Buscar

Aula_24_-_Equilíbrio_Iônico_parte_II_-_Extensivo_2024 (1)_enemconcursosgaucheallfree

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 108 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 108 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 108 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Aula 24 – Equilíbrio Iônico – parte II 
 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 2 
 
SUMÁRIO 
1. PRODUTO DE SOLUBILIDADE - KPS 3 
Cálculo do produto de solubilidade 3 
análise comparativa da solubilidade dos compostos iônicos 4 
Efeito do íon comum 7 
2. CONSTANTE DE HIDRÓLISE– KH 8 
Equação Química da Hidrólise Salina 8 
Influência no pH da Hidrólise Salina 9 
Constante de Hidrólise - KH 12 
3. SOLUÇÃO TAMPÃO 17 
4. QUESTÕES FUNDAMENTAIS 21 
5. JÁ CAIU NOS PRINCIPAIS VESTIBULARES 22 
Hidrólise 22 
KPS 35 
Solução Tampão 44 
6. GABARITO DAS QUESTÕES FUNDAMENTAIS 50 
7. GABARITO SEM COMENTÁRIOS 52 
8. QUESTÕES RESOLVIDAS E COMENTADAS 52 
9. REFERÊNCIAS 107 
 
 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 3 
1. Produto de solubilidade - Kps 
Alguns compostos iônicos possuem facilidade de serem dissolvidos em água, enquanto 
outros apresentam facilidade de se depositar. O parâmetro que facilita a investigação dessas 
facilidades é o produto de solubilidade ou KPS. 
As rochas calcárias, por exemplo, são materiais de baixa solubilidade em água e se 
encontram em sistemas aquosos envolvidas no seguinte equilíbrio iônico. 
 
A taxa de dissolução do carbonato de cálcio, quando igual à taxa de cristalização dos íons 
cálcio e carbonato forma uma solução saturada com corpo de fundo. 
 
 
Em um equilíbrio químico de produto de solubilidade é necessário existir a fase sólida 
(corpo de fundo). 
 
Cálculo do produto de solubilidade 
A partir da equação iônica do carbonato de cálcio (CaCO3) montamos a equação de 
equilíbrio para o processo: 
CaCO3 (s) ⇌ Ca2+ (aq) + CO32- (aq) 
𝐾𝐶 = 
[𝐶𝑎2+] ∙ [𝐶𝑂3
2−]
[𝐶𝑎𝐶𝑂3]
 
A quantidade de partículas que formam um material no estado sólido é fixa, pois os 
compostos sólidos apresentam uma configuração específica denominada retículo cristalino. A 
natureza das partículas interfere no tipo de retículo formado. Como a quantidade de partículas 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 4 
no retículo cristalino é constante podemos concluir que a quantidade de íons por volume é 
constante, logo: 
Kc · [CaCO3] = KPS 
𝑲𝑷𝑺 = [𝑪𝒂
𝟐+] ∙ [𝑪𝑶𝟑
𝟐−] 
De forma geral, para um composto iônico CxAy, a equação de KPS será: 
𝐾𝑃𝑆 = [𝐶
y+]𝑥 ∙ [𝐴x−]𝑦 
E o reagente no estado sólido não é inserido na equação. 
Exemplos: 
MgC2 → KPS = [Mg2+]·[C-]2 
K2SO4 → KPS = [K+]2·[SO42-] 
Ca3(PO4)2 → KPS = [Ca2+]3·[PO43-]2 
análise comparativa da solubilidade dos compostos iônicos 
Observe os valores de KPS dos compostos iônicos seguintes. 
Fórmula iônica KPS Fórmula iônica KPS Fórmula iônica KPS 
CaSO4 2,4·10-5 Cu(OH)2 2,6·10-19 Mg3(AsO4)2 2,0·10-20 
CaCO3 3,8·10-9 Ag2S 6·10-50 
AgC 1,8·10-10 
O produto de solubilidade de um composto iônico deve ser analisado com cautela, pois 
como a proporção entre cátions e ânions pode variar entre os compostos, não se deve realizar 
a comparação de solubilidade olhando diretamente o valor de KPS para qualquer composto 
iônico. É necessário analisar se os dois compostos apresentam a mesma proporção de 
cátions e ânions. 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 5 
Observando os valores das constantes na tabela acima, podemos selecionar substâncias 
que apresentam a mesma proporção de cátions e ânions. Por exemplo, CaCO3, CaSO4 e AgC 
apresentam 1 cátion para 1 ânion, ou seja, 2 íons por fórmula; Cu(OH)2 e Ag2S possuem 3 íons 
por fórmula; e Mg3(AsO4)2 apresenta 5 íons por fórmula. Portanto, iremos dividir a comparação 
do produto de solubilidade em dois grupos: compostos que apresentam mesmo número de íons 
por fórmula e compostos que apresentam diferentes números de íons por fórmula. 
 
Compostos com o mesmo número de íons por fórmula. 
Compostos iônicos com a mesma quantidade de cátions e ânions, o mais solúvel será 
aquele que tiver maior valor da constante de solubilidade. 
Analisando os valores de KPS para CaCO3, CaSO4 e AgC ,o sal mais solúvel é o sulfato 
de cálcio (CaSO4). Entre Cu(OH)2 e Ag2S, o mais solúvel é o hidróxido de cobre II. 
Fórmula iônica KPS 
CaSO4 2,4·10-5 
 
Maior solubilidade 
CaCO3 3,8·10-9 
AgC 1,8·10-10 Menor solubilidade 
 
Compostos com diferentes números de íons por fórmula. 
Compostos iônicos com quantidade diferente de cátions e ânions, o mais solúvel será aquele 
que tiver maior valor de S calculado. 
O cálculo de solubilidade é determinado a partir do mesmo número de mols das fórmulas 
iônicas. Sabendo que o KPS, a 25°C do carbonato de estrôncio (SrCO3) é igual a 9·10-10 e do 
hidróxido de níquel II (Ni(OH)2 é 2,048·10-15, determina-se a solubilidade desses sais. 
Para o cálculo de solubilidade de uma fórmula iônica, iremos supor que a quantidade, 
em mol/L, dissolvida de cada sal é igual a S. Assim, para cada S do sal dissolvido se obtém a 
quantidade dos demais íons. 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 6 
SrCO3 (s) ⇌ Sr2+ (aq) + CO32- 
S S S 
 
 
Ni(OH)2 (s) ⇌ Ni2+ (aq) + 2OH- 
S S 2S 
 
Substituindo os valores na equação de KPS, tem-se: 
KPS = [Sr2+]·[CO32-] 
9·10-10 = S·S 
S2 = 9·10-10 
S = 3·10-5 
KPS = [Ni2+]·[OH-]2 
2,048·10-15= (S)·(2S)2 
4S3 = 2,048·10-15 
S3 = 512·10-18 
S = 8·10-6 
 
Portanto, a solubilidade máxima, a 25 °C, do carbonato de estrôncio é igual a 3·10-5 mol/L 
e do hidróxido de níquel II é de 8·10-6 mol/L. 
 
 
Qual das fórmulas abaixo é a mais solúvel em água? 
 
 
Comentários: 
Sabe-se que entre CaCO3, CaSO4 e AgC, o mais solúvel é o CaSO4, pois todos 
apresentam a mesma quantidade de íons por fórmula e o sulfato de cálcio possui o maior 
KPS, contudo o hidróxido de cobre II é mais solúvel que o sulfeto de prata. 
Faz-se necessário calcular a solubilidade de três compostos iônicos: CaSO4, Cu(OH)2 e 
Mg3(AsO4)2. 
Fórmula iônica KPS Fórmula iônica KPS Fórmula iônica KPS 
CaSO4 2,4·10-5 Cu(OH)2 2,6·10-19 Mg3(AsO4)2 2,0·10-20 
CaCO3 3,8·10-9 Ag2S 6·10-50 
AgC 1,8·10-10 
 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 7 
 
Portanto, o composto mais solúvel é sulfato de cálcio. 
Gabarito: CaSO4 
Efeito do íon comum 
Ao adicionar uma solução aquosa de ácido sulfúrico (H2SO4) a uma solução saturada de 
sulfato de cobre II, observa-se a formação de mais precipitado de cor azul (CuSO4). Esse 
fenômeno ocorre devido ao aumento do número de choques entre os íons de cobre II e os íons 
de sulfato. O aumento na quantidade de sulfato desloca o equilíbrio no sentido de formação do 
precipitado. 
CuSO4 (s) ⇌ Cu2+ (aq) + SO42- (aq) 
 
A concentração de sulfato aumenta devido a adição de ácido sulfúrico (H2SO4), enquanto 
a concentração de íons de cobre diminui devido ao deslocamento do equilíbrio para a esquerda. 
Lembre-se que o valor da constante de solubilidade não sofre alteração porque apenas a 
temperatura pode alterá-lo. 
 
