Buscar

Index_2024_Advanced-Functional-Materials-and-Methods-for-Photodegradation-of

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Index
Note: Page numbers followed by “f” and “t” refer to figures and tables, respectively.
A
Abrasive scrubbers, 27
Absorbance spectrum, 98
Absorbed photon-to-current conversion
efficiency (APCE), 101�102
Absorption probability, 37�38
Acetaminophen, 198�200, 267
Activated carbon (AC), 193�194
Active sites, 112
Active species, recombination of, 229
Adsorption, 40�41, 94�97, 170�171,
336�338, 347�348
Advanced oxidation process (AOPs),
129�130, 194, 205�206, 327�328
Advanced photocatalyst
band structure study, 103�104
photoluminescence and surface
photovoltage spectroscopy, 104
Tauc plot, 104
charge dynamics, 98�101
description of, 85�86
electrochemical impedance spectroscopy,
102�103
elemental composition characterization,
86�104
electron energy loss spectroscopy,
87�88
energy-dispersive X-ray spectroscopy
(EDX), 86�88
optical absorption, 97�98
oxidation and chemical state
characterization
atomic force microscopy (AFM), 93
electron microscope, 93�94
Fourier transform infrared
spectroscopy (FTIR), 93
gas adsorption-desorption analysis,
94�97
structural characterizations, 88�92
photoluminescence spectroscopy,
99�101
surface photovoltage and photocurrent
spectroscopy, 101�102
Ag nanoparticles (NPs), 171�174, 314,
315f
Algal/algae
cell death, 312�313
cell inactivation, photocatalysts for,
322t
cell wall, 312�313
inactivation of, 307�308
photocatalytic treatment of, 316�321
types of, 310�311
Alloys, usage of, 76
Ametryn, 293, 298
Amine, 336
Ampicillin, 340�342
Analgesics, 23
Anodic oxidation reaction, 45
Anthraquinones, 336
Antibiotics, 309
collective toxicities of, 171�174
consumption of, 3
degradation, 171�174
drugs, 3
occurrences of, 23
Antiseptics, 6�10
biocides in, 11t
types of, 6�10
APCE. See Absorbed photon-to-current
conversion efficiency (APCE)
Aquatic environment, 21, 205
Aquatic organisms, survival of, 129�130
Aquatic solvents, 331�332
Aqueous environment, 193�194
Aqueous media, 143�144
toxic contaminants in, 207�208
Arrhenius's concept, 348�349
Artificial estrogen hormones, 4�5
Artificial photosynthesis, 38�39
Atenolol degradation, GCN and PDS for,
200
361
Atomic force microscopy (AFM), 93
Atrazine, 284�289
degradation, 284�288, 298
efficiency, 289
reactions, 288
initial concentration of, 288�289
molecular structure of, 287f
photocatalytic removal of, 284�288
Attraction forces, 120�121
Au/GOCNIONPs nanocomposites,
176�177, 178f
Au nanoparticles (NPs), 130�131
deposition, 137�138
particles, detachment of adhered, 154
precursors, concentration of, 134
Azo compounds, 336
B
Bacteria/bacterial, 309
cell destruction, 311�312
cell inactivation, 312�313
composition of, 308�309
inactivation, 311�312
photocatalytic inactivation of, 318f
Bactericides, 21
Ball milling, 333�334
Band
bending, 230�232
potentials, 194�196
structure determination, 103
Bandgap, 37�38, 64f, 65, 103�104
absorption, 149�151
alignment, 76
concept of, 63�65
direct and indirect, 66f
energy, 271
engineering
alloying using alloy semiconductors,
74�76
codoping, 72�73
composite materials, 77
description of, 63�65
doping, 65�73
metal oxide photocatalyst, 67�73
nonmetal doping, 69�72
processes involved in, 65f
quantum well structures, 76�77
transition metal dopants, 68�69
use of pseudomorphic materials,
77�78
materials, 65�66, 99�101
modification, 65
quantum well structure and, 77f
semiconductors, 65�66
tuning of, 74
Band structure study, 103�104
photoluminescence and surface
photovoltage spectroscopy, 104
Tauc plot, 104
Bandwidth, ultraviolet radiation of,
345�346
Benzoquinone, significant quenching of,
137�138
Bicarbonate anion, 146�149
Bimetallic-TiO2 heterostructure,
149�151
Biochar possesses, 292
BiOI/pCN heterojunction, 168�170
Biological (pathogens) contaminants, 305
Biological filters, 193�194
Bismuth
catalysts, 236�237
impregnation, 271�272
oxyiodide microspheres, solvothermal
synthesis of, 45
semiconductors, 222, 236�237
Z-scheme photocatalysts, 222�225,
223t
Bisphenol A (BPA)
formation ability for, 198�200
photodegradation of, 237
Bisphenol-A, degradation efficiency of,
330�331
Black phosphorus nanosheets, 238
Boron-doped samples, 43
Boron doping level, 72
Braun's lipoprotein, 309
Brilliant Red X3B degradation, 221�222
Bromates, 305�306
Brominated flame retardants, 29
