentes, medida pico a pico 
(mm) 
5. Velocidade de propagação 
 
Qual a importância na prática das características do ultrassom (US)? 
 
1. Quanto maior a frequência (f), menor o comprimento de onda (ʎ), 
consequentemente maior a capacidade de distinguir pequenas estruturas. 
Isto é, maior a capacidade de resolução (definição) das imagens. Porém, 
perdem mais energia ao atravessar os tecidos, perdendo capacidade de 
resolução das estruturas mais profundas. 
2. Quanto menor a frequência (f), maior o comprimento de onda (ʎ), 
consequentemente menor a resolução das imagens. Porém, perdem 
menos energia ao atravessar os tecidos, mantendo a capacidade de 
resolução das estruturas mais profundas. 
 
 
Figura 7 – frequência alta e baixa. (Fonte: www.ic.uff.br//acconci/Ultrasson/pdf) 
 
O ultrassom, em geral, se propaga através de líquidos, tecidos e sólidos. 
Apresenta velocidades de propagação, compatíveis com diferentes meios, 
sendo essa característica própria ao processo de interação das ondas 
ultrassônicas com o meio em particular: 
 
 
 
Velocidade de 
propagação 
Metros/segundo Impedância (kgm-2s-1) 
Ar 330 430 
Água 1480 1.5 x 106 
Gordura 1460 1.4 x 106 
Músculos 1620 1.7 x 106 
Tecidos moles 1540 1.65 x 106 
Fígado 1555 1.65 x 106 
Sangue 1560 1.61 x 106 
Osso 4080 5.3 x 106 
Tabela 1- Tabela de impedância.(Fonte:blog.pacientegraveuti.com.br/principios-basicos-de- 
ultrassonografia. 
 
5-Impedância acústica 
 
A impedância acústica de um meio está relacionada com a resistência ou 
dificuldade do meio a passagem do som. Corresponde ao produto da densidade 
do material pela velocidade do som no mesmo. Quando o feixe sonoro atravessa 
uma interface entre dois meios com a mesma impedância acústica, não há 
reflexão e a onda é toda transmitida ao segundo meio. É a diferença de 
impedância acústica entre dois tecidos que define a quantidade de reflexão 
na interface, promovendo sua identificação na imagem. 
Maior resolução de imagem, porém 
perdem energia para definição de 
estruturas profundas. 
Menor resolução de imagem, porém 
perdem menos energia para 
definição de estruturas profundas. 
Vejam que na tabela mostrada acima, as velocidades de propagação do som 
diferentes para cada tecido, na dependência das impedâncias acústicas. 
 
6-Terminologia da imagem ultrassonográfica 
 
A terminologia utilizada para descrever o exame ultrassonográfico é 
consequência da interação do som com os tecidos. Desta forma, para descrever 
a intensidade dos ecos na imagem (interação do som com os tecidos), ou sua 
ecogenicidade, são empregados vários termos. 
 
• Hiperecogênico ou hiperecóico – são termos que se referem às 
estruturas que interagem com o som refletindo intensamente e produzindo 
ecos brilhantes na tela, em cor branca (ecos de alta densidade). As 
interfaces acústicas entre órgãos, osso, gás, cálculos, são exemplos; 
 
• Hipoecogênico ou hipoecóico – são termos que se referem às 
estruturas que interagem com o som produzindo ecos esparsos (baixa 
intensidade). Tem um tipo intermediário de reflexão e transmissão dos 
ecos e variam na escala de cinza, do mais claro ao mais escuro. São 
encontrados em diversos tipos tissulares como linfonodos, útero, ovários, 
adrenais, miocárdio e outros. Utiliza-se também o termo hipoecogênico 
referindo-se à estrutura de menor ecogenicidade quando duas distintas 
são comparadas; 
 
• Anecogênico ou anecóico – são termos que se referem à ausência 
completa de ecos ou a completa transmissão do som. As estruturas com 
essa ecogenicidade aparecem na tela com coloração escura (preto). A 
vesícula repleta, a bexiga e os cistos são os principais exemplos. 
 
 
 
Figura 8 - Padrões de ecogenicidade (Fonte: própria) 
 
7-Tipos de Transdutores 
 
Basicamente, para POCUS, são utilizados 3 tipos de transdutores: Linear, 
setorial e convexo (Fig. 10). 
 