KPS = ↓[Cu2+]·↑[SO42-] 
 
O fenômeno provocado pela adição dos íons sulfato é denominado efeito do íon comum. 
Esse fenômeno é graficamente representado abaixo: 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 8 
 
Gráfico do efeito do íon comum. 
2. Constante de Hidrólise– KH 
Alguns sais quando colocado em água sofrem hidrólise, ou seja, combinam-se com a 
molécula de água formando estruturas químicas de propriedadesácidas ou básicas. 
Equação Química da Hidrólise Salina 
Conforme vimos em aulas anteriores, classificamos os ácidos e bases em fortes ou fracos. 
Os íons provenientes de ácidos e bases fracos são espécies conjugadas fortes, por exemplo, o 
ácido cianídrico é um ácido fraco, mas a sua base conjugada, cianeto, é forte. Isso quer dizer 
que ao dissolver, em água, um sal que contenha íons cianetos, estes irão reagir com a água 
capturando os íons H+ e, automaticamente, liberam o íon OH-. 
CN- + H2O → HCN + OH- 
Portanto, dizemos que o íon cianeto sofreu hidrólise. 
Somente os íons provenientes de ácido fraco e base fraca sofrem hidrólise. 
Exemplos de equações de hidrólises de íons. 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 9 
 
Perceba que todos os ácidos e bases formados são fracos. 
Influência no pH da Hidrólise Salina 
A hidrólise de íons interfere no pH de uma solução aquosa, porque interfere na 
concentração das espécies H+ e OH-. Para perceber a influência no pH da solução, é necessário 
perceber qual ou quais dos íons sofrem hidrólise. 
 
A partir da análise dos cátions e ânions é possível separar em quatro casos: 
Compostos iônicos 
Ânion: proveniente de 
ácido forte 
Ânion: proveniente de 
ácido forte 
Ânion: proveniente 
de ácido fraco 
Ânion: proveniente 
de ácido fraco 
H
id
ró
lis
e
 S
a
lin
a
Ânions de Ácidos Fracos
HCO3
- + H2O → H2CO3 + OH
-
H3CCOO
- + H2O → H3CCOOH + OH
-
S2- + H2O → HS
- + OH-
Cátions de Bases Fracas
NH4
+ + H2O → NH4OH + H
+
Au+ + H2O → AuOH + H
+
Mg2+ + H2O → MgOH
+ + H+
1º Passo
• Identificação do ânion e do cátion
2º Passo
• Identificação das espécies que sofrem hidrólise
3º Passo
• Montagem da equação da hidrólise para o ânion e/ou cátion
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 10 
Cátion: proveniente 
de base forte 
Cátion: proveniente 
de base fraca 
Cátion: proveniente 
de base forte 
Cátion: proveniente 
de base fraca 
Nenhum íon sofre 
hidrólise 
Apenas o cátion sofre 
hidrólise 
Apenas o ânion sofre 
hidrólise 
O cátion e o ânion 
sofrem hidrólise 
----------------- 
B+ + H2O → BOH + 
H+ 
A- + H2O → HA + OH- 
A- + H2O → HA + OH- 
B+ + H2O → BOH + 
H+ 
Não interfere no pH 
da solução 
Diminui o pH da 
solução 
Aumenta o pH da 
solução 
Aumenta ou diminui o 
pH* 
*O íon que sofre mais hidrólise, influencia mais no pH. Se o KA do ácido HA for menor que 
o KB da base BOH, significa dizer que HA é mais fraco que BOH. Quanto mais fraco a espécie, 
maior a hidrólise. Assim, nesse exemplo, o pH iria aumentar, porque seria liberado mais OH- do 
que íons H+. 
 
 
(FCM MG/2017) 
Os pH’s das soluções de NH4C, CH3COOK, NaHCO3 e LiNO3 podem ser, 
respectivamente: 
 
a) <7 ; >7 ; >7 ; =7. 
b) <7 ; >7 ; <7 ; =7. 
c) >7 ; <7 ; =7 ; <7. 
d) >7 ; <7 ; <7 ; =7. 
 
Comentários: 
Analisa-se os sais nos seguintes critérios: identificação dos íons, identificação das 
espécies que sofrem hidrólise e influência no pH. 
Sal: 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 11 
 
pH: <7; >7; >7; =7. 
Gabarito: A 
 
(IBMEC SP Insper/2019) 
Um agricultor pretende iniciar um empreendimento de produção de frutas e, para isso, 
submeteu amostras do solo de sua propriedade para análise química e parecer técnico de 
um engenheiro agrônomo. 
 
 
Para que o agricultor possa fazer a correção do pH do solo de forma adequada para a 
sua produção, ele deverá adicionar ao solo 
 
a) NaC. 
b) P4O10. 
c) KNO3. 
d) NH4C. 
e) CaO. 
 
Sal: NH4C CH3COOK NaHCO3 LiNO3 
Íons: NH4+ e C- CH3COO- e K+ Na+ e HCO3- Li+ e NO3- 
Espécies que 
sofrem 
hidrólise: 
NH4+ 
(proveniente 
da base fraca 
NH4OH) 
CH3COO- 
(proveniente 
do ácido fraco 
CH3COOH) 
HCO3- 
(proveniente 
do ácido fraco 
H2CO3) 
Nenhum 
Reação de 
hidrólise: 
NH4+ + H2O → 
NH4OH + H+ 
CH3COO- + 
H2O → 
CH3COOH + 
OH- 
HCO3- + H2O 
→ H2CO3 + 
OH- 
-------- 
Influência 
no pH: 
Libera H+ 
Diminui o pH 
Libera OH- 
Aumenta o pH 
Libera OH- 
Aumenta o pH 
Não libera 
H+ ou OH- 
Não muda 
o pH 
 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 12 
Comentários: 
Alguns compostos ao entrarem em contato com a água, alteram o pH do sistema. Analisa-
se a influência de cada composto iônico em água. 
a) NaC. Não altera o pH. O íon Na+ é proveniente da base forte NaOH, logo, não realiza 
hidrólise. O íon C- é proveniente do ácido forte HC, logo, não realiza hidrólise. 
b) P4O10. Não altera o pH. O P4O10 é um óxido molecular e não sofre hidrólise. 
c) KNO3. Não altera o pH. O íon K+ é proveniente da base forte KOH, logo, não realiza 
hidrólise. O íon NO3- é proveniente do ácido forte HNO3, logo, não realiza hidrólise. 
d) NH4C. Diminui o pH. O íon NH4+ é proveniente da base fraca NH4OH ou NH3, logo, 
realiza hidrólise. O íon C- é proveniente do ácido forte HC, logo, não realiza hidrólise. 
NH4+ + H2O → NH4OH + H+ 
e) CaO. Aumenta o pH. Os óxidos iônicos de metais alcalino ou alcalinoterrosos reagem 
com a água formando bases. 
CaO (s) + H2O () → Ca(OH)2 (aq) 
A única alternativa que consegue aumentar o pH de 5 para 6 é o uso do CaO, chamada 
de cal viva ou cal virgem. Esse método é chamado de calagem. 
Gabarito: E 
Constante de Hidrólise - KH 
A hidrólise de um íon em água participa de um equilíbrio iônico aquoso. 
Hidrólise do Cátion 
Deseja-se montar a equação de equilíbrio químico da hidrólise do NH4Br. 
NH4+ (aq) + H2O () ⇌ NH4OH (aq) + H+ (aq) 
Sabe-se que a água é o reagente e solvente da reação, assim, a sua concentração 
permanece constante em solução. Assim, a equação da constante de hidrólise é: 
𝐾𝐻 =
[𝑁𝐻4𝑂𝐻] · [𝐻
+]
[𝑁𝐻4
+]
 
Existe outra maneira de calcular o valor de KH, de um composto que somente o cátion 
sofre hidrólise. 
𝐾𝐻 =
𝐾𝑤
𝐾𝑏
 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 13 
Kw é a constante de autoionização da água, que a 25 °C é igual a 10-14, e o Kb é a constante 
básica do NH4OH. 
 