Brunauer-Emmett-Teller (BET) equation,
94�97
surface area, 97
Bulk lattice parameters, 135
Burstein-Moss effect, 66�67, 67f
362 Index
C
Caffeic acid, 45
Caffeine, 23, 339
global average consumption of, 339
Calcination, 143�144
Carbamazepine, 1�2
degradation, 200
Carbonate radicals, 146�149
Carbon-based components, 222�225
Carbon nanodots, 55
Carbon nanotubes (CNTs), 167,
269�270
Carbon nitride, energy bandgaps of, 172f
Carbon quantum nanodots (CQDs),
zero-dimensional, 167
Carboxyl, 336
Carrier transfer pathways, 140
Catalytic/catalyst
activity, 164, 316�321
efficiency, 168
higher concentration of, 348
performance, 211�214, 229�230
process, 296
Cavitation process, 46�47
CBZ, photodegradation of, 266
Cellulose membrane, 138�139
Cephalexin, 271
Characterization techniques, 85�86
Charge carriers, 37�38, 73
dynamics, 136
lifetime of, 99�101
population of, 101�102
recombination, 149�151, 330�331
separation, 138�139, 146�149
traditional, 232
Charge dynamics, 98�101
photoluminescence spectroscopy,
99�101
Charge generation processes, 130�131
Charge mobility, 314�316
Charge separation, 163�164
Charge transfer, 102
between encapsulated photocatalyst and
MOF, 123
process of, 68�69
properties, 99�101
resistance, 146�149
Chemical contaminants, 305
Chemical oxidation, 130�131
Chemical vapor deposition (CVD) method,
53t
Chitosan fiber, permeability of, 138�139
Chlorination process, 305�306
Chlorine, 305�306
Chlorotriazine herbicide, 291
Cibacron yellow LS-R dye, 348�349
Ciprofloxacin, 258, 265�266, 340�342
CN nanosheets, 269
Coagulation, 336�338
Codoping, common advantages of,
72�73
Coloring businesses discharge, 174�176
Columbic attraction, 230�232
Composites, 284, 289
materials, 38�39
photocatalysts, 289, 296�297
binary and ternary, 290t
photocatalytic activity, 51�52
photon-harvesting capacity of,
141�143
semiconductor materials, 76
structures, fabrication of, 129�130
Compound making, high-resolution,
90�92
Conduction band (CB), 37�38, 196�197,
205�206, 306
Conduction band maximum (CBM),
103�104
Contaminants, emerging, 255�256
Contaminants of emerging concerns
(CECs), 255�256
consumption of, 257
Conventional coprecipitation method,
332�333
Copper, 288�289
salts, 281
Copper tin sulfide (CTS), 74
crystal structures of, 74�75
optical bandgap of, 74�75
Coprecipitation method, 332�333,
346�347
Core electrons, emission of, 90�92
Cosmetics
chemicals in, 26
ingredients, 25�27
363Index
Cost-effective wastewater treatment
technologies, 194
Counterelectrode, 54�55
Crystalline phases, 42�43
Crystal structure, 92
CTS. See Copper tin sulfide (CTS)
Cytoplasm, 308�309
D
DCF, photodegradation of, 260, 266, 267f
Degradation, 284�288, 298
antibiotics, 171�174
capacity, 177
dyes, 174�178
of formic acid, 136�137
mechanism, 149�151
performance, 214�216
phenols, 179�185
photocatalytic. See Photocatalytic
degradation
process, 52�54
rate, 271�272
reactions, 143�144, 288
of triazine pesticides, 298
Degradation efficiency (DE), 225�226,
267, 289, 344�345
Deposition-precipitation method,
132�134
Deposition process, 132�134, 144�146
Detoxification, energy source for, 311
Dexamethasone (DXM) decomposition,
269�270
Dielectric medium, 141�143
Dimethoate's photocatalytic degradation,
344
Dip-coating technique, 42
Direct oxidation method, 45�46
Direct Z-scheme systems, 216�217
Disinfectants, 6�10
biocides in, 11t
Diverse sources, 255�256
Dopants, 65�66
Doping, 65�73
nonmetal, 69�72
process, 288�289
in transition metals, 68�69
Double excitation process, 216
Drinking water, 256�257, 284
DRS, samples for, 98
Drug degradation, commonly used catalyst
for, 265�273
Dunaliella salina, 321�323, 321f
DXM degradation, 270f
Dye molecules, 336�338
Dyes
collective toxicities of, 171�174
degradation, 174�178
mixture of, 137�138photocatalytic degradation of, 336�339
structural form of, 336
E
Ecosystems, 25, 255�257
Efficient charge transfer, 102
Electrochemicals
decomposition method, 55
degradation, 311
deposition method, 54�55, 56t
impedance spectroscopy, 102�103
performance, 167
Electrode/electrolyte surface, 102
Electrodeposition, 75�76
Electron-hole pairs (EHPs), 194, 338�339
drawback of, 197
recombination, 99�101
Electronic band structure, 38
Electronic conductivity, 210
Electronic transportation platform, 238
Electrons
energy loss spectroscopy, 87�88
free movement of, 63
gain of, 88�89
microscope, 93�94
shells, 87
and trapping agents, 298
