Logo Passei Direto
Buscar
Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Prévia do material em texto

Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
1 de 60| www.direcaoconcursos.com.br 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Aula 19 – Progressões 
aritmética e geométrica. 
Raciocínio Lógico e Matemática COMPLETÃO 
– do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
2 de 60| www.direcaoconcursos.com.br 
Sumário 
PROGRESSÕES ARITMÉTICA E GEOMÉTRICA ..................................................................................................... 3 
PROGRESSÕES ARITMÉTICAS E GEOMÉTRICAS ............................................................................................... 3 
Progressões aritméticas ................................................................................................................................... 3 
Progressões geométricas .................................................................................................................................. 7 
QUESTÕES COMENTADAS PELO PROFESSOR ................................................................................................. 12 
LISTA DE QUESTÕES DA AULA ........................................................................................................................ 45 
GABARITO ....................................................................................................................................................... 58 
RESUMO DIRECIONADO .................................................................................................................................. 59 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
3 de 60| www.direcaoconcursos.com.br 
Progressões aritmética e geométrica 
 
Olá, tudo bem? Aqui é o professor Arthur Lima. 
É com muita alegria que inicio mais essa aula. 
Vamos tratar sobre os seguintes tópicos do seu edital neste encontro: 
 
Progressões aritmética e geométrica. 
 
Aproveito para lembrá-lo de seguir as minhas redes sociais e acompanhar de perto o trabalho que desenvolvo: 
 
 
PROGRESSÕES ARITMÉTICAS E GEOMÉTRICAS 
As progressões aritméticas e geométricas são tipos especiais de sequências numéricas. Elas se 
caracterizam pelo fato de que, com base em apenas dois elementos, é possível reconstruir toda a sequência de 
números. Estou falando dos seguintes elementos: 
1. Termo inicial: valor do primeiro número que compõe a sequência; 
2. Razão: regra que permite, a partir de um termo, obter o seguinte. 
 
A razão da progressão não pode ir variando ao longo dos termos, ela deve ser sempre a mesma. Vamos 
conhecer, portanto, cada um desses tipos de sequência. 
 
Progressões aritméticas 
Veja a sequência abaixo: 
{1, 4, 7, 10, 13, 16...} 
Veja que 4 = 1 + 3; assim como 7 = 4 + 3; 10 = 7 + 3 etc. De um termo para o outro, basta ir somando 3 
unidades, concorda? 
 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
4 de 60| www.direcaoconcursos.com.br 
Este é um exemplo de PROGRESSÃO ARITMÉTICA ou, simplesmente, PA. As progressões aritméticas 
são sequências de números nas quais o termo seguinte é equivalente ao termo anterior somado de um valor 
fixo, que chamaremos de “razão” da PA. Portanto, a razão da PA acima é r = 3. Note ainda que o primeiro termo 
desta progressão, também chamado de termo inicial, é o valor 1. 
Em questões envolvendo progressões aritméticas, é importante você saber obter o termo geral e a soma 
dos termos, conforme veremos a seguir. 
 
Termo geral da PA 
Trata-se de uma fórmula que, a partir do primeiro termo e da razão da PA, permite calcular qualquer outro 
termo. Veja-a abaixo: 
1 ( 1)na a r n    
 
Nesta fórmula, na é o termo de posição n na PA (o “n-ésimo” termo); 1a é o termo inicial, r é a razão e 
n é a posição do termo na PA. Usando a sequência que apresentamos acima, vamos calcular o termo de 
posição 5. Já sabemos que: 
- o termo que buscamos é o da quinta posição, isto é, 5a ; 
- a razão da PA é 3, portanto r = 3; 
- o termo inicial é 1, logo 1 1a  ; 
- n, ou seja, a posição que queremos, é a de número 5: 5n  
 
Portanto, 
1
5
5
5
( 1)
1 3 (5 1)
1 3 4
13
na a r n
a
a
a
   
   
  

 
Isto é, o termo da posição 5 é o 13. Volte na sequência e confira. Perceba que, com essa fórmula, podemos 
calcular qualquer termo da PA. O termo da posição 100 é: 
1
100
100
100
( 1)
1 3 (100 1)
1 3 99
298
na a r n
a
a
a
   
   
  

 
 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
5 de 60| www.direcaoconcursos.com.br 
 
Soma do primeiro ao n-ésimo termo: 
A fórmula a seguir nos permite calcular a soma dos “n” primeiros termos de uma progressão aritmética: 
1( )
2
n
n
n a a
S
 
 
Assim, vamos calcular a soma dos 5 primeiros termos da PA que apresentamos acima. Já sabemos que 
a1 = 1, e n = 5. O termo na será, neste caso, o termo 5a , que calculamos acima usando a fórmula do termo geral 
( 5 13a  ). Logo: 
1
5
( )
2
5 (1 13) 5 14
35
2 2
n
n
n a a
S
S
 

  
  
 
 
Dependendo do sinal da razão r, a PA pode ser: 
PA crescente: se r > 0, a PA terá termos em ordem crescente. Ex.: { 1, 4, 7, 10, 13, 16...}  r = 3 
PA descrescente: se r < 0, a PA terá termos em ordem decrescente. Ex.: {10, 9, 8, 7 ...}  r = -1 
PA constante: se r = 0, todos os termos da PA serão iguais. Ex.: {5, 5, 5, 5, 5, 5, 5...}  r = 0. 
 
Antes de prosseguirmos, exercite as fórmulas de PROGRESSÕES ARITMÉTICAS nestas duas questões: 
IBFC – Câmara de Vassouras/RJ – 2015) O total de múltiplos de 4 existentes entre os números 23 e 125 é: 
a) 25 
b) 26 
c) 27 
d) 28 
e) 24 
RESOLUÇÃO: 
O primeiro múltiplo de 4 neste intervalo é 24, e o último é 124. Veja que os múltiplos de 4 formam uma PA de 
razão igual a 4, afinal basta ir somando este número (a partir do 24) para obtermos os múltiplos no intervalo 
dado: 
24, 28, 32, 36, 40, ..., 120, 124 
Temos uma progressão aritmética com termo inicial a1 = 24, termo final an = 124, e razão r = 4 (afinal devemos 
ir somando de 4 em 4 unidades para obter os múltiplos). Na fórmula do termo geral da PA: 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
6 de 60| www.direcaoconcursos.com.br 
an = a1 + (n-1).r 
124 = 24 + (n-1).4 
100 = (n-1).4 
25 = n-1 
n = 26 
Resposta: B 
 
IBFC – MGS – 2016) Numa P.A.(progressão aritmética) o segundo termo é igual a 15 e a razão é igual a (-2). 
Nessas condições, a soma dos sete primeiros termos dessa P.A. é: 
a) 77 
b) 63 
c) 80 
d) 64 
RESOLUÇÃO: 
Temos uma PA de termo inicial a1 desconhecido, porém a2 = 15 e razão r = -2. Calculando o primeiro termo: 
an = a1 + (n - 1) x r 
a2 = a1 + (2 - 1) x (-2) 
15 = a1 + (2 - 1) x (-2) 
a1 = 17 
A questão pede a soma dos sete primeiros termos dessa P.A. que é dada pela fórmula: 
1 n
n
n (a + a )
S = 
2

 
Para aplicá-la, precisamos encontrar o sétimo termo (a7): 
an = a1 + (n - 1) x r 
a7 = a1 + (7 - 1) x ( - 2) 
a7 = 13 + (6) x ( - 2) 
a7 = 1 
Aplicando a fórmula da soma dos n primeiros termos da PA. Temos: 
1 n
n
n (a + a )
S = 
2

 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
7 de 60| www.direcaoconcursos.com.br 
7
 7 (17 + 1)
S = 
2

 
7
 7 (18)
S = 
2

 
7S = 63 
Resposta: A 
 
Progressões geométricas 
Veja a sequência abaixo: 
{1, 3, 9, 27, 81...} 
Observe que cada termo é igual ao anterior multiplicado por 3. Este é um exemplo típico de Progressão 
Geométrica, que chamaremos simplesmente de PG. 
Em uma PG, cada termo é obtido pegando-se o termoanterior e multiplicando-se por um mesmo 
número, que chamamos de RAZÃO da progressão geométrica. Esta razão é simbolizada pela letra q. No 
exemplo acima, temos q = 3, concorda? E o termo inicial é 1 1a  . 
Veja abaixo as principais fórmulas envolvendo progressões geométricas. 
 
Termo geral 
A fórmula a seguir nos permite obter qualquer termo (an) da progressão geométrica, partindo-se do 
primeiro termo (a1) e da razão (q): 
1
1
n
na a q
  
 
 Por exemplo, na PG vista acima, o quarto termo (n = 4) pode ser encontrado assim: 
a4 = a1 x q4 – 1 
a4 = 1 x 33 
a4 = 27 
 
Soma do primeiro ao n-ésimo termo 
A fórmula abaixo permite calcular a soma dos “n” primeiros termos da progressão geométrica: 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
8 de 60| www.direcaoconcursos.com.br 
1 ( 1)
1
n
n
a q
S
q
 


 
No nosso exemplo acima, caso eu queira obter a soma dos 4 primeiros termos (n = 4), basta fazer: 
𝑆4 =
1 × (34 − 1)
3 − 1
 
 
𝑆4 =
1 × (81 − 1)
2
 
 
𝑆4 =
80
2
 
 
𝑆4 = 40 
Retornando à nossa progressão, veja que, de fato: 1 + 3 + 9 + 27 = 40. 
 