 
Como se deduz a equação de hidrólise de um cátion? 
Adotando por exemplo, o composto iônico NH4Br, tem-se a equação global: 
NH4+ (aq) + H2O () ⇌ NH4OH (aq) + H+ (aq) 
Uma das formas de obter essa equação é somar as equações: 
NH4+ (aq) + OH- (aq) ⇌ NH4OH (aq) 
H2O () ⇌ H+ (aq) + OH- (aq) 
NH4+ (aq) + H2O () ⇌ NH4OH (aq) + H+ (aq) 
Sabe-se que a equação NH4+ (aq) + OH- (aq) ⇌ NH4OH (aq) é o inverso da dissociação 
da base NH4OH, portanto, a constante de equilíbrio dessa etapa direta é igual a 1/Kb. A etapa 
H2O () ⇌ H+ (aq) + OH- (aq) apresenta constante de equilíbrio igual a Kw. Logo, tem-se: 
NH4+ (aq) + OH- (aq) ⇌ NH4OH (aq) 1
𝐾𝑏
 
H2O () ⇌ H+ (aq) + OH- (aq) 𝐾𝑤 
NH4+ (aq) + H2O () ⇌ NH4OH (aq) + H+ (aq) 𝐾𝐻 =
𝐾𝑤
𝐾𝑏
 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 14 
Obs.: Ao somar equações, multiplica-se os valores das constantes de equilíbrio. 
𝐾𝐻 =
𝐾𝑤
𝐾𝑏
 
Hidrólise do Ânion 
Deseja-se montar a equação de equilíbrio químico da hidrólise do KCN. 
CN- (aq) + H2O () ⇌ HCN (aq) + OH- (aq) 
Sabe-se que a água é o reagente e solvente da reação, assim, a sua concentração 
permanece constante em solução. Assim, a equação da constante de hidrólise é: 
𝐾𝐻 =
[𝐻𝐶𝑁] · [𝑂𝐻−]
[𝐶𝑁−]
 
Existe outra maneira de calcular o valor de KH, de um composto que somente o ânion 
sofre hidrólise. 
𝐾𝐻 =
𝐾𝑤
𝐾𝑎
 
Kw é a constante de autoionização da água, que a 25 °C é igual a 10-14, e o Ka é a constante 
ácida do HCN. 
 
 
Como se deduz a equação de hidrólise de um ânion? 
Adotando por exemplo,o composto iônico KCN, tem-se a equação global: 
CN- (aq) + H2O () ⇌ HCN (aq) + OH- (aq) 
Uma das formas de obter essa equação é somar as equações: 
CN- (aq) + H+ (aq) ⇌ HCN (aq) 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 15 
H2O () ⇌ H+ (aq) + OH- (aq) 
CN- (aq) + H2O () ⇌ HCN (aq) + OH- (aq) 
Sabe-se que a equação CN- (aq) + H+ (aq) ⇌ HCN (aq) é o inverso da ionização do ácido 
HCN, portanto, a constante de equilíbrio dessa etapa direta é igual a 1/Ka. A etapa H2O () ⇌ H+ 
(aq) + OH- (aq) apresenta constante de equilíbrio igual a Kw. Logo, tem-se: 
CN- (aq) + H+ (aq) ⇌ HCN (aq) 1
𝐾𝑎
 
H2O () ⇌ H+ (aq) + OH- (aq) 𝐾𝑤 
CN- (aq) + H2O () ⇌ HCN (aq) + OH- (aq) 𝐾𝐻 =
𝐾𝑤
𝐾𝑎
 
Obs.: Ao somar equações, multiplica-se os valores das constantes de equilíbrio. 
𝐾𝐻 =
𝐾𝑤
𝐾𝑎
 
Hidrólise do Cátion e do Ânion 
Deseja-se montar a equação de equilíbrio químico da hidrólise do NH4CN. 
NH4+ (aq) + CN- (aq) + H2O () ⇌ NH4OH (aq) + HCN (aq) 
Sabe-se que a água é o reagente e solvente da reação, assim, a sua concentração 
permanece constante em solução. Assim, a equação da constante de hidrólise é: 
𝐾𝐻 =
[𝑁𝐻4𝑂𝐻] · [𝐻𝐶𝑁]
[𝑁𝐻4
+] · [𝐶𝑁−]
 
Existe outra maneira de calcular o valor de KH, de um composto que somente o ânion 
sofre hidrólise. 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 16 
𝐾𝐻 =
𝐾𝑤
𝐾𝑎 · 𝐾𝑏
 
Kw é a constante de autoionização da água, que a 25 °C é igual a 10-14, Ka é a constante 
ácida do HCN e o Kb é a constante básica do NH4OH. 
Para hidrólises do cátion e do ânion, a espécie que apresentar menor valor para a constante 
de ionização, apresentará maior influência no pH. 
Observe os valores das constantes de ionização para o NH4OH e para o HCN. 
HCN Ka = 5·10-10 
NH4OH Kb = 1,8·10-5 
O HCN sofre menor ionização do que o NH4OH, logo, o efeito da hidrólise de CN- é maior 
do que o do NH4+, quando adicionado o sal NH4CN. Portanto, a adição de NH4CN, aumenta o 
pH. 
 
Como se deduz a equação de hidrólise de um cátion e de um ânion? 
Adotando por exemplo, o composto iônico NH4CN, tem-se a equação global: 
NH4+ (aq) + CN- (aq) + H2O () ⇌ NH4OH (aq) + HCN (aq) 
Uma das formas de obter essa equação é somar as equações: 
NH4+ (aq) + OH- (aq) ⇌ NH4OH (aq) 
CN- (aq) + H+ (aq) ⇌ HCN (aq) 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 17 
H2O () ⇌ H+ (aq) + OH- (aq) 
NH4+ (aq) + CN- (aq) + H2O () ⇌ NH4OH (aq) + HCN (aq) 
Sabe-se que a equação CN- (aq) + H+ (aq) ⇌ HCN (aq) é o inverso da ionização do ácido 
HCN, portanto, a constante de equilíbrio dessa etapa direta é igual a 1/Ka. Sabe-se que a 
equação NH4+ (aq) + OH- (aq) ⇌ NH4OH (aq) é o inverso da dissociação da base NH4OH, 
portanto, a constante de equilíbrio dessa etapa direta é igual a 1/Kb. A etapa H2O () ⇌ H+ (aq) 
+ OH- (aq) apresenta constante de equilíbrio igual a Kw. Logo, tem-se: 
NH4+ (aq) + OH- (aq) ⇌ NH4OH (aq) 1
𝐾𝑏
 
CN- (aq) + H+ (aq) ⇌ HCN (aq) 1
𝐾𝑎
 
H2O () ⇌ H+ (aq) + OH- (aq) 𝐾𝑤 
NH4+ (aq) + CN- (aq) + H2O () ⇌ HCN (aq) + NH4OH (aq) 𝐾𝐻 =
𝐾𝑤
𝐾𝑎 · 𝐾𝑏
 
Obs.: Ao somar equações, multiplica-se os valores das constantes de equilíbrio. 
𝐾𝐻 =
𝐾𝑤
𝐾𝑎 · 𝐾𝑏
 
3. Solução Tampão 
Solução tampão é uma solução aquosa que não varia bruscamente o seu pH pela adição 
de uma base ou um ácido. Para que uma solução tampão possa ser formada é necessário que 
no sistema apresente uma espécie química capaz de liberar H+ e outra capaz de capturar H+. 
Portanto, as espécies capazes de formar sistemas tamponados são provenientes de ácidos e 
bases fracas. 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 18 
 
Ao construirmos uma solução tamponada de acetato de sódio e ácido acético, temos o 
comportamento da solução para as seguintes adições de ácido e base. 
Solução tamponada de acetato de sódio / ácido acético 
Adição de ácido Adição de base 
Ao adicionar H+, este será consumido pela 
espécie acetato, que é a base conjugada 
forte do ácido acético. 
Ao adicionar OH-, este será consumido pela 
espécie ácido acético, que é um ácido fraco. 
H3CCOO- + H+ ⇌ H3CCOOH H3CCOOH + OH- ⇌ H3CCOO- + H2O 
Para qualquer adição de ácido ou base na solução tamponada de ácido acético e acetato 
de sódio, ocorrerá consumo da espécie adicionada e, assim, a alteração de pH será atenuada 
ou anulada. 
Você sabia que o sangue é formado por uma solução tampão de H2CO3 e NaHCO3? 
Imagina se não fosse assim. A cada gole de suco de laranja, uma alteração gigante no pH do 
corpo. 
 
Aspectos quantitativos da solução tampão 
Cada solução tampão é utilizada para estabilizar um valor específico de pH. Henderson-
Hasselbach elaborou a seguinte equação química que explica as soluções tampão: 
𝑝𝐻 = 𝑝𝐾𝑎 + log
[â𝑛𝑖𝑜𝑛 𝑑𝑜 á𝑐𝑖𝑑𝑜]
[á𝑐𝑖𝑑𝑜]
 
Tipos de Solução 
Tampão
Ácido + sal de 
ânion do mesmo 
ácido
Ex: H3CCOOH e 
H3CCOONa
Base + sal de 
cátion do mesma 
base
Ex: Mg(OH)2 e 
MgCl2
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 19 
Assim, o valor do pH de uma solução tampão é preparada para próximo do seu valor de 
pKa. 
 