trapping energy of, 144�146
Elemental composition, 89�90
characterization, 86�104
electron energy loss spectroscopy,
87�88
energy-dispersive X-ray spectroscopy
(EDX), 86�88
Elemental mapping, 87�88
Emerging pollutants (EPs)
364 Index
aquatic environments, 1�2
common, 28�29
concentration levels of, 18
description of, 1�2
drugs with endocrine disruption
properties, 5�6
antiseptics and disinfectants, 6�10
surfactants, 10
ecosystems of, 2
in environment, 5f
forms of, 23
future perspectives, 29
in groundwater, 21�23
in ocean, 23�24
pharmaceuticals and personal care
products, 2�6
antibiotics, 3
estrogens and hormonal compounds,
3�5
from products, 6
removal of, 2
risks in aquatic environment, 25�29
cosmetic ingredients and personal care
products, 25�27
pharmaceuticals, 27�28
schematic view of routes, 10
sources of, 2�10
in surface water, 10�21
in wastewaters, 1�2
in water bodies, 10�24
Endocrine
disorders, 29
disruption, 5�6
disruptor compounds, sources and risks
of, 7t
Energy
bandgap and position of Fermi level, 64f
bands, 63, 163�164
Energy-dispersive X-ray spectroscopy
(EDX), 86�88
Energy loss spectroscopy (EELS) spectra,
88, 89f
Enol-GCN framework, 198�200
Enormity, 260
Environmental biodegradability, 284�288
Environmental pollutants, 25
Environmental remediation, 85�86, 162,
236�237
Environmental sustainability, 129�130
Environment Protection Agency, 255
EPs. See Emerging pollutants (EPs)
Erythromycin, 267�268
Estrogenic compounds, 3
Estrogenic sex hormones, 4
Estrogens, 258
compounds, 3�5, 4f
Ethinylestradiol (EE2), 5
Eukaryotic cells, hallmark of, 309
European Union, 255
F
Feasible electron transfer, 153
Fermi energies, 207�208
Fermi level, 65, 166
of anatase, 130�131
Fertilizers in groundwater, 21
Flagella, 308�309
Floatation, 336�338
Food additives, 1�2
Fourier transform infrared spectroscopy
(FTIR), 85�86, 93
Free photoelectrons, 39�40
Free radicals, 336�338
rapid generation of, 146�149
Fungicides, 21
G
Gas adsorption-desorption analysis, 94�97
Gas adsorption-desorption isotherm,
IUPAC classification of, 96f
GCN. See Graphitic carbon nitride (GCN)
Global water quality assessments, 255
Gold particles, 42
Gram-negative bacterial infection, 309,
310f
Gram-positive bacteria, 309, 310f
Graphene, 238
Graphene aerogel (GA) composite,
176�177
Graphene oxide (GO), 168
Graphene ZnO tetrapods (GZnTPs), 334
Graphitic carbon nitride (GCN), 86�87,
214�216, 314�316
interfacial engineering of, 197�198
365Index
Graphitic carbon nitride (GCN)
(Continued)
oxidation potential and reactions of,
194�196
photocatalysts, 197
for persulfate activation, 197�200
photocatalytic activity of, 163�170
S-scheme heterojunction, 166
type-II heterojunction, 164
Z-scheme heterojunction, 165�166
and support materials
carbon nanotubes (CNTs), 167
description of, 167�170
2D graphene and derivatives,
167�170
zero-dimensional carbon quantum
nanodots (CQDs), 167
Green environmental organization,
327�328
Green microalga, 321�323
Groundbreaking expansions, 65
Groundwater, 22�23, 256�257, 339
H
Harmful algal blooms, 309�310
Harmful bacteria, inactivation of, 307�308
H-bonding, relative strength of, 122
Herbicides, 21
Heteroatoms, 69�70
Heterojunctions, 76, 146�149, 232
description of, 205�208
fundamental principles of, 206�210
photocatalyst, 49, 272
photocatalytic efficiency of, 165�166
S-scheme, 230�238
two-component materials of, 103
type-II, 211�216
types of, 165f, 208�209, 208f
Z-scheme, 216�230
Heterostructured photocatalysts, 207�208
Hexazinone, elimination of, 293
Homogeneous solution, 41
Homojunction catalysts, 207�208
Honda-Fujishima effect, 161
Hormonal compounds, 3�5
Hormonal contraceptive therapies, 5
Hormones, 258
in aqueous environments, 260
occurrences of, 19
Hybrid catalytic systems, 221�222
Hydrogen
bonding interactions, 121�122
evolution, 74
generation, 85�86
radicals, 132�134
Hydrosphere, 305
Hydrothermal conditions, 141�143
Hydrothermal methods, 42�45, 168�170,
180�182, 225�226, 333
Hydrothermal treatment, 141�143
Hydroxide ion, 296�297
Hydroxyl, 336
groups, 261
radicals, 63, 144�146, 194, 261,
264�265, 269�270, 272, 293,
338�339
Hysteresis loops, 94�97
I
Impedance, formula of, 102�103
Imperfections, formation of, 69�70
Incident photon-to-current conversion
efficiency (IPCE), 101�102
Individual components, 38�39
Industrialization, 129�130
Industrial wastewater, 327�328
Inorganic and organic counterparts,