Exercite as fórmulas vistas acima: 
IBFC – MGS – 2016) As razões entre a progressão aritmética 3,7,... e a progressão geométrica cujo primeiro 
termo é 5 são iguais. Desse modo, o quinto termo da progressão geométrica é igual a: 
a) 320 
b) 80 
c) 1280 
d) 2560 
RESOLUÇÃO: 
Observe que temos a seguinte progressão aritmética: 
3,7,... 
Nessa PA observamos que a razão r = 4 (basta fazer a subtração 7 – 3). 
O enunciado nos diz que a progressão geométrica cujo primeiro termo “a1” é 5 tem a mesma razão da PA que 
vimos acima. Portanto, trata-se de uma progressão geométrica de razão q = 4, na qual o termo inicial e a1 = 5 e 
é solicitado o 5º termo. Assim, pela fórmula do termo geral da PG, podemos obter esse termo: 
n -1
n 1a = a x q 
5-1
5 1a = a x 4 
4
5a = 5 x 4 
5a = 5 x 256 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
9 de 60| www.direcaoconcursos.com.br 
5a = 1280 
Resposta: C 
 
IBFC – Polícia Científica/PR – 2017) O valor da soma dos termos da progressão geométrica finita (1,5, ..., 78125) 
é: 
a) 97656 
b) 98342 
c) 88654 
d) 99936 
e) 83525 
RESOLUÇÃO: 
A soma dos termos de uma progressão geométrica finita de n termos, onde q é a razão da P.G e a1 é o primeiro 
termo é dada por: 
𝑆𝑛 = 𝑎1𝑥 (
𝑞𝑛− 1
𝑞−1
) 
Repare que para efetuar o cálculo da soma desses termos será preciso saber três termos: primeiro termo (a1), 
razão (q) e número de termos (n). 
Sabe-se que a1 = 1 e q = 5, então devemos ir a busca de n (número de termos). Isso é feito por meio do termo 
geral da P.G, a saber: an = a1 x q(n - 1). Ou seja: 
78125 = 1 x q(n - 1) 
78125 = q(n - 1) 
Fazendo a fatoração de 78125, encontramos 57. Assim: 
57 = q(n – 1) 
7 = n – 1 
n = 8 
Portanto, a soma pedida vale: 
𝑆8 = 1𝑥 (
58− 1
5−1
) = 
390624
4
 = 97.656 
Resposta: A 
 
Soma dos infinitos termos de uma progressão geométrica 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
10 de 60| www.direcaoconcursos.com.br 
Em regra, tanto a soma de todos os termos das PAs quanto das PGs é impossível de ser calculada, pois 
são sequências infinitas. 
Entretanto, quando a razão “q” da PG está entre -1 e 1, isto é, o módulo da razão é menor do que 1 ( |q| < 
1) , os termos da PG serão decrescentes (em valor absoluto), tendendo a zero. Veja esta PG abaixo: 
{40, 20, 10, 5, ...} 
Repare que, de um termo para o seguinte, basta dividir por 2. Ou melhor, basta multiplicar por 
1
2
. Podemos 
dizer que a razão desta PG é q = 
1
2
, e o termo inicial é a1 = 40. 
Como a razão desta PG é um número entre -1 e 1 (afinal ½ = 0,5), podemos calcular a soma de todos os 
seus infinitos termos pela fórmula: 
1
1
a
S
q
 

 
O símbolo S representa a soma dos infinitos termos da PG. Aplicando a fórmula acima à PG 
apresentada, temos: 
𝑆∞ =
40
1 −
1
2
 
 
𝑆∞ =
40
2
2
−
1
2
 
 
𝑆∞ =
40
1
2
 
 
𝑆∞ = 40 ×
2
1
= 80 
 
Veja comigo essa questão: 
ESAF – MTUR – 2014) O valor da série geométrica 2 + 1 +
1
2
+
1
4
+
1
8
+
1
16
… é igual a: 
a) 5 
b) 4 
c) 6 
d) 7 
e) 8 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
11 de 60| www.direcaoconcursos.com.br 
RESOLUÇÃO: 
 Veja que os termos desta série formam uma Progressão Geométrica Decrescente: 
2, 1,
1
2
, 
1
4
, … 
 
 De um termo para o seguinte, basta dividir por 2. Melhor dizendo, basta multiplicar por ½. Logo, estamos 
diante de uma progressão geométrica com razão 𝑞 =
1
2
. O seu termo inicial é a1 = 2. 
 Como a razão está entre -1 e 1, podemos calcular a soma dos infinitos termos por meio da fórmula: 
1
1
a
S
q
 

 
 
𝑆∞ =
2
1 −
1
2
 
 
𝑆∞ =
2
2
2
−
1
2
 
 
𝑆∞ =
2
1
2
 
 
𝑆∞ = 2 ×
2
1
= 4 
Resposta: B 
Chega de teoria! Vamos praticar tudo o que vimos até aqui? 
 
 
 
 
 
 
 
 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
12 de 60| www.direcaoconcursos.com.br 
 
 
 
Questões comentadas pelo professor 
1. FCC – SEFAZ/GO – 2018) 
O segundo termo da sequência aritmética (an), de razão 9, é igual ao oitavo termo da sequência geométrica 
(bn), de razão -1/2. Além disso, os quintos termos das duas sequências são iguais. Nessas condições, o valor da 
soma infinita S, dada por 
S = b1 + b2 + b3 + ... + bn + ..., 
 é igual a 
(A) 288. 
(B) 256. 
(C) 216. 
(D) 192. 
(E) 188. 
RESOLUÇÃO: 
Temos uma PA com razão r = 9 e uma PG com razão q = -1/2. Sabemos que o segundo termo da PA é igual ao 
oitavo da PG, ou seja, 
a2 = b8 
Também sabemos que o quinto termo é o mesmo para ambas: 
a5 = b5 
Veja que: 
a2 = a5 – 3x9 = a5 – 27 
Veja também que: 
b8 = b5.(-1/2)3 
b8 = - b5 / 8 
Substituindo na primeira equação: 
a5 – 27 = - b5 / 8 
Como a5 = b5: 
b5 – 27 = - b5 / 8 
8b5 – 216 = -b5 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
13 de 60| www.direcaoconcursos.com.br 
9b5 = 216 
b5 = 24 = a5 
 
Logo, b1 pode ser obtido pela fórmula do termo geral da PG: 
b5 = b1.q5-1 
24 = b1.(-1/2)4 
24 = b1.(1/16) 
b1 = 24 x 16 = 384 
A soma dos infinitos termos da PG é dada por: 
𝑆∞ =
𝑏1
1 − 𝑞
=
384
1 − (−
1
2
)
=
384
3
2
= 256 
Resposta: B 
2. FCC – DETRAN/MA – 2018) 
Um trecho de uma rodovia, do quilômetro 75 ao quilômetro 141, terá o asfalto renovado. Por isso, deverão ser 
fixadas placas de sinalização informando os motoristas sobre as obras. Será colocada uma placa no início e 
outra no final do trecho. As demais serão posicionadas de forma que a distância entre duas placas consecutivas 
seja sempre de 3 quilômetros. Nessas condições, o número total de placas de sinalização que deverão ser 
encomendadas pelo órgão competente é igual a 
(A) 24. 
(B) 23. 
(C) 21. 
(D) 20. 
(E) 22. 
RESOLUÇÃO: 
Veja que a cada 3 km é colocada uma placa. Aqui temos uma Progressão Aritmética de razão r = 3. 
Foram dadas 𝑎1 = 75 km e 𝑎𝑛 = 141 km. Pede-se o número total de placas dessa sequência (𝑛). Vamos montar 
a equação: 
𝑎𝑛 = 𝑎1 + (𝑛 – 1) x r 
141 = 75 + (𝑛 – 1) x 3 
141 - 75 = 3 𝑛 – 3 
3 𝑛 – 3 = 66 
3 𝑛 = 69 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
14 de 60| www.direcaoconcursos.com.br 
𝑛 = 23 placas 
Resposta: B 
 
3. FCC – SABESP – 2018) 
Um corredor, preparando-se para uma maratona, decide iniciar um treinamento da seguinte forma: no 
primeiro dia, corre 5 km. No segundo dia, aumenta a distância percorrida em 0,2 km, correndo 5,2 km; do 
terceiro dia em diante, ele sempre aumenta a distância percorrida em 0,2 km, relativamente ao dia anterior. 
Após uma certaquantidade de dias, o corredor atinge, pela primeira vez, a marca dos 22 km, o que ocorre no 
(A) 950 dia. 
(B) 730 dia. 
(C) 850 dia. 
(D) 740 dia. 
(E) 860 dia. 
RESOLUÇÃO: 
Veja que podemos fazer a seguinte observação respeito das distâncias percorridas pelo corredor: 
1º dia: 5 km 
2º dia: (5 + 0,2) km = 5,2 km 
2º dia: (5,2 + 0,2) km = 5,4 km 
.... 
Repare que temos uma progressão aritmética, onde o 1º termo vale 𝑎1 = 5 e a razão vale r = 0,2. 
Após n dias, o corredor atinge, pela primeira vez, a marca dos 22 km, ou seja: 
𝑎𝑛 = 𝑎1 + (n - 1) x r 
22 = 5 + (n - 1) x 0,2 
22 - 5 = (n - 1) x 0,2 
17 = (n - 1) x 0,2 
17/0,2 = n – 1 
170/2 = n - 1 
85 = n - 1 
n = 86 
Assim, o corredor atinge, pela primeira vez, a marca dos 22 km, o que ocorre no 86o dia. 
Resposta: E 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
15 de 60| www.direcaoconcursos.com.br 
 
 
 
4. FUMARC – SEE/MG – 2018) 
Três números inteiros positivos estão em progressão aritmética; o produto deles é 792 e a soma é 33. O maior 
desses números é 
(A) 11 
(B) 17 
(C) 18 
(D) 22 
(E) 66 
RESOLUÇÃO: 
Vamos chamar esses números de 𝑎1, 𝑎2 e 𝑎3. O enunciado diz que o produto deles é 792 e a soma, 33. Portanto: 
𝑎1 x 𝑎2 x 𝑎3 = 792 (I) 
𝑎1 + 𝑎2 + 𝑎3 = 33 (II) 
Sabemos que em uma PA a média dos dois extremos é igual ao termo do meio. Então: 
𝑎1 + 𝑎3 
2
= 𝑎2 
𝑎1 + 𝑎3 = 2. 𝑎2 
Substituindo na equação (II), fica: 
2. 𝑎2 + 𝑎2 = 33 
3. 𝑎2 = 33 
𝑎2 = 11 
Vamos substituir 𝑎2 nas duas equações. Fica: 
𝑎1 x 11 x 𝑎3 = 792 (I) 
𝑎1 x 𝑎3 = 72 
𝑎1 + 11 + 𝑎3 = 33 (II) 
𝑎1 + 𝑎3 = 22 
𝑎1 = 22 - 𝑎3 
Substituindo (I) em (II), fica: 
(22 - 𝑎3) x 𝑎3 = 72 
22𝑎3 − 𝑎3² = 72 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
16 de 60| www.direcaoconcursos.com.br 
𝑎3² - 22𝑎3 + 72 = 0 
Δ = (-22)² - 4.72 
Δ = 484 - 288 = 196 
𝑎3 = 
22 ±14
2
 
𝑎3 = 18 e 𝑎1 = 4 
Portanto, o maior número será 18. 
Resposta: C 
5. FUMARC – SEE/MG – 2018) 
Um objeto é solto de um balão em voo e cai em queda livre percorrendo 3 m no primeiro segundo, 12 m no 
segundo, 21 m no terceiro segundo, e assim por diante. Continuando nessa sequência, o objeto atinge o solo 
após 19 segundos. A que altura do solo esse objeto foi solto? 
(A) 156 m 
(B) 165 m 
(C) 1.431 m 
(D) 1.596 m 
(E) 1.770 m 
RESOLUÇÃO: 
A altura percorrida em cada segundo segue uma PA de razão 9. Como são 19 segundos no total, temos n = 19. 
No primeiro segundo, o objeto percorreu 3 metros. Portanto: 𝑎1 = 3. Assim: 
𝑎𝑛 = 𝑎1 + (n – 1) x r 
𝑎19 = 3 + 18 x 9 
𝑎19 = 165 m 
Para achar a altura total da qual o objeto foi lançado, basta fazer a soma de todos os trechos. Isso será dado 
pela soma da PA: 
Altura = 
(a1 + an) x n
2
 