1.Transdutor linear (vascular) tem alta frequência e portanto, tem um campo 
próximo (área de melhor avaliação) mais superficial, entre 1 e 3 cm de distância 
da membrana do transdutor. 
 
2. Transdutor setorial (cardio) tem frequências baixas e portanto, tem um 
campo de melhor avaliação, mais profundo, ao redor de 5 a 7 cm de distância da 
membrana do transdutor. 
 
3. Transdutor convexo (abdominal) tem frequências baixas e portanto, tem um 
campo de melhor avaliação, mais profundo, ao redor de 5 a 7 cm de distância da 
membrana do transdutor.Figura 9 - modelos de transdutores. (Fonte: icurevisited.com/pt-br/lus/) 
 
 
8-Modelos de Ultrasssom 
 
1. MODO M (movimento temporal): O feixe de US é mantido fixo em 
determinada direção, sendo fornecido um gráfico de movimento temporal 
das estruturas situadas na direção de toda extensão do feixe, ao longo do 
tempo. 
 
 
Figura 10 - Modo M da valva mitral 
 
 
 
Figura 11 - Modo M da valva aórtica 
 
 
2-MODO B (bidimensional): Os diversos cristais do transdutor são disparados 
em sequência, de modo a fazerem varreduras de feixes de US. Esses disparos 
ocorrem em sequência e em intervalo de tempo conhecido, formando um quadro 
ou “frame”. 
 
OBSERVAÇÃO: Para a avaliação cardíaca básica em POCUS são utilizadas 
três janelas acústicas: Paraesternal (eixo longo e curto), Apical 4 
câmaras(4C) e Subcostal (plano 4C e da veia cava inferior (VCI). 
 
 
Modo M evidenciando o 
movimento de abertura da valva 
mitral na diástole 
Modo M evidenciando o 
movimento de abertura da valva 
aórtica na sístole 
 
Figura 12 - Paraesternal longitudinal (Fonte: própria) 
 
 
 
Figura 13 - Paraesternal eixo curto (Fonte: própria) 
 
 
 
Figura 14 - Apical 4 câmaras (Fonte: própria) 
 
 
Paraesternal Eixo Longitudinal do VE. 
Paraesternal Eixo Curto do VE. 
Apical – 4 câmaras. 
 
Figura 15 - Subcostal 4 câmaras (Fonte: própria) 
 
8-Efeito Doppler: 
 
Uma fonte estacionária de som produz certo timbre ou frequência (f). Se 
o som se deslocar em direção a um observador, o timbre parece aumentar (mais 
agudo). Ao contrário, se o som se afastar de um observador, o timbre parece 
diminuir (grave). 
 
 
Figura 16 - Efeito Doppler - sirene de ambulância. (Fonte: https://brasilescola.uol.com.br) 
 
 
Modalidades de Doppler: 
 
A modalidade mais usada em POCUS é o Doppler pulsado.Nessa 
modalidade o cristal piezoelétrico emitirá pulsos curtos e intermitentes que serão 
direcionados para uma amostra de 2-5 mm no feixe ultrassônico e retorna para 
o cristal. É aplicado principalmente para a estimativa do fluxo sanguíneo na via 
de saída do ventrículo esquerdo, servindo para cálculo do DC (débito cardíaco) 
Subcostal – 4 câmaras. 
o qual será demonstrando no capitulo específico de avaliação hemodinâmica 
não invasiva. 
 
 
Figura 17 - Efeito Doppler - fluxo sanguíneo se aproxima (positivo). fluxo se afasta (negativo). (Fonte: 
eigierdiagnosticos.com.br/blog/tipos-de-doppler/) 
 
 
9-ARTEFATOS ULTRASSONOGRÁFICOS: 
 
1. REVERBERAÇÕES: 
 
Ocorre pela reflexão secundária na superfície do transdutor. Parte 
do sinal de retorno sofre nova reflexão, retorna à estrutura alvo com menor 
sinal e assim sucessivamente. Por exemplo: Pericárdio posterior, parede 
aórtica. 
 
 Pericárdio posterior do VE Parede posterior AO Descendente 
 
Figura 18 - Artefatos de reverberação. 
O artefato de reverberação PLEURAL é uma recente exceção. 
Tornou-se não uma dificuldade mas imagem valiosa no diagnóstico 
ultrassonográfico de afecções pulmonares. 
 