mechanism of, 114�119
Insecticides, 21
Interconnected mesoporous network,
149�151
Interfacial electron transfer process, 136
Intermediates, distribution of, 154
Intracellular organelles, 309
Intrinsic drawbacks, 151�152
Intrinsic semiconductors, 37�38
Ionic interactions, 121
Ionic solvents, 48�49
Iron oxide, 268�269
Irradiation, removal of, 305�306
Isoniazid
degradation, possible pathway of, 273f
photocatalytic decomposition of, 272
Isotherms, 94�97
366 Index
K
Kelvin equation, 97
Kubelka-Munk formula, 104, 171�174
L
Levofloxacin hydrochloride (LVF)
degradation, 168�170
Ligand engineering, 113
Ligand-to-metal charge transfer (LMCT),
122�123
Light absorption, 237�238
ability, 229
capacity, 229�230
Light-harvesting capacity, 149�151
Light irradiation, 209
Light sample interaction, 98
Light source, emission wavelengths of, 136
Lipid bilayer, 309
Lipopolysaccharide, 309
glycolipids, 309
Lomefloxacin (LOM), 272�273
M
Macroscopic litter, 24
Magnetron procedures, 52
Mass transfer process, 130�131
Mechanical strain, 112�113
Metal-based persulfate activation, 197
Metal-based photocatalyst, 162�163
Metal-based semiconductors, 314�316
Metal-free graphitic carbon nitride,
196�197
Metal-free semiconductors, 314�316
Metal hydroxide resolution, 331�332
Metal ions
doped semiconductors, 284
release mechanism, 312
Metal node, 114
Metal-organic frameworks (MOFs)
photocatalyst
active sites, 112
attraction forces, 120�121
charge transfer between encapsulated
photocatalyst and, 123
cocatalyst, 114�115
container for photocatalyst, 123
crystalline nature, 112
crystal orbitals, 113, 113f
description of, 109�113
elasticity/flexibility, 112
electronic properties, 118�119
hydrogen bonding interactions,
121�122
ionic interactions, 121
large surface area, 111
ligand engineering, 113
LMCT, 122�123
mechanical strain, 112�113
mechanism of inorganic and organic
counterparts, 114�119
metal node, 114
noncovalent intermolecular interactions
and energies, 119�120
organic linker, 114
pore size, 111
pore space, 111
promoting photocatalytic activity in,
122�123
property of, 111
relative strength of H-bonding, 122
repulsive forces, 120�121
schematic presentation of, 109�110,
110f
as semiconductor, 116�118
structure integrity, 120�121
thermal response, 112
topology, 116
tunability, 111
types of noncovalent interaction,
121�122
unique, 111
Metal oxides, 264�265
Metal particles, aggregation of, 149�151
Metal sulfide semiconductors, 329
Metamitron, 291�292
initial concentration of, 291�292
removal of, 291�292
Methane, catalytic decomposition of,
51�52
Methylene blue (MB), 174�176, 334
degradation, 221�222
dye, 333�334
maximum degradations of, 331�333
367Index
Methylene blue (MB) (Continued)
solution, photocatalytic breakdown of,
45�46
Methyl orange (MO) dye, 55, 177, 334
degradation of, 221�222, 333�334,
348�349
Metribuzin, 292�293
composite photocatalyst for, 292�293
degradation of, 292
in water, 292�293
Metronidazole decomposition,
photocatalyst for, 229�230Microbial cell membrane, 312�313
Microorganisms, 27�28, 312�313
growth of, 3, 6
photocatalytic disinfection of, 307�308
Microparticles, 24
Microwave-assisted method, 48�50, 50t
Microwave irradiation, 334, 336�339
photocatalytic degradation of dyes,
336�339
Microwaves, interaction with, 48�49
Microwave-supported synthesis, 49
Mineralization, 41�42
process, 264�265
Minimum energy requirement, 46�47
Mixed morphologies, 46
Monolayer, formation of, 94�97
N
Nanomaterials, 284
Nanometer-size structures, 263�264
Nanoparticles, 90�92, 316�321
morphologies, 45�46
Nanosheets, 92
Nanospheres (NSs), 141�143
Nanostructures, 330�331
Nanotubes, 92
Nanowires, 346�347
Narrow gap semiconductors, 129�130
Natural animal estrogen hormones, 4f
Natural estrogen, 3�4
Natural photosynthesis, 209�210
Natural plant estrogen hormones, 4f
Natural renewable resources, 161
NbNR-CN/rGA nanocomposites,
176�177
Nicotine, 1�2
Nitrate precursor, 49
Nitrogen co-doped nanoparticles, 72�73
Nizatidine, 271
Nonaquatic solvents, 331�332
Noncovalent interaction, types of,
121�122
Noncovalent intermolecular interactions,
119�120
Nonmetal doping in TiO2 photocatalyst,
69�70, 70f
Nonmetals codoping, 72�73
Nonoxidative stress mechanism, 311�312
Nonrenewable resources, depletion of,
193�194
Nonsteroidal antiinflammatory drugs
(NSAIDs), 258
Norfloxacin, 258
NORMAN list, 255�256, 258
NR-Au composite, 143�144