Altura = 
(3+165) x 19
2
 
Altura = 84 x 19 
Altura = 1.596 metros 
Resposta: D 
6. FUMARC – SEE/MG – 2018) 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
17 de 60| www.direcaoconcursos.com.br 
Em um laboratório, uma colônia com 5.000 bactérias foi colocada em observação. Notou-se que, a cada 45 
minutos, a quantidade de bactérias parecia triplicar. Supondo corretas as observações dos cientistas, quantas 
bactérias haveria após 6 horas de observação? 
(A) 10.935.000 
(B) 32.805.000 
(C) 40.500.000 
(D) 67.500.000 
(E) 98.415.000 
RESOLUÇÃO: 
Sabendo que 6 horas correspondem a 60 x 6 = 360 minutos, vamos achar o número de observações nesse 
período: 
45 minutos ---- 1 observação 
360 minutos ---- N 
45N = 360 
N = 8 observações 
Como a primeira observação é feita no início da contagem, são 9 observações no total. 
Veja que estamos diante de uma progressão geométrica de razão q = 3. Após 9 observações, o número de 
bactérias será dado por: 
𝑎𝑛 = 𝑎1 x 𝑞
𝑛−1 
𝑎9 = 5000 x 3
8 
𝑎9 = 5000 x 6561 
𝑎9 = 32.805.000 bactérias 
Resposta: B 
 
7. FUMARC – SEE/MG – 2018) 
O Triângulo de Sierpinsky é um fractal criado a partir de um triângulo equilátero, da seguinte forma: divide-se 
cada lado do triângulo ao meio, unem-se estes pontos médios e forma-se um novo triângulo equilátero. 
 
Se continuarmos o processo, quantos triângulos brancos haverá no Estágio 10? 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
18 de 60| www.direcaoconcursos.com.br 
(A) 9.841 
(B) 16.683 
(C) 29.524 
(D) 59.049 
(E) 88.573 
RESOLUÇÃO: 
Vamos analisar a quantidade de triângulos brancos em cada estágio: 
Estágio 0: 0 
Estágio 1: 1 
Estágio 2: 1 + 3¹ = 4 
Estágio 3: 1 + 3¹ + 3² = 4 + 9 = 13 
Note que a cada estágio, acrescenta-se 3𝑛−1, onde n é o número do estágio. O enunciado pede o número de 
triângulos no estágio 10. Portanto: 
1 + 3¹ + 3² + 3³ + 34 + 35 + 36+ 37+ 37+ 38+ 39 = 
= 1 + 3 + 9 + 27 + 81 + 243 + 729 + 2187 + 6561 + 19683 = 
= 29524 triângulos 
Resposta: C 
 
8. FUNDATEC – PC/RS – 2018) 
A progressão aritmética em que o quadragésimo segundo termo é 173 e o octogésimo quarto termo é 299 tem 
primeiro termo e razão respectivamente: 
A) 142 e 1. 
B) 101 e 2. 
C) 50 e 3. 
D) 224 e -1. 
E) 286 e -1. 
RESOLUÇÃO: 
Temos uma PA onde a42 = 173 e a84 = 299. Para irmos do termo 42 para o termo 84, devemos partir do termo 
a40 e adicionar a razão R por 42 vezes, isto é, 
a84 = a42 + 42R 
299 = 173 + 42R 
126 = 42R 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
19 de 60| www.direcaoconcursos.com.br 
R = 3 
 
Podemos descobrir o primeiro termo a partir do termo a42, escrevendo: 
an = a1 + (n-1).R 
a42 = a1 + (42-1).3 
173 = a1 + 41.3 
a1 = 173 – 123 
a1 = 50 
Resposta: C 
 
9. FUNDATEC – DPE/SC – 2018) 
A cada dia útil ingressam na secretaria de registros de processos exatamente 53 processos a mais que no dia 
anterior. Assim, no primeiro dia dessa contagem ingressaram 53 processos, no segundo dia 106, no terceiro dia 
159, e assim sucessivamente. Ao final de 22 dias uteis desse levantamento, terá sido registrado um total de 
quantos processos? 
A) 583. 
B) 1.166. 
C) 1.219. 
D) 2.438. 
E) 13.409. 
RESOLUÇÃO: 
Como aumentam 53 processos a cada dia, estamos diante de uma PA de razão 53. Foi dito que no primeiro dia 
ingressaram 53 processos. Portanto, 𝑎1 = 53. A questão pede para achar o número de processos ao final de 22 
dias úteis, ou seja, a soma dos 22 primeiros termos dessa PA. Vejamos: 
𝑎𝑛 = 𝑎1 + 𝑟. (𝑛 − 1) 
𝑎22 = 53 + 53. (22 − 1) 
𝑎22 = 53 + 1113 
𝑎22 = 1166 
A fórmula da soma é dada por: 
𝑆𝑛 = 
𝑛. (𝑎1 + 𝑎𝑛)
2
 
𝑆22 = 
22. (53 + 1166)
2
 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
20 de 60| www.direcaoconcursos.com.br 
𝑆22 = 11 × 1219 
𝑆22 = 13.409 processos 
Resposta: E 
 
10.IAUPE – PM/PE – 2018) 
Foram abertas 18 turmas de um novo curso que ocorrerá em três turnos. A quantidade de turmas disponíveis 
para tarde, manhã e noite segue, nessa ordem, uma progressão aritmética de razão 4. Quantas turmas serão 
formadas para o turno da noite? 
A) 8 
B) 10 
C) 6 
D) 2 
E) 12 
RESOLUÇÃO: 
Sendo R a razão da progressão, e “N” o número de turmas para o período da manhã, podemos dizer que à noite 
teremos N+4, e à tarde teremos N-4. Ficamos com a PA: 
N-4, N, N+4 
A soma desta PA é 18 (total de turmas), ou seja, 
N-4 + N + N+4 = 18 
3N = 18 
N = 6 
Assim, à noite temos N+4 = 6+4 = 10 turmas. 
Resposta: B 
 
11.IAUPE – PM/PE – 2018) 
Uma fábrica inaugurou sua produção com 4 itens. Sabendo-se que a quantidade de itens produzidos pela 
fábrica em cada ano consecutivo obedece a uma progressão geométrica e que, no quinto ano, foram 
produzidos 324 itens, qual a soma total de itens fabricados nesses cinco primeiros anos? 
A) 434 
B) 844 
C) 448 
D) 848 
RaciocínioLógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
21 de 60| www.direcaoconcursos.com.br 
E) 484 
RESOLUÇÃO: 
Temos uma PG em que o primeiro termo é a1 = 4 e o quinto termo é a5 = 324. Podemos escrever que: 
an = a1 . qn-1 
a5 = a1 . q5-1 
324 = 4 . q4 
81 = q4 
34 = q4 
3 = q 
Logo, podemos obter todos os 5 termos partindo do primeiro (4) e multiplicando sempre por 3, ficando com: 
4, 12, 36, 108, 324 
A soma destes termos é 484. 
Resposta: E 
 
12.IAUPE – PM/PE – 2018 – adaptada) 
O valor inicial da previdência privada de Lucas será R$ 200,00, e a esse valor serão acrescentados R$ 10,00 
mensalmente. Qual o valor total depositado quando essa previdência completar 3 anos? 
A) R$ 13.500,00 
B) R$ 550,00 
C) R$ 27.000,00 
D) R$ 1.100,00 
E) R$ 8.700,00 
RESOLUÇÃO: 
Veja que o valor vai crescendo de 10 em 10 reais, ou seja, trata-se de uma progressão aritmética com termo 
inicial a1 = 200 reais, razão r = 10 reais. Queremos saber o valor em 3 anos, ou seja, 36 meses. Isto é, temos n = 
36. Assim, 
an = a1 + (n-1).r 
a36 = 200 + (36-1).10 
a36 = 200 + 350 
a36 = 550 
O gabarito oficial desta questão foi a letra A, mas entendo que o correto seja a letra B (550 reais). 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
22 de 60| www.direcaoconcursos.com.br 
Resposta: B 
 
 
 
13. CONSULPLAN – SEDUC/PA – 2018) 
A soma dos termos da PG (Progressão Geométrica) a seguir é: 
PG (9, 18, 36, 72, ..., 9216) 
18423 
18413 
18410 
18402 
RESOLUÇÃO: 
Veja que o segundo termo é o dobro do primeiro, o terceiro é o dobro do segundo e assim por diante. Logo, a 
razão dessa PG é q = 2. Vamos descobrir qual a posição do último termo: 
1
1
n
na a q
  
9216 = 9 x 2𝑛−1 
2𝑛−1 = 9216/9 
2𝑛−1 = 1024 
2𝑛−1 = 210 
n – 1 = 10 
n = 11 
Aplicando a fórmula da soma os termos de uma PG, temos: 
1 ( 1)
1
n
n
a q
S
q
 


 
S = 
9 x (211−1)
2−1
 
S = 9 x (2048 – 1) 
S = 18423 
Resposta: A 
 
14.CESPE – ABIN – 2018) 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
23 de 60| www.direcaoconcursos.com.br 
A sequência infinita: a0, a1, a2, a3, ... é definida por: a0 = 1, a1 = 3 e, para cada número inteiro 𝑛 ≥ 1, a2n = a2n-1 + 
a2n-2 e a2n+1 = a2n – a2n-1. Com relação a essa sequência, julgue os itens seguintes. 
( ) A soma a10 + a9 é superior a 20. 
( ) Existem infinitos valores inteiros de p e q tais que ap = aq. 
RESOLUÇÃO: 
( ) A soma a10 + a9 é superior a 20. 
A sequência segue a seguinte regra: se o termo “a” tiver índice par, seu valor será dado por a2n = a2n-1 + a2n-2 . Se 
for ímpar, será a2n+1 = a2n – a2n-1. 
Foram dados os dois primeiros termos da sequência: 1, 3. Portanto, o termo a2 será calculado pela fórmula de 
índice par. Nesse caso, n = 1: 
a2x1 = a2x1-1 + a2x1-2 
a2 = a1 + a0 
a2 = 3 + 1 
a2 = 4 
Para a3, temos n = 1 também, então: 
a2x1+1 = a2x1 – a2x1-1 
a3 = a2 – a1 
a3 = 4 – 3 
a3 = 1 
E assim por diante. A sequência fica: 
1, 3, 4, 1, 5, 4, 9, 5, 14, 9, 23, 14,… 
Veja que a9 = 9 e a10 = 23. Logo: 9 + 23 = 32. Esse resultado é superior a 20. Item CORRETO. 
 