 
A química do sangue. 
Se existe algo misterioso na nossa 
infância, isso é o sangue. Concorda? Desde 
pequenino sabemos que o sangue é um 
material precioso, não podemos perder e 
não vivemos sem. Ele é produzido, 
geralmente, na medula óssea e tem como 
função principal o transporte de substâncias 
em todo o corpo humano. O sangue é uma 
mistura heterogênea, mais precisamente um 
coloide, cuja composição é: 45% de células 
(hemácias, leucócitos e plaquetas) e 55% 
plasma (água, proteínas, sais, gás 
carbônico, oxigênio, hormônios, enzimas 
etc.). 
Depois de pequeninos fazemos várias 
reflexões sobre o sangue. Como ele controla 
o pH, já que reveste áreas que apresentam 
pH diferentes. Qual a substância 
responsável pelo seu cheiro? Por que ele 
escurece quando exposto ao ar? 
 
Figura 2 - Marca de sangue nas mãos [Fonte: Monika 
Kozub/Unsplash.com]. 
 
 
O sangue reveste todo o corpo humano e apresenta pH, aproximadamente, neutro (entre 
7,35-7,45). O mecanismo de manutenção do pH do sangue é chamado de tampão ou efeito 
tamponante. Nele existem duas espécies responsáveis para a estabilização do pH: o ácido 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 20 
carbônico e o bicarbonato. O ácido carbônico é responsável por neutralizar as bases, enquanto 
o bicarbonato neutraliza os ácidos, ou seja, o ácido carbônico libera os íons H+ e o bicarbonato 
captura os íons H+. 
A substância responsável pelo cheiro do sangue é 
a trans-4,5-Epoxy-(E)-2-decenal e a oct-1-en-3-ona. 
Muitos animais predadores são capazes de detectar a 
presença do trans-4,5-Epoxy-(E)-2-decenal e conseguir 
achar presas expostas. 
O
O
trans-4,5-epoxi-(E)-2-decenal
oct-1-en-3-ona
O
 
A espécie responsável pelo transporte do gás 
oxigênio e do gás carbônico é a hemoglobina, 
principalmente, o ferro presente na porção central 
chamada de heme. O ferro encontrado no sangue é o 
ferro cátion bivalente (Fe2+) ou ferro II. Sabe quando você 
se corta e o sangue na pele escurece? É porque o ferro 
II é oxidado pelo ar para ferro III. Sabe o gosto metálico 
de sangue na boca quando você morde a língua? Então, 
são os compostos formados pela decomposição do 
sangue, principalmente, pela presença dos sais de ferro. 
 
Porção heme da hemoglobina 
 
 
 
Não esqueça: doe sangue! Salve vidas! 
 
 
 
(UNITAU SP/2016) 
O organismo humano mantém pH sanguíneo entre 7,35 e 7,45.Valores de pH abaixo de 
7,35 caracterizam acidose. Valores acima de 7,45 caracterizam alcalose. Uma jovem 
participou de um show musical e, por seu estado de euforia, apresentou hiperventilação, 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 21 
reduzindo a concentração de CO2 dissolvido no sangue. O CO2 constitui o tampão 
bicarbonato, como apresentado na equação abaixo. 
H2O + CO2 ⇌ H2CO3 ⇌ H+ + HCO3- 
A hiperventilação da jovem poderá resultar em 
 
I. alcalose, devido a um aumento de HCO3- 
II. alcalose, devido ao aumento H2CO3 
III. acidose, devido ao aumento de H+ 
 
Está INCORRETO o que se afirma em 
 
a) I e II, apenas. 
b) I e III, apenas. 
c) II, apenas. 
d) I, apenas. 
e) I, II e III. 
 
Comentários: 
A hiperventilação é entendida pela saída de gás carbônico em elevadas taxas, enquanto 
a hipoventilação é entendida pela baixa expiração de CO2. 
A hiperventilação diminui a concentração do CO2, o que provoca o deslocamento no 
equilíbrio químico no sentido de formação do mesmo gás. Sabendo disso, julgam-se os 
itens: 
I. Errado. Ocorre alcalose, porque a saída de CO2 desloca o equilíbrio químico no sentido 
de consumo de íons H+, aumentando o pH e, assim, diminuindo a acidez. A concentração 
dos íons HCO3- diminui devido ao deslocamento do equilíbrio químico no sentido de 
formação do CO2 e H2O. 
II. Errado. Ocorre alcalose, porque a saída de CO2 desloca o equilíbrio químico no sentido 
de consumo de íons H+, aumentando o pH e, assim, diminuindo a acidez. A concentração 
do ácido carbônico diminui devido ao deslocamento do equilíbrio químico no sentido de 
formação do CO2 e H2O. 
III. Errado. Ocorre alcalose, porque a saída de CO2 desloca o equilíbrio químico no 
sentido de consumo de íons H+, aumentando o pH e, assim, diminuindo a acidez. A 
concentração dos íons H+ diminui devido ao deslocamento do equilíbrio químico no sentido 
de formação do CO2 e H2O. 
Gabarito: E 
4. Questões Fundamentais 
Questão Fundamental 01 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 22 
Escreva as equações da constante de produto de solubilidade dos seguintes compostos 
iônicos: 
 
a) NaC 
b) CaCO3 
c) Li2SO4 
d) Mg3(PO4)2 
e) Fe(CN)2 
f) Mg3(AsO4)2 
g) CaC2O4 
h) K2O 
i) Pb(OH)4 
j) Li2O2 
k) NaHCO3 
 
Questão Fundamental 02 
Determine se a dissolução, em água, dos compostos abaixo resulta em uma solução 
aquosa ácida, básica ou neutra e escreva a equação de hidrólise do íon, caso exista. 
 
a) KCN 
b) NH4C 
c) Li2SO4 
d) AuBr 
e) Na2S 
f) H3CCOO- NH4+ 
g) H3CNH3+ C - 
h) NaHCO3 
i) CaCO3 
j) KI 
 
Questão Fundamental 03 
Quais sistemas abaixo podem ser utilizados como um sistema tampão: 
 
I. H3CCOOH e H3CCOONa IV. NH3 e NH4Br 
II. HCl e NaCl V. H2SO4 e CaSO4 
III. NaOH e NaCN VI. H3CNH2 e H3CNH3Cl 
 
5. Já Caiu nos Principais Vestibulares 
Hidrólise 
1. (ITA SP/2020) 
Quando dissolvidos em água para formar soluções com concentração 0,1 mol L–1, os sais 
Na2S, NaCH3CO2, NaHSO4 e Na2HPO4 deixam o meio respectivamente 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 23 
 
a) ácido, básico, neutro, básico. 
b) básico, neutro, ácido, neutro. 
c) ácido, básico, ácido, ácido. 
d) básico, básico, ácido, básico. 
e) neutro, neutro, básico, neutro. 
 
 
2. (UFPR/2020) 
Os principais parâmetros que definem a qualidade da água de uma piscina são o pH e a 
alcalinidade. Para a água ser considerada própria, o pH deve ser mantido próximo de 7,0, para 
garantir o conforto do banhista e a eficácia dos agentes bactericidas. Já a alcalinidade, expressa 
em concentração de íon bicarbonato, deve ser em torno de 100 g m–3. A propriedade anfotérica 
desse íon garante que qualquer substância ácida ou básica introduzida seja prontamente 
neutralizada, conforme mostram as equações químicas abaixo: 
 
HCO3–(aq) + H+(aq) H2O(l) + CO2(g) 
HCO3–(aq) + OH–(aq) H2O(l) + CO32–(aq) 
 
Ao adicionar carbonato de sódio na água de uma piscina, que está em condições consideradas 
adequadas para o banho, ocorrerá: 
 
a) pequena diminuição do pH e da alcalinidade. 
b) pequena diminuição do pH e pequeno aumento da alcalinidade. 
c) pequeno aumento do pH e da alcalinidade. 
d) pequeno aumento do pH e pequena diminuição da alcalinidade. 
e) pequena diminuição do pH e nenhuma variação da alcalinidade. 
 