n-type electron donors, 65�66
Nyquist diagrams, 217�221, 220f
Nyquist plot, 103
O
On-site (septic) waste treatment systems, 10
Optical absorption, 97�98
Organic additives, 41
Organic dyes, 174�176
Organic linker, 114
Organic micropollutants, kinds of,
179�180
Organic molecules, 227�229
Organic pollutants, 38, 44, 171�174,
296�297, 338�339
degradation, hybrid photocatalytic
materials for, 184t
mineralization of, 129�130
Organic toxins, photocatalytic destruction
mechanism for, 311�312
Organisms, class of, 309�310
Overfishing, 310�311
Oxidants, oxidation potential and reactions
of, 195t
Oxidation
process, 336�338
route, 40�41
368 Index
Oxidation and chemical state
characterization
atomic force microscopy (AFM), 93
electron microscope, 93�94
Fourier transform infrared spectroscopy
(FTIR), 93
gas adsorption-desorption analysis,
94�97
structural characterizations, 88�92
Oxidative reaction, preliminary
optimization of, 267�268
Oxidative species, 306
Oxidative stress mechanism, 311
Oxidization process, 296�297
Oxygen
adsorption, 140
functionality, 168
vacancies, 153
Oxytetracycline, photocatalytic degradation
of, 236�237
Ozonation, 305�306
P
Parabens, 19
Pathogenic microbes, 334�336
Peak matching process, generation of,
89�90
Pechini method, 272
Penicillin, 258
Peptidoglycan cell walls, 309
Peptidoglycan layers, 308�309
Permanent toxic algal bloom, 306
Personal care products (PCPs), 1�2,
25�27, 256�258
Persulfate activation methods, 196�197
Pesticides, 21, 342�344
application in agriculture, 342
classification of, 281, 282f, 282t
degradation of, 344
health problems caused by, 283, 283f
metabolites, 1�2
occurrence of, 21
pollution, 342
removal from water, 284
residues of, 28, 283
water-contaminated, 342, 343t
water, degradation of, 285t
Pharmaceuticals, 1�2, 23�24, 24f, 27�28
concentrations of, 18
contaminants
antibiotics, 258
estrogens and hormones, 258
nonsteroidal antiinflammatory drugs
(NSAIDs), 258
personal care products, 258
drugs, toxicity and degradation,
339�342
human and veterinary, 339, 340f
medicines, photocatalytic elimination of,
340�342
occurrences of, 23
wastewater, 270�271
in water bodies, 28
Pharmaceuticals and personal care products
(PPCPs), 2�6, 255�258, 260.
See also Pharmaceuticals and
personal care products (PPCPs)
active molecules in, 260
aquatic environment, 259
categorization of, 257�258
conjugate of CECs, 257
consumption of, 257
contamination, 260
conversion of dissolved, 260�261
degree of consumption of, 259
detection of, 259
ecosystem, 258�259
estrogens and hormonal compounds,
3�5
artificial estrogen hormones, 4�5
natural estrogen hormones, 4
examples of, 264�265
exposure to nontarget organisms, 260
liberation of, 256�257
primary treatment of, 260�261
purpose of usage, 257
residues of, 22
water depollution from, 260�261
Phenols degradation, 179�185, 183f, 237
efficacy, 179�180
process, 180�182
Phospholipids, 309
Photocarrier
recombination, 176�177
369Index
Photocarrier (Continued)
separation rate, 180�182
Photocatalysis, 38�39, 154, 262�263, 306,
308�309, 313�314
bandgap in, 306
bismuth oxide, 271�273
fundamentality of, 197�198
knowledge in, 263�264
mechanism of, 56�57, 64f, 85�86
mechanistic representation of, 307f
mechanistic view of, 306
photocatalyst-pollutant interaction in,
85�86
process of, 63, 67�68
surface properties in, 94�97
Photocatalysis-Fenton synergy system,
179�180, 181f
Photocatalysts/photocatalytic, 44, 98�99,
169f, 206�207, 222�225, 229,
321�323
activity, 88�89, 136, 238, 338�339
advanced. See Advanced photocatalyst
applications, 138�139
approach for creating, 41
bacterial inactivation, 319t
behavior, 44
breakdown, 179�180
chemical vapor deposition synthesis
method, 51�52
competence, 162
conduction band, 262�263
container for, 123
crystals, 37�38
definition of, 37�38
description of, 37�39
direct oxidation method, 45�46
effective application of, 65
efficiency, 72�73, 92
electrochemical deposition synthesis
method, 54�55
elements in, 86�87
hydrothermal method, 42�44
initial generation, 47�48
materials, 56�57
and mechanisms, 63, 177, 261�264
microbial disinfection, 307�308
microwave-assisted method, 48�50
microwave-supported synthesis of, 49
nanoparticles, 316�321
optimization of, 92
oxidation, 170�171
performance, 144�146, 205�206,
236�237, 344�345
physical vapor deposition method,
52�54
and pollutants, 348
presence of, 38�39
primary parameters of, 67