( ) Existem infinitos valores inteiros de p e q tais que ap = aq. 
Vimos que a sequência segue a seguinte regra: 
1, 3, 4, 1, 5, 4, 9, 5, 14, 9, 23, 14,… 
Note que, à medida que os índices aumentam, um termo é sempre igual ao terceiro termo anterior, ou ao 
terceiro termo subsequente (com exceção do termo a1). Assim, teremos infinitos casos onde existam dois 
termos iguais. Item CORRETO. 
Resposta: C C 
 
15. CESPE – SEDUC/AL – 2018) 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
24 de 60| www.direcaoconcursos.com.br 
Com relação a uma sequência numérica 𝑎1, 𝑎2, …, 𝑎𝑛, julgue os itens subsequentes. 
() Se a sequência estiver em progressão aritmética com razão igual 𝑎10 e 𝑎1= 5, então 𝑎10 > 100. 
() Considere que a sequência seja formada pelos seguintes termos, nessa ordem: 10, 12, 15, 19, 24, 30, 37. Nesse 
caso, a sequência numérica 𝑏𝑗 = 𝑎𝑗 +1 - 𝑎𝑗, em que j = 1, 2, …, 6 forma uma progressão aritmética. 
RESOLUÇÃO: 
Vamos analisar as alternativas: 
() Se a sequência estiver em progressão aritmética com razão igual 𝑎10 e 𝑎1= 5, então 𝑎10 > 100. 
A fórmula de uma PA é dada por: 
𝑎𝑛= 𝑎1 + (𝑛 -1).r 
Foram dados: 𝑛 = 10, r = 𝑎10 e 𝑎1= 5. Portanto: 
𝑎10= 5 + (10 -1). 𝑎10 
𝑎10 = 5 + 9 𝑎10 
8𝑎10= -5 
𝑎10= -5/8 
Item ERRADO. 
 
() Considere que a sequência seja formada pelos seguintes termos, nessa ordem: 10, 12, 15, 19, 24, 30, 37. Nesse 
caso, a sequência numérica 𝑏𝑗 = 𝑎𝑗 +1 - 𝑎𝑗, em que j = 1, 2, …, 6 forma uma progressão aritmética. 
Vamos substituir os valores da sequência na fórmula dada: 
b1 = a2 - a1= 12 – 10 = 2 
b2 = a3 - a2= 15 – 12 = 3 
b3 = a4 - a3= 19 – 15 = 4 
b4 = a5 - a4= 24 – 19 = 5 
... 
Veja que a sequência forma uma PA de razão 1. Item CORRETO. 
Resposta: EC 
 
16.CESPE – SEDUC/AL – 2018) 
Com relação a uma sequência numérica 𝑎1, 𝑎2, …, 𝑎𝑛, julgue o item subsequente. 
 () Se a sequência for uma progressão geométrica (PG), em que 𝑎1= 5 e 𝑎4= 135, então a razão dessa PG será 
maior que 4. 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
25 de 60| www.direcaoconcursos.com.br 
RESOLUÇÃO: 
A fórmula de uma PG é dada por: 
𝑎𝑛= 𝑎1.q
𝑛−1 
Foram dados: 𝑛 = 4, 𝑎1= 5 e 𝑎4= 135. Portanto: 
135 = 5.q3 
q3= 27 
q3= 33 
q = 3 
A razão “q” será menor do que 4. Item ERRADO. 
Resposta: E 
 
17. FCC – TRT/11 – 2017) 
Em janeiro de 2016, Tiago conseguiu guardar um dinheiro. Em cada mês subsequente, até dezembro do mesmo 
ano, ele sempre conseguiu guardar o dobro do dinheiro que havia guardado no mês imediatamente anterior. 
Sendo assim, a razão entre o dinheiro guardado por Tiago nos meses de julho e de dezembro, nessa ordem, foi 
igual a 
(A) 1/64 
(B) 1/32 
(C) 1/16 
(D) ½ 
(E) 1/6 
RESOLUÇÃO: 
Veja que, a cada mês, o dinheiro guardado é multiplicado por dois. Logo, temos uma PG de razão q = 2. A 
quantia no mês de julho corresponde ao primeiro termo: 𝑎1. Até dezembro, são 6 meses (logo, termo 𝑎6). 
Aplicando a fórmula, temos: 
𝑎6 = 𝑎1 x 2
5 
Portanto, a razão entre julho e dezembro será de: 
𝑎1/𝑎6 = 1/2
5 = 1/32 
Resposta: B 
 
18.VUNESP – OFICIAL PM/SP – 2017) 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
26 de 60| www.direcaoconcursos.com.br 
Considere a elaboração, pelo Centro de Inteligência da Polícia Militar (CIPM), de um planejamento estratégico 
para a deflagração de uma operação policial ostensiva em uma região R, com alta incidência do tráfico de 
drogas. A questão tem como referência essa proposição. 
Na região R, um terreno especialmente visado, na forma de um quadrilátero, tem medidas dos lados, em 
metros, dadas pela sequência a + 1, 2a, a2 – 1, b, cujos termos formam, nessa ordem, uma progressão aritmética 
crescente. Nessas condições, é correto afirmar que a soma das medidas dos lados desse terreno é, em metros, 
igual a 
 a) 20. 
 b) 24. 
 c) 26. 
 d) 28. 
 e) 30. 
RESOLUÇÃO: 
Se os lados do quadrilátero foram uma PA crescente, podemos dizer que existe uma razão r de forma que: 
(a + 1, 2a, a2 – 1, b) = (a + 1, a + 1 + r, a + 1 + 2r, a + 1 + 3r) 
 
Ou seja, 
2a = a + 1 + r 
a = 1 + r 
r = a – 1 
 
a2 – 1 = a + 1 + 2r 
a2 – 1 = a + 1 + 2 (a – 1) 
a2 – 1 = a + 1 + 2a – 2 
a2 – 1 = 3a – 1 
a² = 3a 
 
Assim, “a” pode ser zero ou a = 3. 
Se a for zero, teremos r = -1, de modo que a PA seria decrescente. Assim, podemos descartar a = 0. 
Como a = 3, temos que r = a – 1 = 3 – 1 = 2. Assim, a PA é a seguinte: 
(4, 6, 8, 10) 
A soma das medidas dos lados desse terreno é 4 + 6 + 8 + 10 = 28 metros. 
Raciocínio Lógico e Matemática COMPLETÃO – do ZEROà APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
27 de 60| www.direcaoconcursos.com.br 
Resposta: D 
 
19.CESGRANRIO – PETROBRAS – 2017) 
A soma dos n primeiros termos de uma progressão geométrica é dada por 
 

43 81
2 3
n
n n
S
x
. Quanto vale o 
quarto termo dessa progressão geométrica? 
(A) 1 
(B) 3 
(C) 27 
(D) 39 
(E) 40 
RESOLUÇÃO: 
O quarto termo é exatamente a diferença entre a soma dos 4 primeiros e a soma dos 3 primeiros. Isto é, 
4º termo = S4 – S3 
 
Calculando as somas: 
𝑆4 =
34+4 − 81
2𝑥34
=
34. 34 − 34
2𝑥34
=
34 − 1
2
=
81 − 1
2
= 40 
 
𝑆3 =
33+4 − 81
2𝑥33
=
33. 34 − 34
2𝑥33
=
34 − 3
2
=
81 − 3
2
= 39 
 
Assim, 
4º termo = S4 – S3 = 40 – 39 = 1 
Resposta: A 
 
20.CESPE – PM/AL – 2017) 
Manoel, candidato ao cargo de soldado combatente, considerado apto na avaliação médica das condições de 
saúde física e mental, foi convocado para o teste de aptidão física, em que uma das provas consiste em uma 
corrida de 2.000 metros em até 11 minutos. Como Manoel não é atleta profissional, ele planeja completar o 
percurso no tempo máximo exato, aumentando de uma quantidade constante, a cada minuto, a distância 
percorrida no minuto anterior. Nesse caso, se Manoel, seguindo seu plano, correr 125 metros no primeiro 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
28 de 60| www.direcaoconcursos.com.br 
minuto e aumentar de 11 metros a distância percorrida em cada minuto anterior, ele completará o percurso no 
tempo regulamentar. 
RESOLUÇÃO: 
Veja que no primeiro minuto ele percorre 125 metros, no segundo 125 + 11 = 136 metros, no terceiro 125 + 2×11 
= 147 metros, e assim por diante. Estamos diante de uma progressão aritmética (PA) de termo inicial a1 = 125 e 
razão r = 11. O décimo primeiro termo (correspondente ao 11º minuto) é: 
a11 = a1 + (11 – 1).r 
a11 = 125 + (11 – 1).11 
a11 = 125 + 110 = 235 metros 
A soma das distâncias percorridas nos 11 primeiros minutos é dada pela fórmula da soma dos termos da PA: 
S11 = (a1 + a11).11/2 
S11 = (125 + 235).11/2 
S11 = (360).11/2 
S11 = 180.11 
S11 = 1.980 
Veja que a distância total percorrida é INFERIOR a 2.000 metros, de modo que Manoel NÃO completará o 
percurso no tempo regulamentar de 11 minutos. Item ERRADO. 
Resposta: E 
 
21.IBFC – Polícia Científica/PR – 2017) 
O total de múltiplos de 5 compreendidos entre 101 e 999 é igual a: 
a) 80 
b) 100 
c) 120 
d) 150 
e) 179 
RESOLUÇÃO: 
Os múltiplos de 5 compreendidos entre 101 e 999 são 105, 110, 115, ...,990,995. Repare que a sequência vai 
aumentando de 5 em 5 a partir de 105. Considere que temos N aumentos de 5 unidades até chegar aos 995, de 
modo que formamos a expressão 105 + 5xN = 995→5xN = 890→N = 178 aumentos. Assim, teremos 178 
múltiplos de 5, ao incluir o 105, teremos 179 múltiplos de 5. 
Resposta: E 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
29 de 60| www.direcaoconcursos.com.br 
 
22.IBFC – Polícia Científica/PR – 2017) 
Em uma P.G (progressão geométrica), o primeiro é igual a 5 e a razão é q= 2, determine seu último termo e 
indique a alternativa correta. 
a) 1280 
b) 528 
c) 256 
d) 10240 
e) 10250 
RESOLUÇÃO: 
O termo geral de uma P.G é dado por = x , onde ,q e n representam primeiro termo, razão 
da P.G e número de termos, respectivamente. Deste modo, teremos: 
 = x 
Note que o enunciado da questão não traz a informação sobre o número de termos, restando-nos fazer 
tentativas com as alternativas, ou seja: 
a) 1280 → x = 1280 
 = 1280/5 
 = 256 
 = 28 
n – 1 = 8 
n = 9 
b) 528 → x = 528 
 = 528/5 
 = 105,6-----inviável continuar, pois potência de 2 é um número natural. 
 