 
3. (UNIFOR CE/2020) 
Soluções alcalinas, em geral, não devem ser armazenadas em frascos de vidro, uma vez que 
a substância pode reagir com o SiO2 (principal constituinte do vidro), que é um óxido ácido. 
Sabendo disto, assinale a alternativa que traz uma substância que poderia ser armazenada, 
na forma de solução saturada, em frascos de vidro, sem causar problemas. 
 
a) NaOH 
b) NH3 
c) KOH 
d) KCl 
e) Ba(OH)2 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 24 
 
 
4. (Mackenzie SP/2020) 
A aragonita e a dolomita são minerais que possuem composição química muito semelhante, 
pois ambas compostas por carbonatos. A aragonita é composta de carbonato de cálcio (CaCO3); 
enquanto a dolomita, de carbonato de cálcio e magnésio (CaCO3 MgCO3). Assim, ao fazer a 
análise da qualidade da água mineral de uma fonte que está localizada numa região, cujo solo 
possui elevada composição de dolomita e aragonita, um químico fez as seguintes afirmações: 
 
I. trata-se de uma água alcalina. 
II. há elevada concentração de íons trivalentes, devido à presença do cálcio. 
III. trata-se de uma água dura, devido ao excesso de íons cálcio e magnésio. 
 
Das afirmações acima, somente 
 
a) a afirmação I é verdadeira. 
b) a afirmação II é verdadeira. 
c) as afirmações II e III são verdadeiras. 
d) as afirmações I e II são verdadeiras. 
e) as afirmações I e III são verdadeiras. 
 
 
5. (FAMEMA SP/2020) 
A figura representa uma estação de tratamento de água para abastecimento da população, 
onde ocorrem os processos de coagulação, floculação, filtração e desinfecção. 
 
 
(www.ufrgs.br. Adaptado.) 
 
Para a realização da coagulação, são adicionadas à água a ser tratada as substâncias sulfato 
de alumínio (Al2(SO4)3) e cal hidratada (Ca(OH)2), que produzem flocos de densidade mais 
elevada que sedimentam na etapa de decantação. Os flocos que não sedimentam são retidos 
na etapa de filtração e, ao final, adiciona-se à água hipoclorito de sódio (NaClO) para 
desinfecção. 
 
a) A que funções inorgânicas pertencem as substâncias utilizadas na coagulação? 

t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 25 
b) Uma solução de NaClO apresenta caráter ácido, básico ou neutro? Justifique sua resposta 
com base no conceito de hidrólise salina. 
 
6. (FPS PE/2020) 
Um estagiário de laboratório entrega ao gerente do almoxarifado a seguinte mensagem: 
 
 
 
Está de acordo com a necessidade do estagiário a seguinte lista de substâncias: 
 
a) hexano, NaOH, H2SO4, NH4Cl e KMnO4. 
b) acetona, Mg(OH)2, HClO4, Na2S e CrO3. 
c) benzeno, LiOH, HNO3, LiCl e LiAlH4. 
d) etanol, AgOH, HCl, K2SO4 e NaBH4. 
e) cicloexano, Al(OH)3, H2S, NH4NO3 e Na2Cr2O7. 
 
 
7. (ENEM/2020) 
A agricultura de frutas cítricas requer que o valor do pH do solo esteja na faixa ideal entre 5,8 
e 6,0. Em uma fazenda, o valor do pH do solo é 4,6. O agricultor resolveu testar três produtos de 
correção de pH em diferentes áreas da fazenda. O primeiro produto possui íons sulfato e amônio, 
o segundo produto possui íons carbonato e cálcio e o terceiro produto possui íons sulfato e sódio. 
 
O íon que vai produzir o efeito desejado de correção no valor do pH é o 
 
a) cálcio, porque sua hidrólise produz H+, que aumenta a acidez. 
b) amônio,porque sua hidrólise produz H+, que aumenta a acidez. 
c) sódio, porque sua hidrólise produz OH–, que aumenta a alcalinidade. 
d) sulfato, porque sua hidrólise produz OH–, que aumenta a alcalinidade. 
e) carbonato, porque sua hidrólise produz OH–, que aumenta a alcalinidade. 
 
8. (ENEM/2020) 
Reflorestamento é uma ação ambiental que visa repovoar áreas que tiveram a vegetação 
removida. Uma empresa deseja fazer um replantio de árvores e dispõe de cinco produtos que 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 26 
podem ser utilizados para corrigir o pH do solo que se encontra básico. As substâncias presentes 
nos produtos disponíveis são: CH3COONa, NH4Cl, NaBr, NaOH e KCl. 
 
A substância a ser adicionada ao solo para neutralizá-lo é 
 
a) CH3COONa. 
b) NH4Cl. 
c) NaBr. 
d) NaOH. 
e) KCl. 
 
9. (IBMEC SP Insper/2019) 
Um agricultor pretende iniciar um empreendimento de produção de frutas e, para isso, 
submeteu amostras do solo de sua propriedade para análise química e parecer técnico de um 
engenheiro agrônomo. 
 
 
 
Para que o agricultor possa fazer a correção do pH do solo de forma adequada para a sua 
produção, ele deverá adicionar ao solo 
 
a) NaCl. 
b) P4O10. 
c) KNO3. 
d) NH4Cl. 
e) CaO. 
 
 
10. (UCB DF/2019) 
Considere a equação química não balanceada a seguir. 
 
K2Cr2O7 + NaBr + H2SO4 K2SO4 + Cr2 (SO4)3 + Na2SO4 + H2O + Br2 
 
É importante observar que as substâncias presentes nessa reação pertencem a diferentes 
funções inorgânicas. As funções inorgânicas e orgânicas são famílias de compostos que 
possuem, em regra geral, propriedades químicas semelhantes. 
→
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 27 
 
Com base no exposto, com relação às propriedades das funções inorgânicas e a respeito da 
reação apresentada, assinale a alternativa correta. 
 
a) A substância K2Cr2O7 é um exemplo de óxido básico. 
b) Uma solução aquosa de sulfato de potássio é tão ácida quanto uma solução aquosa de 
sulfato de cromo III. 
c) O ácido sulfúrico é um oxiácido moderado, com pKa de valor positivo. 
d) Na reação, o brometo de sódio é o agente oxidante, e o dicromato de potássio é o agente 
redutor. 
e) A soma dos menores coeficientes estequiométricos inteiros que balanceiam a equação 
química é igual a 29. 
 
 
11. (PUC RS/2019) 
Os hidretos iônicos ou salinos constituem um importante grupo de compostos binários 
formados por hidrogênio e metais alcalinos ou alcalinos terrosos. O hidrogênio, ao estabelecer 
ligação química com esses metais, apresenta comportamento similar ao dos halogênios. O 
composto resultante é agente redutor forte, tem caráter básico forte e apresenta algumas 
propriedades dos compostos iônicos típicos. Contudo, não é possível preparar uma solução 
aquosa de um hidreto iônico, pois ele reage com a água, em uma reação de oxidação-redução, 
formando novos compostos. Usando como exemplo o hidreto de sódio, podemos concluir que a 
equação química que melhor representa o comportamento desse hidreto iônico quando 
misturado à água é 
 
a) NaH + H2O NaOH + H2 
b) NaH + H2O Na+ + H3O+ 
c) 2 Na2H + 2 H2O 2Na2O + 3 H2 
d) NaH + 2 H2O Na+ + H– + H3O+ + OH– 
 
 
12. (UFGD MS/2019) 
Um técnico de química encontra em um laboratório quatro frascos sem nenhuma indicação 
sobre seus respectivos conteúdos. Ele os rotula individualmente com a identificação A, B, C e D. 
O mesmo técnico ao analisar a lista dos reagentes que se encontra no referido laboratório 
identifica que não foram encontrados quatro frascos correspondentes às seguintes substâncias: 
HCl, AgNO3, Glicose e KOH. Logo, para determinar o conteúdo de cada frasco, o técnico realiza 
alguns experimentos cujos dados estão apresentados a seguir. 
 
→
→
→
→
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 28 
 
 
Sabendo que a fenoftaleína é um indicador que se adicionado a soluções com pH maiores que 
8,5 as torna rosas e em soluções com pH menores que 8,5 estas permanecem incolores, e com 
a análise dos dados da tabela, o técnico determinou os frascos A, B, C e D como sendo, 
respectivamente: 
 
a) Glicose, HCl, KOH, AgNO3. 
b) AgNO3, glicose, KOH, HCl. 
c) Glicose, AgNO3, HCl, KOH . 
d) Glicose, HCl, AgNO3, KOH. 
e) AgNO3, glicose, HCl, KOH. 
 
 
13. (UniCESUMAR PR/2019) 
Para diminuir a acidez de um molho de tomate, uma cozinheira adicionou fermento químico, 
cujo principal componente é o bicarbonato de sódio, NaHCO3. Esse procedimento é adequado 
porque o molho de tomate possui 
 
a) pH < 7 e o bicarbonato de sódio é um sal ácido. 
b) pH < 7 e o bicarbonato de sódio é um sal básico. 
c) pH = 7 e o bicarbonato de sódio é um sal neutro. 
d) pH > 7 e o bicarbonato de sódio é um sal básico. 
e) pH > 7 e o bicarbonato de sódio é um sal ácido. 
 