principles of, 39�41
process, 51�52, 63, 161�163
efficiency of, 262�263
reactions, 39�40, 149�153, 230�232
beneficial for, 139
removal, 222�225, 284�293
atrazine, 284�289
metamitron, 291�292
metribuzin, 292�293
pollutants, 293
simazine, 289�290
terbuthylazine, 291
rupture, 321�323
semiconductors, 44�45
sol-gel process, 41�42
solvothermal technique, 44�45
sonochemical method, 48t
sonochemical synthesis method of,
46�48
structural analysis of, 92
structural properties of, 92
surface of, 98�99
synthesis methods for, 39f, 314�316
treatment, 321�323
visible-light operating, 327�328
wastewater treatment, 170
water purification, 327�328
Photocatalytic degradation, 71f, 165�166,
197�198, 293�296
additional oxidants, 296
catalyst loading, 295
coexisting species, presence of, 295�296
of dyes, 348�349
initial concentration of pesticides, 294
light source, 294
mechanism, 206�207, 207f
370 Index
medium pH, 295
performances, 222
of pharmaceutical compounds, 264�265
process, 39�40, 284�288
reaction time, 294�295
structure of pesticides, 294
surface area, 296
Photocatalytic inactivation, 313f
algae, 309�311
bacteria, 308�309
description of, 305�308
of harmful algae, 316�323
of harmful bacteria, 314�316
photocatalytic microbial inactivation/
disinfection mechanism, 311�314
Photocorrosion resistance, 331
Photocurrent
generation, 146�149
spectroscopy, 101�102
variation of, 101�102
Photodegradation
mechanism, 176�177
reaction, 348�349
Photodeposition
method, 134
reaction, 131�132
Photo-electrochemical solar water
oxidation, 44
Photo-electrochemical water-splitting
reaction, 261�262
Photoelectrons, 89
generation of, 90f
Photoexcitation, 37�38
Photoexcited electrons, 72
Photo-Fenton catalytic synergy system,
179�180
Photogenerated charge, separation of, 238
Photogenerated electron-hole pairs,
327�328
Photogenerated electrons, 76
Photoinduced charge
carrier separation efficacy, 174�176
transfer, 214�217
Photoinduced corrosion-dissolution,
330�331
Photoinduced electrons, 226�227
Photoluminescence, 104
spectroscopy, 99�101
studies, 69
Photoreactions, 207�208
photocarriers for, 174�176
Photosynthesis, phenomena of, 109
Phthalocyanines, 336
Physical vapor deposition (PVD) method,
52�54
Phytoestrogensources, 3
Pink color, formation of, 132
Plants, photosynthesis process in, 336
Plasmon decay, 154
Plasmonic material, modification by, 98
Plasmonic resonance effect, 314�316
Plasmon-induced photocatalytic activity,
144�146
Plotting, 103
P-n heterojunction, 209
example of, 214
Polar solvents, 48�49
Pollutants, 293
absorbance of, 344�345
adsorption and mineralization of,
327�328
complex structure of, 261
degradation of, 40, 194, 196�197
from factories, 334�336
mineralization of, 154
molecules, quantities of, 330�331
photocatalytic decomposition of, 237
photocatalytic elimination of, 232�236
types of, 205
Pollutants removal
Au-TiO2, 130�131
chemical reduction, 132
description of, 129�130
gap analysis and challenges, 152�154
methods, 132�134
photocatalytic activity of Au-TiO2-based
ternary heterojunctions, 135
photocatalytic performances, 135�152
activity of Au-TiO2, 136�140
Au-TiO2 nanostructures, 140�152
photodeposition method, 131�132
pros and cons of deposition methods,
134
Polychlorinated biphenyl (PCB), 5�6
371Index
Polycondensation process, 163�164
Polystyrene sphere (PS), 140�141
activation, 196f, 198�200, 199f
electrons from, 197�198
Porous structure, visualization of, 94�97
Porphyrin, 109
Positive empty space, 37�38
Potential bias, 85�86
Precipitation, 336�338
Precursor components, 44�45
Precursor material, 51
Predicted no-effect concentration (PNEC)
value, 18
Proximity with semiconductor, 167
Pseudocrystal ZnS, 78
Pseudomorph, 77�78
Pseudomorphic transformation strategy, 78
p-type dopants, 65�66
Push-pull electrons, 198�200
R
Reaction sites, distribution of, 85�86
Reactive oxidative species (ROS), 194,
261, 312�321
formation ability for BPA, 197�200
mechanism of, 314�316, 317f
Reactive species, mechanism of, 297f
Recalcitrant pollutants, potential oxidizers
for, 194�196
Receptor-ligand interactions, 312�313
Redox interactions, 40
Redox reactions, 98�99
Reduced graphene oxide (RGO),
217�221, 266
Reductive semiconductor, 165�166
Reflections, 97�98
Relative pressure, 94�97
Repulsive forces, 120�121
Response surface methodology, 268
RhB removal, 217�221
Rhodamine B (RhB), 334
Ring formation reactions, 272