 c) 256 → x = 256 
 = 256/5 
 = 51,2-----inviável continuar, pois potência de 2 é um número natural. 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
30 de 60| www.direcaoconcursos.com.br 
 
d) 10240 → x = 10240 
 = 10240/5 
 = 2048 
 = 211 
n – 1 = 11 
n = 19 
 
e) 10250 → x = 10250 
 = 10250/5 
 = 2050-----inviável continuar, pois potência de 2 é um número natural terminado em 2, 4, 8 ou 6 e 
não em 0. 
Assim, temos duas alternativas “A” e “D” que possibilitariam ser o último termo. Como o enunciado da questão 
pede para assinalar apenas uma alternativa correta, não se pode atender ao critério objetivo da banca, tendo 
em vista duas alternativas corretas. Deste modo, rogamos pela anulação da questão em tela. 
Resposta: A 
 
23. IBFC – Polícia Científica/PR – 2017) 
Considere a seguinte progressão aritmética: (23, 29, 35, 41, 47, 53, ...) Desse modo, o 83.º termo dessa sequência 
é: 
a) 137 
b) 455 
c) 500 
d) 515 
e) 680 
RESOLUÇÃO: 
Repare que a partir do 1º termo, a sequência aumenta de 6 em 6 para cada termo seguinte. Assim, até chegar 
ao 83º termo dessa secessão, será preciso adicionar ao 1º termo em 82 aumentos de 6 unidades, ou seja: 
83º termo = 23 + 82 x 6 
83º termo = 23 + 492 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
31 de 60| www.direcaoconcursos.com.br 
83º termo = 515 
Resposta: D 
 
24.IBFC – Polícia Científica/PR – 2017) 
O valor da soma dos termos da progressão geométrica finita (1,5, ..., 78125) é: 
a) 97656 
b) 98342 
c) 88654 
d) 99936 
e) 83525 
RESOLUÇÃO: 
A soma dos termos de uma progressão geométrica finita de n termos, onde q é a razão da P.G e a1 é o primeiro 
termo é dada por: = ). 
Repare que para efetuar o cálculo da soma desses termos será preciso saber três termos: primeiro termo (a1), 
razão (q) e número de termos (n). 
Sabe-se que a1 = 1 e q = 5, então devemos ir a busca de n(número de termos). 
Isso é feito por meio do termo geral da P.G, a saber: an = a1 x q(n - 1). 
Ou seja: 78125 = 1 x q(n - 1) 
78125 = q(n - 1) 
Fazendo a fatoração de 78125 encontramos 57, assim, n – 1 = 7 e, por consequência, n = 8. Portanto, a soma 
pedida vale: 
= ) = = 97.656 
= 97.656 
Resposta: A 
 
25. IBFC – Polícia Científica/PR – 2017) 
Considere a seguinte progressão aritmética: (23, 29, 35, 41, 47, 53, ...) Desse modo, o 83.º termo dessa sequência 
é: 
a) 137 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
32 de 60| www.direcaoconcursos.com.br 
b) 455 
c) 500 
d) 515 
e) 680 
RESOLUÇÃO: 
Repare que a partir do 1º termo, a sequência aumenta de 6 em 6 para cada termo seguinte. Assim, até chegar 
ao 83º termo dessa secessão, será preciso adicionar ao 1º termo em 82 aumentos de 6 unidades, ou seja: 
83º termo = 23 + 82 x 6 
83º termo = 23 + 492 
83º termo = 515 
Resposta: D 
 
26.IBFC – TJ/PE – 2017) 
Após uma investigação sobre sonegação fiscal, recuperados 3 milhões de reais no primeiro mês. Em seguida, 
no segundo mês, foram recuperados 9/4 do valor total sonegado (em milhões). Já no terceiro mês, foram 
recuperados 27/16 do valor total sonegado (em milhões). Se a cada mês, indefinidamente, forem recuperados 
valores seguindo a sequência dos meses anteriores, então o valor total sonegado será igual a: 
a) 9 milhões de reais 
b) 12 milhões de reais 
c) 17/4 milhões de reais 
d) 25/16 milhões de reais 
e) 8 milhões de reais 
RESOLUÇÃO: 
Sendo X milhões, o valor sonegado, temos: 
3, 9X/4, 27X/16, … 
 
Repare que temos uma PG com termo inicial igual a 3 milhões e razão igual a 3/4, afinal vamos multiplicando 
por 3/4 para ir de 9/4 para 27/16. 
A soma dos infinitos termos é: 
S = a1 / (1-q) = 3 / (1 – 3/4) = 3 / (1/4) = 12 milhões 
Este seria o total sonegado. 
Resposta: B 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
33 de 60| www.direcaoconcursos.com.br 
 
27. IBFC – TJ/PE – 2017) 
Um assistente judiciário analisou, num primeiro dia de trabalho, 7 laudas de um processo com 785 laudas, num 
segundodia analisou 3 laudas a mais do processo que no primeiro dia. Se a cada dia de trabalho esse assistente 
analisar 3 laudas a mais do processo que no dia anterior, então, após 15 dias de trabalho, o total de laudas do 
processo que ainda faltarão para serem analisados será igual a: 
a) 420 
b) 365 
c) 295 
d) 340 
e) 435 
RESOLUÇÃO: 
Veja que o número de laudas analisadas por dia segue uma progressão aritmética de razão r = 3 e termo inicial 
a1 = 7: 
7, 10, 13, 16, … 
O décimo quinto termo é obtido pela fórmula do termo geral da PA: 
an = a1 + (n-1).r 
a15 = 7 + (15-1).3 
a15 = 7 + 42 
a15 = 49 
 
A soma do número de processos analisados em 15 dias de trabalho é: 
Sn = (a1 + an).n/2 
S15 = (7 + 49).15/2 
S15 = 56.15/2 
S15 = 28.15 
S15 = 420 
Portanto, após 15 dias já foram analisadas 420 laudas. Faltam ser analisadas 785 – 420 = 365 laudas. 
Resposta: B 
 
28.IBFC – Câmara de Araraquara – 2017) 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
34 de 60| www.direcaoconcursos.com.br 
João verificou que a soma dos n primeiros termos de uma P.A. (progressão aritmética) é dada pela fórmula Sn 
= n2 + 3n. Desse modo, o vigésimo quarto termo dessa P.A. é: 
a) 142 
b) 73 
c) 50 
d) 82 
RESOLUÇÃO: 
O valor do 24º termo é simplesmente a diferença entre a soma dos 23 primeiros e a soma dos 24 primeiros 
termos da PA, ou seja, 
a24 = S24 – S23 
 
Usando a fórmula dada no enunciado: 
S24 = 242 + 3.24 = 576 + 72 = 648 
S23 = 232 + 3.23 = 529 + 69 = 598 
 
Logo, 
a24 = 648 – 598 = 50 
Resposta: C 
 
29.IBFC – Câmara de Araraquara – 2017) 
O sexto termo de uma P.G. (progressão geométrica), representa o valor, em reais, de tributos pagos sobre o 
salário de Paulo. Se a soma entre o segundo e quarto termos da P.G. é igual a 60 e a soma entre o terceiro e 
quinto termos da P.G. é 180, então o valor de tributos pagos por Paulo é igual a: 
a) R$ 768,00 
b) R$ 532,00 
c) R$ 972,00 
d) R$ 486,00 
RESOLUÇÃO: 
Veja que: 
a2 + a4 = 60 
a3 + a5 = 180 
 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
35 de 60| www.direcaoconcursos.com.br 
Repare que a3 = a2.q e que a5 = a4.q. Logo, a segunda equação fica: 
a2.q + a4.q = 180 
(a2 + a4) = 180 
 
A primeira equação nos disse que a2 + a4 = 60. Substituindo na equação acima, temos: 
q.60 = 180 
q = 3 
 
Veja ainda que a5 = a3 . q2 = a3.9. Substituindo na equação 
a3 + a5 = 180, temos: 
a3 + a3.9 = 180 
10.a3 = 180 
a3 = 18 
 
Logo, o sexto termo será a6 = a3 . 33 = 18 x 27 = 486. Este é o valor dos tributos. 
Resposta: D 
 
30.IBFC – TJ/PE – 2017) 
Para acessar os dados de um arquivo um técnico judiciário deve saber o valor de x que é solução da equação x 
+ x/2 + x/4 + … = 6. Nessas condições o valor de x deve ser: 
a) 2 
b) 1,5 
c) 2,5 
d) 3 
e) 1 
RESOLUÇÃO: 
Veja que os termos da sequência que está sendo somada são os seguintes: 
(x, x/2, x/4, …) 
 
Esta sequência é uma progressão geométrica onde o primeiro termo é a1 = x e a razão é q = 1/2 (veja que cada 
termo é a metade do anterior). Trata-se de uma PG com infinitos termos, e a sua soma é igual a 6. 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
36 de 60| www.direcaoconcursos.com.br 
A soma dos infinitos termos de uma PG é dada por: 
S = a1 / (1-q) 
6 = x / (1 – 1/2) 
6 . (1 – 1/2) = x 
6 . 1/2 = x 
x = 3 
Resposta: D 
 
 
 
31. IBFC – TJ/PE – 2017) 
A soma de uma sequência numérica infinita (a1 , a2 ,a3 , …) é dada por Sn = n2 + 10n. Nessas condições, o valor 
do quinto termo da sequência representa o total de oficiais de justiça necessários para certa região do Estado. 
Se essa região já dispõe de 13 oficiais e se os que são necessários forem contratados, então o total de oficiais 
de justiça nessa região será igual a: 
a) 88 
b) 32 
c) 36 
d) 34 
e) 30 
RESOLUÇÃO: 
O quinto termo da progressão é obtido pela subtração entre a soma dos 5 primeiros e a soma dos 4 primeiros: 
a5 = S5 – S4 
 
Calculando cada soma: 
S5 = 52 + 10.5 = 75 
S4 = 42 + 10.4 = 56 
 
Logo, 
a5 = 75 – 56 = 19 
 
Se a região já tem 13, com mais os 19 necessários chegamos a 32 oficiais de justiça. 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
37 de 60| www.direcaoconcursos.com.br 
Resposta: B 
 
32. IBFC – TJ/PE – 2017) 
A senha de acesso a um sistema, com três dígitos, é dado pelo número decimal, sem a vírgula, que representa 
a soma dos termos da sequência 3/4, 1/2, 1/3 ,… .Desse modo a senha para acesso ao sistema é: 
a) 175 
b) 325 
c) 225 
d) 245 
e) 275 
RESOLUÇÃO: 
Temos uma PG com termo inicial a1 = 3/4 e razão q = 2/3 (veja que basta ir multiplicando por 2/3 de um termo 
para o seguinte). 
A sua soma é: 
S = a1 / (1-q) = 3/4 / (1 – 2/3) = 3/4 / (1/3) = 3/4 x 3 = 9/4 = 2,25 
 