 
14. (FAMERP SP/2019) 
O hipoclorito de sódio é utilizado na desinfecção da água para o consumo humano devido à 
ação oxidante do íon ClO–. No entanto, esse sal sofre hidrólise de acordo com a seguinte 
sequência de reações: 
NaClO Na+ + ClO– 
ClO– + H2O HClO + OH– 
O número de oxidação do cloro no íon hipoclorito e a condição ideal para aumentar a 
concentração desse íon na solução são 
 
→
→
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 29 
a) +1 e pH < 7. 
b) –1 e pH > 7. 
c) +1 e pH > 7. 
d) +2 e pH > 7. 
e) –1 e pH < 7. 
 
 
15. (IBMEC SP Insper/2019) 
Um professor de laboratório preparou uma aula de química empregando algumas substâncias 
trazidas pelos alunos: açúcar (C12H22O11), sal (NaCl), cal (CaO) e amido de milho ((C6H10O5)n), 
que é um polímero natural. As substâncias foram rotuladas aleatoriamente de 1 a 4 e submetidas 
a testes de solubilidade, condutividade elétrica da solução (experimento representado na figura) 
e de caráter ácido-base com uso de papel indicador de pH. 
 
 
 
Os resultados obtidos pelos alunos estão apresentados na tabela. 
 
 
 
Com base nos resultados dos testes, os alunos concluíram que as substâncias 1, 2, 3 e 4 são, 
respectivamente, 
 
a) cal, açúcar, amido de milho e sal. 
b) amido de milho, cal, sal e açúcar. 
c) sal, amido de milho, açúcar e cal. 
d) açúcar, sal, cal e amido de milho. 
e) açúcar, amido de milho, sal e cal. 
 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 30 
 
16. (UNEB BA/2019) 
Os fertilizantes utilizados na reposição dos elementos químicos indispensáveis para o 
desenvolvimento dos vegetais são constituídos por sais inorgânicos, como o nitrato de potássio, 
KNO3(s), hidrogeno-fosfato de cálcio, CaHPO4(s), cloreto de amônio, NH4Cl(s), dentre outros. Os 
nutrientes são absorvidos pelas raízes das plantas sob a forma de íons, obtidos pela dissolução 
dos sais na água retida no solo, e dependem do pH do ambiente. 
 
Com base nas informações associadas às estruturas e às propriedades dos sais inorgânicos, 
é correto afirmar: 
 
01. O cloreto de amônio é um composto molecular ionizável por ser formado por elementos 
químicos classificados como não metais. 
02. A dissolução do cloreto de amônio na água encontrada no solo contribui para a redução 
do pH desse ambiente devido à hidrólise do íon amônio. 
03. O átomo de nitrogênio do ânion nitrato, presente no KNO3(s), possui um par de elétrons 
não ligantes disponível na sua camada de valência. 
04. A reação química de neutralização parcial entre o ácido fosforoso e o hidróxido de cálcio 
leva à formação do hidrogeno-fosfato de cálcio. 
05. O maior raio iônico do cátion cálcio, Ca2+, em relação ao raio do íon potássio, K+, favorece 
a interação entre o íon bivalente e as moléculas deágua. 
 
 
17. (Unifacs BA/2019) 
Com a demanda crescente por baterias de smartphones e carros elétricos, a Bolívia sonha 
com a riqueza que poderia acumular com a extração de sal de lítio existente sob o enorme 
deserto Solar de Uyuni, enquanto a população indígena Aimará recolhe e vende sal, NaCl, 
incrustado na superfície. O sal de lítio, bem mais valioso, está dissolvido na salmoura e 
acumulado nas profundezas. Tanques de evaporação formam um mosaico na usina-piloto de 
processamento em Llipi. As instalações começaram em 2013 a produzir carbonato de lítio, 
Li2CO3, a partir da salmoura de sulfato de lítio bombeado a 20 metros de profundidade. O sal 
extraído, uma vez dissolvido em água, reage com hidróxido de cálcio, Ca(OH)2, e o produto em 
solução, obtido, é transformado em carbonato de lítio, que é levado para a produção de baterias 
de lítio-íons. A meta é produzir carbonato de lítio com 99,5% de pureza e 15 mil toneladas por 
ano. 
 
Uma análise das informações do texto e com base nos conhecimentos de Química, é correto 
afirmar: 
 
01. O sulfato de lítio é representado pela fórmula molecular LiSO4. 
02. O íon de lítio tem configuração eletrônica representada por [He]2s1. 
03. A solução de carbonato de lítio produzida na usina-piloto, tem pH menor que sete. 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 31 
04. Após evaporação da solução bombeada, a concentração do sulfato de lítio diminui, por 
que permite a cristalização do sal extraído. 
05. O sulfato de lítio, ao reagir com hidróxido de cálcio, forma hidróxido de lítio na proporção 
estequiométrica de 1:1, entre os reagentes. 
 
 
18. (ENEM/2019) 
O processo de calagem consiste na diminuição da acidez do solo usando compostos 
inorgânicos, sendo o mais usado o calcário dolomítico, que é constituído de carbonato de cálcio 
(CaCO3) e carbonato de magnésio (MgCO3). Além de aumentarem o pH do solo, esses 
compostos são fontes de cálcio e magnésio, nutrientes importantes para os vegetais. 
 
Os compostos contidos no calcário dolomítico elevam o pH do solo, pois 
 
a) são óxidos inorgânicos. 
b) são fontes de oxigênio. 
c) o ânion reage com a água. 
d) são substâncias anfóteras. 
e) os cátions reagem com a água. 
 
 
19. (UNIFENAS MG/2019) 
A maioria dos líquidos de nosso corpo, como a lágrima, o sangue e a bile, possui pH entre 6 e 
8. O suco gástrico é uma importante exceção. Muito ácido, com pH entre 1 e 3, ele é produzido 
pelas células de uma mucosa que reveste nosso estômago e é formado principalmente por ácido 
clorídrico. Um adulto produz entre 2L e 3L de suco gástrico por dia. Quando os alimentos chegam 
ao nosso estômago, essa produção aumenta. Má alimentação ou fatores emocionais podem 
provocar um excesso dessa produção, o que ocasiona um desconforto conhecido como azia, 
acidez estomacal ou má digestão. 
Assinale a alternativa que contenha respectivamente a fórmula do principal ácido responsável 
pelo baixo pH do suco gástrico, de uma substância de caráter básico encontrada nos antiácidos 
mais comuns, do produto da reação de neutralização total do ácido clorídrico com o hidróxido de 
alumínio e de uma substância, que, quando dissolvida em água pura, obtém-se uma solução 
com pH menor que 7. 
 
a) HClO, NaHCO3, Al(OH)3, H2CO3. 
b) HCl, NaOH, Al(OH)3, H2SO4. 
c) HCl, Mg(OH)2, AlCl3, (NH4)2SO4. 
d) HClO, NaOH, AlClO, NaCl. 
e) HCl, NaHCO3, AlCl3, CaCO3. 
 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 32 
 
20. (USF SP/2018) 
O nitrato de prata (AgNO3) é um composto usado na fórmula de alguns colírios, pois age como 
remédio antisséptico oftalmológico e evita infecções nos olhos dos bebês recém-nascidos. 
 
Considerando os elementos que constituem essa substância, percebe-se que 
 
Dados: 
• Números atômicos: N = 7, O = 8 e Ag = 47. 
• Massas atômicas em g/mol: N = 14,0; O = 16, 0 e Ag = 108,0. 
 
a) a solução aquosa derivada da dissolução desse sal apresentará um pH superior a 7,0. 
b) o número de oxidação da prata no AgNO3 é +2. 
c) por ser um metal de grande utilização pela sociedade, a prata é classificada como um 
elemento representativo. 
d) trata-se de um sal solúvel derivado de uma reação entre um ácido forte e uma base 
insolúvel. 
e) se a solução aquosa de AgNO3 for de 1,0 mmol/L, ao se gotejar um 1,0 mL dessa solução, 
a massa de nitrato de prata disponível será de 0,00047 g. 
 
 
21. (UEFS BA/2018) 
Em uma aula de química, a professora desenhou na lousa o esquema representado a seguir. 
 