Risks in aquatic environment, 25�29
cosmetic ingredients and personal care
products, 25�27
pharmaceuticals, 27�28
Roxithromycin, 267�268
S
Sacrificial electron donors, 131�132
Safe drinking water, 305
Schottky barrier, 130�131, 143�146, 232
Schottky contacts, 139
Schottky heterojunctions, 149�151, 210
Seaweeds, 309�310
Self-doping, 86�87
Semiconductor, 63, 76, 205�206, 210,
306
behavior, 66�67
electrode, 103
MOF photocatalyst as, 116�118
nanoparticles, 263�264
N-type and P-type, 64f
photocatalysis/photocatalysts, 261, 262f,
327�328
supporters of, 263�264
surface of, 262�263
Semiconductor-assisted photocatalysis,
applications of, 329
Semiconductor-I (SC-I), 164
Semiconductor photocatalyst, 101�102,
329�331, 336�338
description of, 161�163
g-C3N4 and support materials
carbon nanotubes (CNTs), 167
description of, 167�170
2D graphene and derivatives,
167�170
zero-dimensional carbon quantum
nanodots (CQDs), 167
photocatalytic activity of g-C3N4,
163�170
S-scheme heterojunction, 166
type-II heterojunction, 164
Z-scheme heterojunction, 165�166
wastewater treatment
antibiotics degradation, 171�174
description of, 170�185
dyes degradation, 174�178
phenols degradation, 179�185
Semiconductor-supported heterogeneous
catalyst, 162�163
Septicemia, endotoxic shock of, 309
Silver vanadium nanoparticles, 284�288
Simazine, 289�290
372 Index
Simple hydrothermal method, 198�200
Solar architecture, 38�39
Solar energy, 38�39
potential of, 85�86
Solar evaporation, 154
Solar light-induced applications, 129�130
Solar light irradiation, 166, 217�221
Solar radiation, 67
Solar spectrum, 329
Sol-gel method, 69, 331�332
in TiO2 photocatalyst, 70�72
Sol-gel process, 41�42
Solids
energy band structures in, 64f
redox mediator, 222�225
and solid contact interface, 221�222
Solvothermal
methods, 72, 75�76, 333
synthesis, 44�45
technique, 44�45
Sonochemical method, 46�48
Spatial distribution, 87�88
Spherical nanocrystals, 75�76
S-scheme heterostructure, 232�236
S-scheme photocatalysts, 194
for degradation of pollutants, 233t
Step-scheme (S-scheme) heterojunctions,
210, 230�232
construction of, 236�237
hierarchical dual, 237
traditional, 231f
Structural characterizations, 88�92
Structure integrity, 120�121
Subsequent catalytic reactions, 138�139
Sulfamethoxazole (SMX), 221�222, 260,
267�268
Sulfate radicals, 194�196
Superoxide radicals, 144�146, 149�151,
225�226, 229
Surface morphologies, 42�43
Surface photovoltage, 101�102
spectroscopy, 104
Surface plasma resonance effect, 222�225
Surface plasmon resonance, 229�230
Surface redox reactions, 216�217
Surface space charge region (SCR), 101,
101f
Surface-to-volume ratio, 92
Surface waters, 256�257, 339
Surfactants, 10, 19, 25
Sustainable energy, 85�86
Synergistic effect, 72�73
Synthesis methods, 39f, 67�68
of photocatalysts, 295
Synthesis process, 331�334
ball milling, 333�334
coprecipitation method, 332�333
microwave irradiation, 334
sol-gel method, 331�332
solvothermal and hydrothermal methods,
333
Synthesized photocatalysts, 268
PL spectra of, 174�176, 175f
Synthetic dyes, 205
Synthetic organic pesticides, 281
application of, 281�283
T
TaON nanofibers, 236�237
Target pollutant, 262�263
Tauc plot, 104
TC, photocatalytic degradation of, 271
Terbuthylazine, 291
concentration and volume of, 291
degradation of, 291, 296�297
removal of, 291
Ternary heterojunction, 180�182
Ternary nanocomposite, 180�182
Tetracycline
degradation, 138�139, 171�174
photocatalytic degradation of, 229�230
Thermal decomposition, 132�134
Thermal oxidation, 130�131
Thermal response, 112
Time-resolved spectroscopic methods,
85�86
TiO2
mono-doping and codoping of, 73
nanoparticles, 292�293, 316�321, 320f
nanotube fabrication, 289
semiconductors, 77
Titania, 153
crystallinity of, 153
surface, 132�134, 139
373Index
Titanium dioxide, 265�266
Titanium isopropoxide, 42
Titanium oxynitride film, 52�54
Toluene, photocatalytic degradation of, 46
Total surface water, 305
Toxic algal bloom, 311
Toxic by-products, 305�306
Toxic effects, 339
Traditional liquid Z-scheme, 216�217
Traditional techniques, limitations of,
305�306
Transition metal doping, 72
Transition metal elements, 69
Transmission electron microscope (TEM),
93�94
Triarylmethanes, 336
Triazine, 163�164
chemical stability of, 294�295
oxidative degradation, 298
photocatalytic degradation reactions of,
293
Triazine-based pesticides, 296�297