Retirando a vírgula, temos 225 
Resposta: C 
 
33. IBFC – PM/BA – 2017) 
Assinale a alternativa correta. O nono termo da sequência lógica 3, – 6, 12, -24, … , representa o total de 
candidatos presentes num concurso público. Se 210 desses candidatos foram aprovados, então o total de 
candidatos reprovados foi de: 
a) 1426 
b) 878 
c) 558 
d) 768 
e) 174 
RESOLUÇÃO: 
Temos no enunciado uma progressão geométrica (PG) com termo inicial a1 = 3 e razão q = -2 (veja que a razão 
é negativa, pois os termos vão alternando o sinal). O nono termo é: 
an = a1 . qn-1 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
38 de 60| www.direcaoconcursos.com.br 
a9 = 3 . (-2)9-1 
a9 = 3 . (-2)8 
a9 = 3 . 256 = 768 
 
Como 210 foram aprovados, os reprovados são 768 – 210 = 558. 
Resposta: C 
 
34.IBFC – CBM/BA – 2017) 
Carlos cadastrou uma senha de acesso à internet que equivale ao nono termo de uma P.G. (progressão 
geométrica) cujo primeiro termo é o número 3 e cuja razão é a mesma da P.A.(progressão aritmética): 12,14,.... 
Nessas condições, a senha cadastrada por Carlos foi: 
a) 384 
b) 768 
c) 192 
d) 4374 
e) 1458 
RESOLUÇÃO: 
A razão da PA 12, 14, … é r = 2, afinal esta é a diferença entre os dois termos que foram apresentados. Esta 
também é a razão da PG, ou seja, temos q = 2. 
O nono termo (a9) da PG cujo primeiro termo é a1 = 3 e a razão é q = 2 pode ser obtido assim: 
an = a1.qn-1 
a9 = 3.29-1 
a9 = 3.28 
a9 = 3.256 
a9 = 768 
Esta é a senha. 
Resposta: B 
 
35. IDECAN – Ministério da Saúde – 2017) 
Uma casa foi construída de tal forma que o número de azulejos presentes em cada cômodo forma uma 
progressão aritmética. Sabe-se que a soma e a diferença do número de azulejos dos cômodos que possuem a 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
39 de 60| www.direcaoconcursos.com.br 
maior e a menos quantidade de azulejos são 385 e 165, respectivamente, e que o número de azulejos do 
cômodo com a segunda maior quantidade de azulejos é 260. Assim, o número total de azulejos nessa casa é: 
A) 1.155 
B) 1.925 
C) 2.220 
D) 2.310 
E) 2.695 
RESOLUÇÃO: 
Seja M a maior e m a menor quantidade de azulejos. Sabemos que: 
M + m = 385 
M – m = 165 
 
Somando as duas equações: 
M + m + M – m = 385 + 165 
2M = 550 
M = 275 
 
Logo, 
M – m = 165 
275 – m = 165 
275 – 165 = m 
m = 110 
 
Como o segundo cômodo com maior número de azulejos tem 260, e o primeiro tem 275, vemos que a razão da 
PA é 275 – 260 = 15. E o termo inicial já sabemos ser 110. Podemos calcular a quantidade "n" de cômodos assim: 
an = a1 + (n-1).r 
275 = 110 + (n-1).15 
275 – 110 = 15n – 15 
165 + 15 = 15n 
180 = 15n 
n = 180/15 
n = 12 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
40 de 60| www.direcaoconcursos.com.br 
 
A soma das quantidades de azulejos é: 
Sn = (a1+an).n/ 2 
S12 = (110 + 275) .12 / 2 
S12 = (385).6 
S12 = 2310 azulejos 
Resposta: D 
36.FAURGS – TJ/RS – 2017) 
Para que a sequência (4x – 1, x² - , x – 4) forme uma progressão aritmética, x pode assumir, dentre as 
possibilidades abaixo, o valor de 
(A) -0,5 
(B) 1,5 
(C) 2 
(D) 4 
(E) 6 
RESOLUÇÃO: 
Em uma PA, a diferença entre termos consecutivos é sempre igual. Ou seja, 
terceiro – segundo = segundo – primeiro 
x – 4 – (x2 – 1) = x2 – 1 – (4x – 1) 
x – 4 – x2 + 1 = x2 – 1 – 4x + 1 
x – 4 – x2 = x2 – 1 – 4x 
0 = 2x2 – 5x + 3 
Resolvendo essa equação de segundo grau: 
delta = (-5)2 – 4.2.3 = 25 – 24 = 1 
As raízes são: 
x = [-(-5) + 1]/2.2 = 6/4 = 3/2 = 1,5 
x = [-(-5) – 1]/2.2 = 4/4 = 1 
Temos a opção x = 1,5 na alternativa B. 
Resposta: B 
 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
41 de 60| www.direcaoconcursos.com.br 
37. FAURGS – TJ/RS – 2017) 
Na figura abaixo, encontram-se representadas três etapas da construção de uma sequência elaborada a partir 
de um triângulo equilátero. 
 
Na etapa 1, marcam-se os pontos médios dos lados do triângulo equilátero e retira-se o triângulo com vértices 
nesses pontos médios, obtendo-se os triângulos pretos. Na etapa 2, marcam-se os pontos médios dos lados 
dos triângulos pretos obtidos na etapa 1 e retiram-se os triângulos com vértices nesses pontos médios, 
obtendo-se um novo conjunto de triângulos pretos. A etapa 3 e as seguintes mantêm esse padrão de 
construção. 
Mantido o padrão de construção acima descrito, o número de triângulos pretos existentes na etapa 7 é: 
(A) 729 
(B) 1024 
(C) 2187 
(D) 4096 
(E) 6561 
RESOLUÇÃO: 
Note que o número de triângulos pretos segue uma PG: 3, 9, 27,… 
O termo inicial desta PG é 3 e a razão é 3 também. O sétimo termo, usando a fórmula do termo geral da PG, é: 
a7 = a1.q7-1 = 3.36 = 3.33.33 = 3.27.27 = 3.729 = 2187 
Resposta: C 
 
38.FCC – SEDU/ES – 2016) 
Na soma 1 + 2 + 3 podemos trocar um sinal de “adição” por um sinal de “igual” de forma que apareça uma 
igualdade verdadeira; veja: 1 + 2 = 3. Investigando esse curioso fato, um estudante se perguntou se o mesmo 
fato curioso ocorreria com a soma 1 + 2 + 3 + 4 +... +78 + 79 + 80. O professor sugeriu que o estudante tentasse 
encontrar a resposta por conta própria usando a “fórmula da soma dos termos de uma progressão aritmética” 
e, em seguida, a “fórmula de resolução de equação do 2º grau”. Se o estudante percorreu corretamente o 
encaminhamento sugerido pelo professor, ele concluiu que o curioso fato não ocorre na nova sequência 
investigada porque 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
42 de 60| www.direcaoconcursos.com.br 
(A) 80 não é um quadrado perfeito. 
(B) 80 não é um número primo. 
(C) −1+ √3240 não é um número natural . 
(D) (−1+√12961)/2 não é um número natural. 
(E) (1+√12959)/2 não é um número natural. 
RESOLUÇÃO: 
Observe a soma dada: 
1 + 2 + 3 + 4 +...80 
O aluno quer saber se trocarmos um sinal de “adição” por um sinal de “igual” aparecerá uma igualdade 
verdadeira. Vamos dividir essa sequência em duas e igualá-las: 
1 + 2 + 3 + 4 +...+n (com n<80) 
e 
(n+1) + (n+2) + (n+3)+ ...+ 80 (com 80-n termos) 
Vamos aplicar a fórmula da soma dos termos de uma PA na primeira: 
𝑆 =
(𝑎1 + 𝑎𝑛). 𝑛
2
 
𝑆 =
(1 + 𝑛). 𝑛
2
 
𝑆 =
𝑛 + 𝑛²
2
 
Em relação à segunda: 
𝑆 =
(𝑛 + 1 + 80). (80 − 𝑛)
2
 
𝑆 =
(𝑛 + 81). (80 − 𝑛)
2
 
Agora, vamos igualar as duas: 
𝑛 + 𝑛²
2
= 
(𝑛 + 81). (80 − 𝑛)
2
 
Vamos simplificar o 2 de ambos os lados e aplicar a distributiva do lado direito: 
𝑛 + 𝑛² = 80𝑛 − 𝑛2 + 81𝑥80 − 81𝑛 
𝑛 + 𝑛² = −𝑛2 + 6480 − 𝑛 
2𝑛² + 2𝑛 − 6480 = 0 
𝑛² + 𝑛 − 3240 = 0 
Δ = 1² − 4x1x(−3240) 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
43 de 60| www.direcaoconcursos.com.br 
Δ = 1 + 12960 
Δ = 12961 
n =
−1 ± √12961
2
 
Como n representa o último termo e seu próprio valor (an=n), ele não pode ser negativo, muito menos não 
inteiro. Deveria ser um número natural. 
Resposta: D 
 
39.FCC – SEDU/ES – 2016) 
Vinte triângulos isósceles, todos com base igual a 12 cm, possuem alturas, relativas à essa base, em progressão 
aritmética, sendo que a medida das duas primeiras dessas alturas iguais são 2 cm e 3,5 cm. O menor dos vinte 
triângulos que possui área inteira, em cm2, e maior do que 100 cm2, tem área igual a 
(A) 102 cm2. 
(B) 136 cm2. 
(C) 112 cm2. 
(D) 122 cm2. 
(E) 106 cm2. 
RESOLUÇÃO: 
Se as alturas formam uma PA e o enunciado forneceu as duas primeiras, vamos achar a razão “r”: 
an+1=an + r.(n-1) 
3,5 = 2 +r.1 
r=1,5 
A área dos triângulos segue a fórmula: 
A=bxh/2 
A=12xh/2 
A=6xh 
O enunciado pede que a área seja maior do que 100: 
6xh>100 
h>100/6 
h>16,67 
Como ela deve ser inteira, o próximo valor da altura será 17cm. Vamos ver se 17 atende a PA: 
an+1=an + r.(n-1) 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
44 de 60| www.direcaoconcursos.com.br 
17=2 + 1(17-2) 
17=2+15 
17=17 
(Sim, é um termo da PA) 
Portanto: 
A=6x17 
A=102cm² 
Resposta: A 
 
40.FCC – SEDU/ES – 2016) 
Com relação ao valor da série 3 + 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... , é correto afirmar que 
A) diverge para −∞. 
B) diverge para +∞. 
C) converge para 37/9. 
D) converge para 13/3. 
E) converge para 9/2. 
RESOLUÇÃO: 
Vamos calcular a razão dessa PG: 
𝑎2 = 𝑎1 x q 
1 = 3 x q 
q = 1/3 
Vimos que para 0 < q < 1, a soma dos termos de uma PG infinita será dada por: 
1
1
a
S
q
 
 
S = 
3
1−
1
3
 
S = 
3
2
3
 = 9/2 
Resposta: E 
 
Fim de aula. Até o próximo encontro! 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
45 de 60| www.direcaoconcursos.com.br 
Saudações, 
Prof. Arthur Lima 
 
 
Lista de questões da aula 
1. FCC – SEFAZ/GO – 2018) 
O segundo termo da sequência aritmética (an), de razão 9, é igual ao oitavo termo da sequência geométrica 
(bn), de razão -1/2. Além disso, os quintos termos das duas sequências são iguais. Nessas condições, o valor da 
soma infinita S, dada por 
S = b1 + b2 + b3 + ... + bn + ..., 
 é igual a 
(A) 288. 
(B) 256. 
(C) 216. 
(D) 192. 
(E) 188. 
2. FCC – DETRAN/MA – 2018) 
Um trecho de uma rodovia, do quilômetro 75 ao quilômetro 141, terá o asfalto renovado. Por isso, deverão ser 
fixadas placas de sinalização informando os motoristas sobre as obras. Será colocada uma placa no início e 
outra no final do trecho. As demais serão posicionadas de forma que a distância entre duas placas consecutivas 
seja sempre de 3 quilômetros. Nessas condições, o número total de placas de sinalização que deverão ser 
encomendadas pelo órgão competente é igual a 
(A) 24. 
(B) 23. 
(C) 21. 
(D) 20. 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
46 de 60| www.direcaoconcursos.com.br 
(E) 22. 
 