 
Em seguida fez duas perguntas para a turma: Qual é o pH da solução 1? Das três soluções, 
qual é aquela que tem o pH mais alto? 
As respostas corretas às perguntas feitas pela professora são 
 
a) pH = 3 e solução 2. 
b) pH = 1 e solução 2. 
c) pH = 2 e solução 2. 
d) pH = 2 e solução 3. 
e) pH = 3 e solução 3. 
 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 33 
22. (UNIUBE MG/2016) 
A hidrólise salina é um processo no qual o(s) íon(s) do sal formado(s) pela neutralização entre 
ácido e base pode(m) reagir com a água do meio deixando a solução ácida, básica ou mantendo-
a neutra. Um grupo de alunos misturou uma solução de hidróxido de amônio com uma de ácido 
cianídrico, ambas de mesma concentração, e fez as seguintes afirmações: 
 
Dados: HCN (Ka = 4,9·10–10); NH4OH (Kb = 1,8·10–5) 
 
I. A hidrólise ocorre com o íon NH4+, deixando o meio básico. 
II. A reação envolvida seria CN–(aq) + H2O(l) ⇌ HCN(aq) + OH–(aq), pois a base é mais forte. 
III. O sal formado será neutro, pois o ácido e a base são fracos. 
 
É(São) VERDADEIRA(S) a(s) afirmação(ões) contida(s) em: 
 
a) I, apenas 
b) II, apenas 
c) III, apenas 
d) I e II, apenas 
e) II e III, apenas 
 
23. (UEPG PR/2015) 
No tratamento da água de uma piscina, realizou-se a cloração através da adição diária de 
solução aquosa de hipoclorito de sódio, NaCO(aq) a 15% (m/v), na proporção de 30 mL/m3. 
Sobre as substâncias envolvidas e o processo do qual participam, assinale o que for correto. 
 
01. O hipoclorito de sódio é um sal solúvel em água que se dissocia facilmente. 
02. O hipoclorito de sódio é derivado de um ácido fraco (ácido hipocloroso) e de uma base 
forte (hidróxido de sódio). 
04. A dissociação do hipoclorito de sódio, em meio aquoso, pode ser representada como: 
NaCO(aq) → Na+(aq) + CO–(aq) 
08. Em meio aquoso, parte dos íons hipoclorito sofre hidrólise, reconstituindo o ácido 
hipocloroso. 
16. A adição diária de hipoclorito de sódio por m3 corresponde a 4,5 g desse sal. 
 
24. (UFSCAR SP/2015) 
Durante uma aula de laboratório sobre propriedades de substâncias químicas em solução, um 
professor apresentou aos estudantes soluções aquosas, na concentração 0,1 mol/L das 
seguintes substâncias: 
 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 34 
 
 
Em seguida, o professor solicitou aos estudantes que indicassem as soluções para as quais a 
medida de pH, a 25 °C resulta próxima de 7,0. 
É correto afirmar que são as soluções 
 
a) KNO3 (aq) e C6H12O6 (aq). 
b) NH4OH (aq) e KNO3 (aq). 
c) NH4OH (aq) e C6H12O6 (aq). 
d) KNO3(aq) e H3CCOOH (aq). 
e) H3CCOOH (aq) e C6H12O6 (aq). 
 
25. (FCM PB/2015) 
O estado de equilíbrio existente num frasco contendo solução de amoníaco, mantido fechado 
e na temperatura de 25 °C, pode ser representado pela equação: 
 
NH4OH (aq) ⇌ NH4+ (aq) + OH– (aq) KB = 2,0·10–5 
 
Com base nas informações, analise as afirmativas abaixo. (log 2 = 0,3) 
 
I. Uma solução 0,2 mol·L–1 de amoníaco apresenta pH = 11,3, a 25 °C. 
II. A adição de cristais NH4Br à solução, aumenta o valor do KB do NH4OH. 
III. A adição de cristais de NaOH à solução, diminuio valor do grau de ionização do NH4OH. 
 
Está (ão) correta (s) apenas a(s) afirmativa(s): 
 
a) I e II. 
b) II e III. 
c) I e III. 
d) II. 
e) III. 
 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 35 
KPS 
26. (FUVEST SP/2020) 
O experimento conhecido como “chuva de ouro” consiste na recristalização, à temperatura 
ambiente, de iodeto de chumbo (PbI2). A formação desse sal pode ocorrer a partir da mistura 
entre nitrato de chumbo (Pb(NO3)2) e iodeto de potássio (KI). Outro produto dessa reação é o 
nitrato de potássio (KNO3) em solução aquosa. 
Tanto o Pb(NO3)2 quanto o KI são sais brancos solúveis em água à temperatura ambiente, 
enquanto o PbI2 é um sal amarelo intenso e pouco solúvel nessa temperatura, precipitando como 
uma chuva dourada. 
Em um laboratório, o mesmo experimento foi realizado em dois frascos. Em ambos, 100 mL 
de solução 0,1 mol.L–1 de Pb(NO3)2 e 100 mL de solução 0,2 mol.L–1 de KI foram misturados. Ao 
primeiro frasco foi também adicionado 20 mL de água destilada, enquanto ao segundo frasco foi 
adicionado 20 mL de solução 0,1 mol.L–1 de iodeto de sódio (NaI). 
 
 
 
A tabela a seguir apresenta os dados de solubilidade dos produtos da reação em diferentes 
temperaturas. 
 
 
 
Responda aos itens a seguir considerando os dados do enunciado e o equilíbrio químico de 
solubilidade do iodeto de chumbo: 
 
PbI2(s) Pb2+(aq) + 2I–(aq) 
 
a) Indique se o procedimento do segundo frasco favorece ou inibe a formação de mais sólido 
amarelo. 
b) Para separar o precipitado da solução do primeiro frasco e obter o PbI2 sólido e seco, foi 
recomendado que, após a precipitação, fosse realizada uma filtração em funil com papel de filtro, 
seguida de lavagem do precipitado com água para se retirar o KNO3 formado e, na sequência, 
esse precipitado fosse colocado para secar. Nesse caso, para se obter a maior quantidade do 
PbI2, é mais recomendado o uso de água fria (4 ºC) ou quente (80 ºC)? Justifique. 
c) Encontre a constante do produto de solubilidade (KPS) do iodeto de chumbo a 32 ºC. 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 36 
 
27. (FUVEST SP/2020) 
Muitos metais (Mn+) em água, dependendo do pH da solução, formam hidróxidos (M(OH)n) 
insolúveis. 
 
Esse comportamento pode ser descrito pela equação (I), que relaciona o valor de pH com o 
logaritmo da concentração do metal (log [Mn+]), para uma dada temperatura, em que KPS é a 
constante do produto de solubilidade do hidróxido do metal. 
 
Equação (I): log[Mn+] = log(KPS) + 14n – n(pH) 
 
O comportamento da equação (I) é representado no gráfico, no qual as linhas mostram o valor 
de pH e log[Mn+] em que se inicia a precipitação de cada um dos metais. Em condições mais 
alcalinas do que a apresentada na linha de cada metal, será observada a espécie insolúvel como 
hidróxido e, em condições mais ácidas do que a apresentada na linha, será observada a espécie 
em sua forma solúvel. 
 
a) Pinte, no gráfico abaixo, a região onde o Cr3+ se encontra na forma solúvel e o Ti4+ se 
encontra na forma de Ti(OH)4 insolúvel. 
b) As linhas que representam Mg2+ e Ca2+ possuem a mesma inclinação, mas diferem da 
inclinação das linhas que representam Cr3+ e Xn+, que possuem a mesma inclinação entre si. 
Indique a carga n de Xn+ e justifique com base na equação (I). 
c) Indique qual das espécies tem maior valor de KPS: Ca(OH)2 ou Mg(OH)2. Justifique com 
base nas informações dadas. 
 
28. (UEM PR/2020) 
A 20 ºC e em água, a solubilidade do AgCl é 0,0016 g/L, enquanto a solubilidade do Ag2CrO4 
é 0,025 g/L. Sobre o assunto, assinale o que for correto. 
 
01. Como a solubilidade do cloreto de prata é menor do que a do cromato de prata, o produto 
de solubilidade do cloreto de prata também é menor. 
02. Ao se adicionarem 0,0015 g de AgCl e 0,024 g de Ag2CrO4 em um frasco contendo 1L de 
água, haverá a formação de dispersão homogênea. 
04. Para o Ag2CrO4, Ks = 1,7 10–12 (mol/L)3. 
08. O AgNO3 é solúvel em água, portanto a adição de ácido nítrico a uma solução saturada 
de AgCl fará que a solubilidade desse sal aumente. 

t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 37 
16. Uma solução com concentração de cromato de prata maior que 0,0001 mol/L, a 20 ºC, 
será saturada. 
 
 
29. (UFRGS RS/2020) 
Uma suspensão de sulfato de bário pode ser usada como agente de contraste em exames de 
raios-X. O sulfato de bário é um sal pouco solúvel, com constante do produto de solubilidade 1,1
10–10. 
Em relação a uma solução aquosa saturada desse sal, contendo uma certa quantidade de sal 
sólido, não dissolvido, são feitas as seguintes afirmações. 
 
