Prévia do material em texto
MATEMÁTICA Capítulo 13 Poliedros298 32 Enem Uma fábrica produz velas de parafina em forma de pirâmide quadrangular regular com 19 cm de altura e 6 cm de aresta da base. Essas velas são formadas por 4 blocos de mesma altura — 3 troncos de pirâmide de bases paralelas e 1pirâmide na parte superior —, espaçados de 1 cm entre eles, sendo que a base su- perior de cada bloco é igual à base inferior do bloco sobreposto, com uma haste de ferro passando pelo centro de cada bloco, unindo-os, conforme a figura. 6 cm 6 cm Se o dono da fábrica resolver diversicar o modelo, retirando a pirâmide da parte superior, que tem 1,5 cm de aresta na base, mas mantendo o mesmo molde, quanto ele passará a gastar com parana para fabricar uma vela? A 156 cm3 b 189 cm3 C 192 cm3 216 cm3 E 540 cm3 33 UFRGS 2012 Se duplicarmos a medida da aresta da base de uma pirâmide quadrangular regular e redu zirmos sua altura à metade, o volume desta pirâmide: A será reduzido à quarta parte. b será reduzido à metade. C permanecerá inalterado. será duplicado. E aumentará quatro vezes. 34 Famerp 2018 A figura indica um prisma reto triangular e uma pirâmide regular de base quadrada. A altura des- ses sólidos, em relação ao plano em que ambos estão apoiados, é igual a 4 cm, como indicam as figuras. 6 cm 4 cm 3 cm Se os sólidos possuírem o mesmo volume, a aresta da base da pirâmide, em centímetros, será igual a A 4 3 3 b 3 3 2 C 3 3 3 E 6 3 5 35 Qual é a medida da altura de uma pirâmide triangular regular cuja aresta da base mede 4 e cujo volume é igual ao volume de um cubo de aresta 2 3? 36 Enem 2016 É comum os artistas plásticos se apro- priarem de entes matemáticos para produzirem, por exemplo, formas e imagens por meio de manipu- lações. Um artista plástico, em uma de suas obras, pretende retratar os diversos polígonos obtidos pelas intersecções de um plano com uma pirâmide regular de base quadrada Segundo a classicação dos polígonos, quais deles são possíveis de serem obtidos pelo artista plástico? A Quadrados, apenas. b Triângulos e quadrados, apenas. C Triângulos, quadrados e trapézios, apenas. Triângulos, quadrados, trapézios e quadriláteros irre- gulares, apenas. E Triângulos, quadrados, trapézios, quadriláteros irre- gulares e pentágonos, apenas. 37 Uece 2018 Considere uma pirâmide regular hexagonal reta cuja medida da altura é 30 m e cuja base está inscrita em uma circunferência cuja medida do raio é igual a 10 m. Desejando-se pintar todas as faces triangulares dessa pirâmide, a medida da área a ser pintada, em m2, é A 115 39 . b 150 39 . C 125 39 . 140 39 38 Insper 2012 De cada vértice de um prisma hexagonal regular foi retirado um tetraedro, como exemplificado para um dos vértices do prisma desenhado a seguir. O plano que deniu cada corte feito para retirar os tetraedros passa pelos pontos médios das três ares- tas que concorrem num mesmo vértice do prisma. F R E N T E 3 299 O número de faces do poliedro obtido depois de te rem sido retirados todos os tetraedros é A 24. b 20 C 18 16 E 12 39 Enem 2016 Os sólidos de Platão são poliedros con vexos cujas faces são todas congruentes a um único polígono regular, todos os vértices têm o mes mo número de arestas incidentes e cada aresta é compartilhada por apenas duas faces Eles são impor tantes, por exemplo, na classificação das formas dos cristais minerais e no desenvolvimento de diversos objetos Como todo poliedro convexo, os sólidos de Platão respeitam a relação de Euler V A + F = 2, em que V, A e F são os