3. FCC – SABESP – 2018) 
Um corredor, preparando-se para uma maratona, decide iniciar um treinamento da seguinte forma: no 
primeiro dia, corre 5 km. No segundo dia, aumenta a distância percorrida em 0,2 km, correndo 5,2 km; do 
terceiro dia em diante, ele sempre aumenta a distância percorrida em 0,2 km, relativamente ao dia anterior. 
Após uma certa quantidade de dias, o corredor atinge, pela primeira vez, a marca dos 22 km, o que ocorre no 
(A) 950 dia. 
(B) 730 dia. 
(C) 850 dia. 
(D) 740 dia. 
(E) 860 dia. 
 
4. FUMARC – SEE/MG – 2018) 
Três números inteiros positivos estão em progressão aritmética; o produto deles é 792 e a soma é 33. O maior 
desses números é 
(A) 11 
(B) 17 
(C) 18 
(D) 22 
(E) 66 
 
5. FUMARC – SEE/MG – 2018) 
Um objeto é solto de um balão em voo e cai em queda livre percorrendo 3 m no primeiro segundo, 12 m no 
segundo, 21 m no terceirosegundo, e assim por diante. Continuando nessa sequência, o objeto atinge o solo 
após 19 segundos. A que altura do solo esse objeto foi solto? 
(A) 156 m 
(B) 165 m 
(C) 1.431 m 
(D) 1.596 m 
(E) 1.770 m 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
47 de 60| www.direcaoconcursos.com.br 
 
6. FUMARC – SEE/MG – 2018) 
Em um laboratório, uma colônia com 5.000 bactérias foi colocada em observação. Notou-se que, a cada 45 
minutos, a quantidade de bactérias parecia triplicar. Supondo corretas as observações dos cientistas, quantas 
bactérias haveria após 6 horas de observação? 
(A) 10.935.000 
(B) 32.805.000 
(C) 40.500.000 
(D) 67.500.000 
(E) 98.415.000 
7. FUMARC – SEE/MG – 2018) 
O Triângulo de Sierpinsky é um fractal criado a partir de um triângulo equilátero, da seguinte forma: divide-se 
cada lado do triângulo ao meio, unem-se estes pontos médios e forma-se um novo triângulo equilátero. 
 
Se continuarmos o processo, quantos triângulos brancos haverá no Estágio 10? 
(A) 9.841 
(B) 16.683 
(C) 29.524 
(D) 59.049 
(E) 88.573 
 
8. FUNDATEC – PC/RS – 2018) 
A progressão aritmética em que o quadragésimo segundo termo é 173 e o octogésimo quarto termo é 299 tem 
primeiro termo e razão respectivamente: 
A) 142 e 1. 
B) 101 e 2. 
C) 50 e 3. 
D) 224 e -1. 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
48 de 60| www.direcaoconcursos.com.br 
E) 286 e -1. 
9. FUNDATEC – DPE/SC – 2018) 
A cada dia útil ingressam na secretaria de registros de processos exatamente 53 processos a mais que no dia 
anterior. Assim, no primeiro dia dessa contagem ingressaram 53 processos, no segundo dia 106, no terceiro dia 
159, e assim sucessivamente. Ao final de 22 dias uteis desse levantamento, terá sido registrado um total de 
quantos processos? 
A) 583. 
B) 1.166. 
C) 1.219. 
D) 2.438. 
E) 13.409. 
 
10.IAUPE – PM/PE – 2018) 
Foram abertas 18 turmas de um novo curso que ocorrerá em três turnos. A quantidade de turmas disponíveis 
para tarde, manhã e noite segue, nessa ordem, uma progressão aritmética de razão 4. Quantas turmas serão 
formadas para o turno da noite? 
A) 8 
B) 10 
C) 6 
D) 2 
E) 12 
 
11.IAUPE – PM/PE – 2018) 
Uma fábrica inaugurou sua produção com 4 itens. Sabendo-se que a quantidade de itens produzidos pela 
fábrica em cada ano consecutivo obedece a uma progressão geométrica e que, no quinto ano, foram 
produzidos 324 itens, qual a soma total de itens fabricados nesses cinco primeiros anos? 
A) 434 
B) 844 
C) 448 
D) 848 
E) 484 
 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
49 de 60| www.direcaoconcursos.com.br 
12.IAUPE – PM/PE – 2018 – adaptada) 
O valor inicial da previdência privada de Lucas será R$ 200,00, e a esse valor serão acrescentados R$ 10,00 
mensalmente. Qual o valor total depositado quando essa previdência completar 3 anos? 
A) R$ 13.500,00 
B) R$ 550,00 
C) R$ 27.000,00 
D) R$ 1.100,00 
E) R$ 8.700,00 
 
 
 
13. CONSULPLAN – SEDUC/PA – 2018) 
A soma dos termos da PG (Progressão Geométrica) a seguir é: 
PG (9, 18, 36, 72, ..., 9216) 
(A) 18423 
(B) 18413 
(C) 18410 
(D) 18402 
 
14.CESPE – ABIN – 2018) 
A sequência infinita: a0, a1, a2, a3, ... é definida por: a0 = 1, a1 = 3 e, para cada número inteiro 𝑛 ≥ 1, a2n = a2n-1 + 
a2n-2 e a2n+1 = a2n – a2n-1. Com relação a essa sequência, julgue os itens seguintes. 
( ) A soma a10 + a9 é superior a 20. 
( ) Existem infinitos valores inteiros de p e q tais que ap = aq. 
 
15. CESPE – SEDUC/AL – 2018) 
Com relação a uma sequência numérica 𝑎1, 𝑎2, …, 𝑎𝑛, julgue os itens subsequentes. 
() Se a sequência estiver em progressão aritmética com razão igual 𝑎10 e 𝑎1= 5, então 𝑎10 > 100. 
() Considere que a sequência seja formada pelos seguintes termos, nessa ordem: 10, 12, 15, 19, 24, 30, 37. Nesse 
caso, a sequência numérica 𝑏𝑗 = 𝑎𝑗 +1 - 𝑎𝑗, em que j = 1, 2, …, 6 forma uma progressão aritmética. 
 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
50 de 60| www.direcaoconcursos.com.br 
16.CESPE – SEDUC/AL – 2018) 
Com relação a uma sequência numérica 𝑎1, 𝑎2, …, 𝑎𝑛, julgue o item subsequente. 
 () Se a sequência for uma progressão geométrica (PG), em que 𝑎1= 5 e 𝑎4= 135, então a razão dessa PG será 
maior que 4. 
 
17. FCC – TRT/11 – 2017) 
Em janeiro de 2016, Tiago conseguiu guardar um dinheiro. Em cada mês subsequente, até dezembro do mesmo 
ano, ele sempre conseguiu guardar o dobro do dinheiro que havia guardado no mês imediatamente anterior. 
Sendo assim, a razão entre o dinheiro guardado por Tiago nos meses de julho e de dezembro, nessa ordem, foi 
igual a 
(A) 1/64 
(B) 1/32 
(C) 1/16 
(D) ½ 
(E) 1/6 
 
18.VUNESP – OFICIAL PM/SP – 2017) 
Considere a elaboração, pelo Centro de Inteligência da Polícia Militar (CIPM), de um planejamento estratégico 
para a deflagração de uma operação policial ostensiva em uma região R, com alta incidência do tráfico de 
drogas. A questão tem como referência essa proposição. 
Na região R, um terreno especialmente visado, na forma de um quadrilátero, tem medidas dos lados, em 
metros, dadas pela sequência a + 1, 2a, a2 – 1, b, cujos termos formam, nessa ordem, uma progressão aritmética 
crescente. Nessas condições, é correto afirmar que a soma das medidas dos lados desse terreno é, em metros, 
igual a 
 a) 20. 
 b) 24. 
 c) 26. 
 d) 28. 
 e) 30. 
 
19.CESGRANRIO – PETROBRAS – 2017) 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
51 de 60| www.direcaoconcursos.com.br 
A soma dos n primeiros termos de uma progressão geométrica é dada por 
 

43 81
2 3
n
n n
S
x
. Quanto vale o 
quarto termo dessa progressão geométrica? 
(A) 1 
(B) 3 
(C) 27 
(D) 39 
(E) 40 
 
20.CESPE – PM/AL – 2017) 
Manoel, candidato ao cargo de soldado combatente, considerado apto na avaliação médica das condições de 
saúde física e mental, foi convocado para o teste de aptidão física, em que uma das provas consiste em uma 
corrida de 2.000 metros em até 11 minutos. Como Manoel não é atleta profissional, ele planeja completar o 
percurso no tempo máximo exato, aumentando de uma quantidade constante, a cada minuto, a distância 
percorrida no minuto anterior. Nesse caso, se Manoel, seguindo seu plano, correr 125 metros no primeiro 
minuto e aumentar de 11 metros a distância percorrida em cada minuto anterior, ele completará o percurso no 
tempo regulamentar. 
 