 
Figura 19 - Linhas A, artefatos de reverberação das membranas pleurais. (Fonte: própria) 
 
 
2. SOMBREAMENTO: 
 
É o oposto da reverberação. Resulta na ausência de ecos atrás da 
estrutura corporal alvo. Quando o feixe de US atinge uma estrutura que é 
forte refletora, quase toda energia é refletida, ocasionando uma sobra 
escura atrás da estrutura alvo. 
Exemplos: estruturas ósseas (costelas), cálculos e estruturas metálicas. 
 
 Anel de prótese metálica mitral Fragmento metálico no coração 
 
Figura 20 - Artefatos de sombreamento. 
 
 
 
3. REFORÇO: 
 
Ocorre quando o feixe de US atravessa uma estrutura pouco ou 
nada reflexiva, com atenuação mínima, e ao encontrar estrutura mais 
densa (paredes) acontece reforço na reflexão. 
 
 
 
Figura 21 - Artefato de reforço. (Fonte: própria) 
 
 
 
10-MELHORANDO AS IMAGENS DO EXAME: 
 
A maioria dos aparelhos atuais já são calibrados de fábrica com alguns 
padrões definidos. São os chamados “Presets”. Isto é, para cada tipo de exame 
diferente, por ex. abdome, tórax, coração, o aparelho automaticamente utiliza as 
melhores configurações de processamento de imagem. 
Os controles de melhoramento de imagens são basicamente pré e pós 
processamento. 
 
Pré-processamento: 
1. Saída de força (output): regula a energia de US fornecida pelo 
transdutor para os pulsos transmitidas. Regula maior ou menor 
amplitude das ondas (índice mecânico). Quanto maior a potência do 
US, mais energia para transmissão, mais reflexão, maior intensidade 
na geração de imagens. 
 
2. Profundidade: interfere na frequência de repetição de pulso e no 
número de quadros de imagens por segundo (Hz). Quanto maior a 
profundidade da imagem, menor o número de quadros (Hz) e 
Líquido (bexiga cheia) – atenuação 
mínima do US 
Parede da bexiga – mais densa e reflete o 
US com maior intensidade 
consequente redução da qualidade de imagem. Quanto menor a 
profundidade, maior número de quadros (Hz), aumento na qualidade 
de imagem. Para a maioria dos exames, prefira manter a estrutura alvo 
ocupando pelo menos 2/3 do campo da tela. 
 
3. Escala de cinza: interfere no número de tons de cinza. Pode ser 
ajustado para obter menos tons, portanto mais contraste; ou para obter 
mais tons de cinza, portanto mais suavidade e menos contraste na 
imagem. 
Pós-processamento: 
 
1. Rampa de ganho (TGC): ajuste do ganho ao longo da profundidade 
do feixe de US. O ganho no campo proximal pode ser ajustado em 
nível menor, por haver grande amplitude de sinais nessa região. Na 
prática, o campo próximo ao transdutor fica menos “saturado” de ecos. 
 
2. Ganho: ajuste a intensidade global de ecos da imagem. Não interfere 
na amplitude e na frequência do US. A imagem pode ficar mais ou 
menos “saturada” de ecos. 
 
 
Figura 22 - Ajuste de imagem – Ganho excessivo. (Fonte: própria) 
 
Figura 23 - Ajuste de imagem - Ganho adequado. (Fonte: própria) 
 
 
 
 Figura 24 - Ajuste de imagem - Profundidade excessiva 
 
 Figura 25 - Ajustes de imagem - Profundidade adequada. (Fonte: própria). 
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________ 
 
Referências: 
1- Solomon SD, Instrumentação ecocardiográfica e princípios físicos de 
ecocarddiografia doppler. In Solomon SD, Ecocardiografia - Manual Prático. 
2010. Revinter. 
2- Feigenbaum - Ecocardiografia - sétima Edição 2012. Editora Guanabara 
Koogan SA. Rio de Janeiro. 
3- Mathias, W.Manual de ecocardiografia – terceira Edição 2013. Editora Manole 
Barueri. São Paulo. 
4- Pena J et al. Ecocardiografia e Imagem Cardiovascular – primeira edição ´Rio 
de janeiro -RJ: Thieme Revinter Publicações 2021.

Outros materiais