available removal methods for, 284
degradation of, 298
description of, 281�283
factors affecting photocatalytic
degradation of, 293�296
additional oxidants, 296
catalyst loading, 295
coexisting species, presence of,
295�296
initial concentration of pesticides, 294
light source, 294
medium pH, 295
reaction time, 294�295
structure of pesticides, 294
surface area, 296
synthesis method of photocatalysts,
295
photocatalytic degradation mechanism
of, 296�298
photocatalytic removal of, 284�293
atrazine, 284�289
metamitron, 291�292
metribuzin, 292�293
pollutants, 293
simazine, 289�290
terbuthylazine, 291
Triclosan, 1�2, 19, 27
Trimethoprim, 267�268
Tri-s-triazine, 163�164
Tungsten-doped zinc oxide, 344
Tungsten trioxide, 269�271
2D graphene, 167�170
Type-I heterojunction, 208
Type-II heterojunction, 165�166,
208�209, 211�216
g-C3N4 based, 215t, 228t
photocatalysts for degradation of
pollutants., 212t
photoreaction mechanism of STZ by,
213f
Type-III heterojunction, 209
U
Ultrafiltration, 327�328
Ultrasonication, 225�226
Unique MOF photocatalyst, 111
United Nations World Water
Development Report, 327�328
UV irradiation, 305�306
V
Valence band (VB), 37�38, 205�206, 306
Valence band maximum (VBM), 103�104
Valence electrons, 63
Visible light, 294
response, 146
W
Waals forces for interfacial charge transfer,
232�236
Wastewater, 136�137, 271
bioremediation of, 193�194
contaminants in, 170�171
persistent organic pollutants in, 261, 262f
remediation, 193�194
TC in,271
types of, 258�259, 259f
from variety of industries, 174�176
Wastewater treatment
antibiotics degradation, 171�174
description of, 170�185
374 Index
dyes degradation, 174�178
GCN-based photocatalysts for persulfate
activation, 197�200
metal-free graphitic carbon nitride,
196�197
methods, 264�265
phenols degradation, 179�185
techniques, 170�171
Wastewater treatment plants (WWTPs), 2,
10, 256�259
biodegradation activities in, 27�28
efficient removal in, 26
pharmaceuticals in, 18, 20t
Water
contamination, 193�194, 327�328
drugs, 341t
dyes, 336, 337t
disinfection, 327�328
dye soluble in, 336
hospital waste in, 339
molecule, 296�297
pollution, 281�283, 305
purification technologies, 193�194
remediation, 349�351
soluble salts, 332�333
Water, antibiotics and pharma pollutants in
adverse impact of pharmaceuticals and
personal care products, 260
description of, 255�256
pharmaceutical contaminants
antibiotics, 258
estrogens and hormones, 258
nonsteroidal antiinflammatory drugs
(NSAIDs), 258
personal care products, 258
pharmaceuticals, and personal care
products, 256�258, 260�261
photocatalysis, 261�273
bismuth oxide, 271�273
commonly used catalyst for drug
degradation, 265�273
iron oxide, 268�269
photocatalysts and photocatalytic
mechanisms, 261�264
photocatalytic degradation of
pharmaceutical compounds,
264�265
titanium dioxide, 265�266
tungsten trioxide, 269�271
zinc oxide, 266�268
sources, pathways, and occurrences,
258�259
World Health Organization (WHO), 284,
305
WWTPs. See Wastewater treatment plants
(WWTPs)
X
Xerogel carbonization process, 72
XPS spectra, 91f
high-resolution, 91f
X-ray absorption fine structure (XAFS),
90�92
X-rays, generation of, 87�88, 87f
Z
Zeolite incorporation, 267
Zinc oxide (ZnO), 266�268, 327�328
catalyst, 340�342
catalytic efficiency of
initial concentration, 348
initial pH, 347�348
size, 345�346
structure, 346�347
temperature, 348�349
catalytic performance of, 348�349, 350t
composite of, 347�348
crystallite size of, 345�346
disadvantages, 330�331
effective nanocomposites, 331
graphene nanocomposite, 333�334
nanocomposites, 344
nanoforms, 334�336
nanomaterials, 331
nanoparticles, 45�46, 49
nanostructures, 330�331
for photocatalytic degradation, 335t
photocatalytic performance of, 348
pseudomorphic transformation of, 78
rock salt (NaCl) structure of, 329
simple degradation process of pollutants
by, 330f
thin films, 68�69, 68f
375Index
Zinc oxide-based nanomaterials, 345�346
description of, 327�328
microwave irradiation, 336�339
pesticides, 342�344
pharmaceutical drugs toxicity and
degradation, 339�342
semiconductor photocatalyst, 329�331
synthesis process, 331�334
zinc oxide, catalytic efficiency of,
344�349
Zirconium dioxide, 269�270
Z-scheme
dual, 229�230
heterojunctions, 209�210, 225�226
mechanism, 225�226
photocatalysis, 226�227
photocatalytic/photocatalysts, 217�221,
226�227
376 Index
	Index

Continue navegando