21.IBFC – Polícia Científica/PR – 2017) 
O total de múltiplos de 5 compreendidos entre 101 e 999 é igual a: 
a) 80 
b) 100 
c) 120 
d) 150 
e) 179 
 
22.IBFC – Polícia Científica/PR – 2017) 
Em uma P.G (progressão geométrica), o primeiro é igual a 5 e a razão é q= 2, determine seu último termo e 
indique a alternativa correta. 
a) 1280 
b) 528 
c) 256 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
52 de 60| www.direcaoconcursos.com.br 
d) 10240 
e) 10250 
 
23. IBFC – Polícia Científica/PR – 2017) 
Considere a seguinte progressão aritmética: (23, 29, 35, 41, 47, 53, ...) Desse modo, o 83.º termo dessa sequência 
é: 
a) 137 
b) 455 
c) 500 
d) 515 
e) 680 
 
24.IBFC – Polícia Científica/PR – 2017) 
O valor da soma dos termos da progressão geométrica finita (1,5, ..., 78125) é: 
a) 97656 
b) 98342 
c) 88654 
d) 99936 
e) 83525 
25. IBFC – Polícia Científica/PR – 2017) 
Considere a seguinte progressão aritmética: (23, 29, 35, 41, 47, 53, ...) Desse modo, o 83.º termo dessa sequência 
é: 
a) 137 
b) 455 
c) 500 
d) 515 
e) 680 
26.IBFC – TJ/PE – 2017) 
Após uma investigação sobre sonegação fiscal, recuperados 3 milhões de reais no primeiro mês. Em seguida, 
no segundo mês, foram recuperados 9/4do valor total sonegado (em milhões). Já no terceiro mês, foram 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
53 de 60| www.direcaoconcursos.com.br 
recuperados 27/16 do valor total sonegado (em milhões). Se a cada mês, indefinidamente, forem recuperados 
valores seguindo a sequência dos meses anteriores, então o valor total sonegado será igual a: 
a) 9 milhões de reais 
b) 12 milhões de reais 
c) 17/4 milhões de reais 
d) 25/16 milhões de reais 
e) 8 milhões de reais 
27. IBFC – TJ/PE – 2017) 
Um assistente judiciário analisou, num primeiro dia de trabalho, 7 laudas de um processo com 785 laudas, num 
segundo dia analisou 3 laudas a mais do processo que no primeiro dia. Se a cada dia de trabalho esse assistente 
analisar 3 laudas a mais do processo que no dia anterior, então, após 15 dias de trabalho, o total de laudas do 
processo que ainda faltarão para serem analisados será igual a: 
a) 420 
b) 365 
c) 295 
d) 340 
e) 435 
 
28.IBFC – Câmara de Araraquara – 2017) 
João verificou que a soma dos n primeiros termos de uma P.A. (progressão aritmética) é dada pela fórmula Sn 
= n2 + 3n. Desse modo, o vigésimo quarto termo dessa P.A. é: 
a) 142 
b) 73 
c) 50 
d) 82 
 
29.IBFC – Câmara de Araraquara – 2017) 
O sexto termo de uma P.G. (progressão geométrica), representa o valor, em reais, de tributos pagos sobre o 
salário de Paulo. Se a soma entre o segundo e quarto termos da P.G. é igual a 60 e a soma entre o terceiro e 
quinto termos da P.G. é 180, então o valor de tributos pagos por Paulo é igual a: 
a) R$ 768,00 
b) R$ 532,00 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
54 de 60| www.direcaoconcursos.com.br 
c) R$ 972,00 
d) R$ 486,00 
 
30.IBFC – TJ/PE – 2017) 
Para acessar os dados de um arquivo um técnico judiciário deve saber o valor de x que é solução da equação x 
+ x/2 + x/4 + … = 6. Nessas condições o valor de x deve ser: 
a) 2 
b) 1,5 
c) 2,5 
d) 3 
e) 1 
 
 
31. IBFC – TJ/PE – 2017) 
A soma de uma sequência numérica infinita (a1 , a2 ,a3 , …) é dada por Sn = n2 + 10n. Nessas condições, o valor 
do quinto termo da sequência representa o total de oficiais de justiça necessários para certa região do Estado. 
Se essa região já dispõe de 13 oficiais e se os que são necessários forem contratados, então o total de oficiais 
de justiça nessa região será igual a: 
a) 88 
b) 32 
c) 36 
d) 34 
e) 30 
 
32. IBFC – TJ/PE – 2017) 
A senha de acesso a um sistema, com três dígitos, é dado pelo número decimal, sem a vírgula, que representa 
a soma dos termos da sequência 3/4, 1/2, 1/3 ,… .Desse modo a senha para acesso ao sistema é: 
a) 175 
b) 325 
c) 225 
d) 245 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
55 de 60| www.direcaoconcursos.com.br 
e) 275 
 
33. IBFC – PM/BA – 2017) 
Assinale a alternativa correta. O nono termo da sequência lógica 3, – 6, 12, -24, … , representa o total de 
candidatos presentes num concurso público. Se 210 desses candidatos foram aprovados, então o total de 
candidatos reprovados foi de: 
a) 1426 
b) 878 
c) 558 
d) 768 
e) 174 
 
 
 
34.IBFC – CBM/BA – 2017) 
Carlos cadastrou uma senha de acesso à internet que equivale ao nono termo de uma P.G. (progressão 
geométrica) cujo primeiro termo é o número 3 e cuja razão é a mesma da P.A.(progressão aritmética): 12,14,.... 
Nessas condições, a senha cadastrada por Carlos foi: 
a) 384 
b) 768 
c) 192 
d) 4374 
e) 1458 
 
35. IDECAN – Ministério da Saúde – 2017) 
Uma casa foi construída de tal forma que o número de azulejos presentes em cada cômodo forma uma 
progressão aritmética. Sabe-se que a soma e a diferença do número de azulejos dos cômodos que possuem a 
maior e a menos quantidade de azulejos são 385 e 165, respectivamente, e que o número de azulejos do 
cômodo com a segunda maior quantidade de azulejos é 260. Assim, o número total de azulejos nessa casa é: 
A) 1.155 
B) 1.925 
C) 2.220 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
56 de 60| www.direcaoconcursos.com.br 
D) 2.310 
E) 2.695 
36.FAURGS – TJ/RS – 2017) 
Para que a sequência (4x – 1, x² - , x – 4) forme uma progressão aritmética, x pode assumir, dentre as 
possibilidades abaixo, o valor de 
(A) -0,5 
(B) 1,5 
(C) 2 
(D) 4 
(E) 6 
 
 
 
37. FAURGS – TJ/RS – 2017) 
Na figura abaixo, encontram-se representadas três etapas da construção de uma sequência elaborada a partir 
de um triângulo equilátero. 
 
Na etapa 1, marcam-se os pontos médios dos lados do triângulo equilátero e retira-se o triângulo com vértices 
nesses pontos médios, obtendo-se os triângulos pretos. Na etapa 2, marcam-se os pontos médios dos lados 
dos triângulos pretos obtidos na etapa 1 e retiram-se os triângulos com vértices nesses pontos médios, 
obtendo-se um novo conjunto de triângulos pretos. A etapa 3 e as seguintes mantêm esse padrão de 
construção. 
Mantido o padrão de construção acima descrito, o número de triângulos pretos existentes na etapa 7 é: 
(A) 729 
(B) 1024 
(C) 2187 
(D) 4096 
(E) 6561 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
57 de 60| www.direcaoconcursos.com.br 
 
38.FCC – SEDU/ES – 2016) 
Na soma 1 + 2 + 3 podemos trocar um sinal de “adição” por um sinal de “igual” de forma que apareça uma 
igualdade verdadeira; veja: 1 + 2 = 3. Investigando esse curioso fato, um estudante se perguntou se o mesmo 
fato curioso ocorreria com a soma 1 + 2 + 3 + 4 +... +78 + 79 + 80. O professor sugeriu que o estudante tentasse 
encontrar a resposta por conta própria usando a “fórmula da soma dos termos de uma progressão aritmética” 
e, em seguida, a “fórmula de resolução de equação do 2º grau”. Se o estudante percorreu corretamente o 
encaminhamento sugerido pelo professor, ele concluiu que o curioso fato não ocorre na nova sequência 
investigada porque 
(A) 80 não é um quadrado perfeito. 
(B) 80 não é um número primo. 
(C) −1+ √3240 não é um número natural . 
(D) (−1+√12961)/2 não é um número natural. 
(E) (1+√12959)/2 não é um número natural. 
 
39.FCC – SEDU/ES – 2016) 
Vinte triângulos isósceles, todos com base igual a 12 cm, possuem alturas, relativas à essa base, em progressão 
aritmética, sendo que a medida das duas primeiras dessas alturas iguais são 2 cm e 3,5 cm. O menor dos vinte 
triângulos que possui área inteira, em cm2, e maior do que 100 cm2, tem área igual a 
(A) 102 cm2. 
(B) 136 cm2. 
(C) 112 cm2. 
(D) 122 cm2. 
(E) 106 cm2. 
 
40.FCC – SEDU/ES – 2016) 
Com relação ao valor da série 3 + 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... , é correto afirmar que 
A) diverge para −∞. 
B) diverge para +∞. 
C) converge para 37/9. 
D) converge para 13/3. 
E) converge para 9/2. 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
58 de 60| www.direcaoconcursos.com.br 
 
 
 
 
 
 
 
 
 
 
 
 
 
Gabarito 
1. B 
2. B 
3. E 
4. C 
5. D 
6. B 
7. C 
8. C 
9. E 
10. B 
11. E 
12. B 
13. A 
14. CC 
15. EC 
16. E 
17. B 
18. D 
19. A 
20. E 
21. E 
22. A 
23. D 
24. A 
25. D 
26. B 
27. B 
28. C 
29. D 
30. D 
31. B 
32. C 
33. C 
34. B 
35. D 
36. B 
37. C 
38. D 
39. A 
40. E 
 
 
 
 
 
 
 
 
 
 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
59 de 60| www.direcaoconcursos.com.br 
 
 
 
 
 
 
 
 
 
 
 
Resumo direcionado 
 
PROGRESSÃO ARITMÉTICA 
(PA) 
PROGRESSÃO GEOMÉTRICA 
(PG) 
De um termo para o seguinte, basta somar um 
mesmo valor constante (razão) 
De um termo para o seguinte, basta multiplicar por 
um mesmo valor constante (razão) 
Termo geral: 
1 ( 1)na a r n    
Termo “n” = 1º termo + razão x (posição “n”– 1) 
Termo geral: 
1
1
n
na a q
  
Termo “n” = 1º termo x razão elevada a “n-1” 
Soma dos n primeiros termos: 
1( )
2
n
n
n a a
S
 
 
Soma dos “n” primeiros = n x (1º termo + termo “n”) / 2 
Soma dos n primeiros termos: 
1 ( 1)
1
n
n
a q
S
q
 


 
Soma dos “n” primeiros = 1º termo x (razão eleva a “n” – 1) / (razão – 1) 
 Soma dos infinitos termos*: 
1
1
a
S
q
 

 
Raciocínio Lógico e Matemática COMPLETÃO – do ZERO à APROVAÇÃO 
Prof. Arthur Lima 
 Aula 19 
 
60 de 60| www.direcaoconcursos.com.br 
Soma dos infinitos termos = 1º termo / (1 – razão) 
*Atenção: aplicar somente se -1 < q < 1

Mais conteúdos dessa disciplina