números de vértices, arestas e faces do poliedro, respectivamente Em um cristal, cuja forma é a de um poliedro de Platão de faces triangulares, qual é a relação entre o número de vértices e o número de faces? A 2V 4F = 4 b 2V 2F = 4 C 2V F = 4 2V + F = 4 E 2V + 5F = 4 40 Uece 2016 Um poliedro convexo com 32 vértices pos sui apenas faces triangulares. O número de arestas desse poliedro é A 100 b 120 C 90 80 41 Enem 2016 Um lapidador recebeu de um joalheiro a encomenda para trabalhar em uma pedra preciosa cujo formato é o de uma pirâmide, conforme ilustra a Figura 1. Para tanto, o lapidador fará quatro cortes de formatos iguais nos cantos da base. Os cantos retirados correspondem a pequenas pirâmides, nos vértices P, Q, R e S, ao longo dos segmentos traceja- dos, ilustrados na Figura 2. Depois de efetuados os cortes, o lapidador obteve, a partir da pedra maior, uma joia poliédrica cujos núme ros de faces, arestas e vértices são, respectivamente, iguais a A 9, 20 e 13 b 3, 24 e 13 C 7, 15 e 12 10, 16 e 5. E 11, 16 e 5 42 Uma forma geométrica obtida na lapidação de pe- dras preciosas consiste em um poliedro convexo com exatamente 97 faces, sendo 32 triângulos, 64 quadri- láteros e 1 octógono F re d e ri k C h ri s to ff e rs e n / iS to c k p h o to .c o m Quantos vértices este poliedro possui? A 80 b 83 C 85 88 E 90 43 Enem 2017 O hábito cristalino é um termo utilizado por mineralogistas para descrever a aparência típica de um cristal em termos de tamanho e forma. A granada é um mineral cujo hábito cristalino é um poliedro com 30 arestas e 20 vértices. Um mineralogista construiu um modelo ilustrativo de um cristal de granada pela junção dos polígonos correspondentes às faces. Supondo que o poliedro ilustrativo de um cristal de granada é convexo, então a quantidade de faces utilizadas na montagem do modelo ilustrativo desse cristal é igual a A 10. b 12. C 25. 42. E 50. 44 UEPG 2018 Dois poliedros regulares são construídos utilizando folhas de cartolina. Um desses poliedros tem faces pentagonais e o outro tem faces triangula- res. Se a soma de todas as faces desses poliedros é 20, assinale o que for correto. 01 A soma dos ângulos de todas as faces do poliedro que tem faces pentagonais é 6480°. 02 O poliedro com faces triangulares tem 8 vértices a menos que o outro. 04 Os dois poliedros têm o mesmo número de arestas. 08 A soma de todas as arestas desses poliedros é maior que 40. Soma: MATEMÁTICA Capítulo 13 Poliedros300 45 UFPR 2016 Um prisma possui 17 faces, incluindo as faces laterais e as bases inferior e superior. Uma pi- râmide cuja base é idêntica à base do prisma possui quantas arestas? A 26. b 28. C 30. 32. E 24. 46 UPF 2015 O poliedro representado na figura (octaedro truncado) é construído a partir de um octaedro regular, cortando-se, para tal, em cada vértice, uma pirâmide regular de base quadrangular. A soma dos ângulos in- ternos de todas as faces do octaedro truncado é: A 2 160° b 5 760° C 7 920° 10 080° E 13 680° 47 Uerj 2016 Dois dados, com doze faces pentagonais cada um, têm a forma de dodecaedros regulares. Se os dodecaedros estão justapostos por uma de suas faces, que coincidem perfeitamente, formam um po- liedro côncavo, conforme ilustra a figura. Considere o número de vértices V, de faces F e de arestas A desse poliedro côncavo A soma V + F + A é igual a: A 102 b 106 C 110 112 48 UFJF 2017 Observe, abaixo, uma imagem desse vírus que tem a forma de um sólido geométrico. Qual é a planicação do sólido representado por esse vírus? A b C E