I. A adição de nitrato de bário diminui a quantidade de sólido não dissolvido. 
II. A adição de sulfato de sódio aumenta a quantidade de sólido não dissolvido. 
III. Uma reação reversível, na qual a dissolução do sal é exatamente contrabalançada pela 
sua precipitação, é estabelecida nessa situação. 
 
Quais estão corretas? 
 
a) Apenas I. 
b) Apenas II. 
c) Apenas I e III. 
d) Apenas II e III. 
e) I, II e III. 
 
30. (IME RJ/2019) 
Quanto à precipitação do hidróxido férrico (KPS = 1,0 10–36) em uma solução 0,001 molar de 
Fe3+, é correto afirmar que 
 
a) independe do pH. 
b) ocorre somente na faixa de pH alcalino. 
c) ocorre somente na faixa de pH ácido. 
d) não ocorre para pH < 3 
e) ocorre somente para pH 12. 
 
31. (FCM PB/2019) 
Quando um indivíduo se queixa de azia e acidez estomacal, é possível tratar tal manifestação 
clínica com uma suspensão de hidróxido de magnésio, Mg(OH)2, denominada comercialmente 
de “leite de magnésia”. Considerando que o Mg(OH)2 é uma base fraca pouco solúvel em água 
e que a solubilidade, a 25ºC, é 10–4 mol.L–1, qual será o valor do produto de solubilidade (KPS) 
para esse composto? 



t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 38 
 
a) 1,0 10–12 
b) 1,0 10–8 
c) 2,0 10–8 
d) 4,0 10–12 
e) 4,0 10–20 
 
32. (PUC Camp SP/2019) 
Recifes, por definição, são estruturas rígidas criadas pela ação de seres vivos. No caso da foz 
do rio Amazonas, algas que transformam o carbonato presente no oceano em um “esqueleto” de 
calcário começaram a se incrustar na rocha e criaram condições para outro tipo de alga calcária, 
os rodolitos. Em seguida, vieram corais, esponjas e poliquetas. Conforme uns vão morrendo, 
outros nascem por cima. Por milhares de anos, a massa cresceu até formar o recife. Um processo 
longe de um fim. 
(Adaptado de: Revista Galileu, junho de 2018, p. 65) 
 
A formação do “esqueleto” de calcário é regida pelo seguinte equilíbrio químico: 
 
CaCO3(s) Ca2+(aq) + CO (aq) 
 
A expressão da constante de equilíbrio para esse sistema é: 
 
a) 
b) 
c) 
d) 
e) Kps = [CaCO3] 
 
 
33. (UECE/2019) 
Foi realizada uma experiência, intitulada “Para onde foi o sólido que estava aqui?”, cujo 
procedimento foi o seguinte: 
 
1. Colocou-se uma solução saturada de hidróxido de cálcio (água e cal) até 
aproximadamente a metade da capacidade de um tubo de ensaio. 
2. Em seguida, com o auxílio de um canudo, soprou-se a solução, o que fez com que, logo 
após, surgisse um sólido branco em seu interior. 





−2
3
]CaCO[
]CO][Ca[
K
3
2
3
2
ps
−+
=
]CO][Ca[k 23
2
ps
−+=
]CO][Ca[
1
k
2
3
2ps −+
=
]CO][Ca[
]CaCO[
k
2
3
2
3
ps −+
=
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 39 
3. Continuou-se soprando até que o sólido branco desapareceu. 
 
Com relação a essa experiência, é correto concluir-se que 
 
a) na preparação da solução saturada de hidróxido de cálcio, a quantidade desse hidróxido,pesada na temperatura ambiente, foi menor do que sua solubilidade nessa temperatura. 
b) o borbulhamento do ar pulmonar implica a introdução de gás carbônico na solução de 
hidróxido de cálcio, formando o íon carbonato 
CO2(g) + 2OH–(aq) CO33–(aq) + H2O(l). 
c) continuando o borbulhamento do gás carbônico, ocorre a dissolução desse precipitado, 
devido à formação do íon bicarbonato 
CaCO3(s)+ CO2(g) + H2O(l) Ca2+(aq) + 2HCO33–(aq). 
d) na presença de íons Ca2+, o íon carbonato leva à formação do seguinte precipitado de 
carbonato de cálcio: 
Ca2+(aq) + CO32–(aq) CaCO3(s). 
 
34. (UDESC SC/2018) 
O oxalato de cálcio (CaC2O4) é um sal pouco solúvel (Kps = 1 10–8), sendo a substância 
encontrada em maior quantidade em cálculos renais (pedras nos rins). Alimentação rica em 
oxalatos, baixo consumo de água e propensão genética parecem estar associados à formação 
de cálculos renais em humanos. 
 
Acerca do oxalato de cálcio, assinale a alternativa incorreta. 
 
a) Sua solubilidade em água pura é de 1 10–8 mol/L, o que equivale a aproximadamente 1,3 
mg/L. 
b) É um sal derivado da reação entre uma base forte com um ácido fraco, portanto, tem 
reação levemente alcalina em água. 
c) Sua solubilidade em água pode ser aumentada pela diminuição do pH do meio e diminuída 
pela presença de íons cálcio e/ou oxalato. 
d) Sua formação nos rins pode ser facilitada pela ingestão de água mineral rica em cálcio. 
e) A expressão do seu produto de solubilidade em uma solução saturada, com ou sem corpo 
de fundo, em uma solução com baixa concentração de outros sais, é [Ca2+][C2O42–]. 
 
35. (UNCISAL/2018) 
O principal constituinte mineralógico do calcário é a calcita, que contém grande quantidade de 
carbonato de cálcio. A decomposição térmica (calcinação) do calcário gera a cal virgem, CaO, 
matéria-prima para a produção de cimento e muito utilizada na agricultura para reduzir a acidez 
do solo (calagem). Com base em reações que envolvem o carbonato de cálcio e o óxido de 
cálcio, assinale a alternativa correta. 
Dado: Kps (CaCO3) = 4,7 10–9 
 



t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 40 
a) A reação do óxido de cálcio com água forma o hidróxido de cálcio, muito utilizado como 
agente coagulante em estações de tratamento de água. 
b) A mistura de 1,0 10–5 mol de íons Ca2+ e 5,0 10–5 mol de íon CO32–, em 1,0 L de água, 
resulta em uma solução saturada de carbonato de cálcio. 
c) O óxido de cálcio apresenta caráter anfótero. 
d) A adição da cal virgem a uma solução aquosa de ácido clorídrico, com reação completa, 
resulta em uma solução ácida. 
e) A massa de óxido de cálcio formada pela decomposição térmica de 100 g de carbonato 
de cálcio, considerando um rendimento de 80%, é 44,8 g. 
 
36. (FAMERP SP/2018) 
Em uma suspensão aquosa de cal hidratada ocorre o seguinte equilíbrio: 
 
Ca(OH)2 (s) Ca2+ (aq) + 2OH– (aq) 
 
A constante desse equilíbrio, também conhecida como Kps, é calculada pela expressão 
 
a) [Ca2+] x [OH–]2 
b) [Ca2+] / [OH–]2 
c) [Ca2+] x [2OH–] 
d) [Ca2+] + [2OH–]2 
e) [Ca2+] x [OH–] 
 
37. (FUVEST SP/2018) 
No acidente com o césio-137 ocorrido em 1987 em Goiânia, a cápsula, que foi aberta 
inadvertidamente, continha 92 g de cloreto de césio-137. Esse isótopo do césio sofre decaimento 
do tipo beta para bário-137, com meiavida de aproximadamente 30 anos. 
Considere que a cápsula tivesse permanecido intacta e que hoje seu conteúdo fosse dissolvido 
em solução aquosa diluída de ácido clorídrico suficiente para a dissolução total. 
 
a) Com base nos dados de solubilidade dos sais, proponha um procedimento químico para 
separar o bário do césio presentes nessa solução. 
b) Determine a massa do sal de bário seco obtido ao final da separação, considerando que 
houve recuperação de 100 % do bário presente na solução. 
 
Note e adote: 
Solubilidade de sais de bário e de césio (g do sal por 100 mL de água, a 20 ºC). 
 
Massas molares: 
 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 41 
cloro ..... 35,5 g/mol 
enxofre ..... 32 g/mol 
oxigênio ..... 16 g/mol 
 
38. (ACAFE SC/2018) 
O sulfato de bário pode ser utilizado na medicina como meio de contraste radiológico do tubo 
gastrointestinal. Já o cloreto de sódio é encontrado em soro fisiológico que pode ser utilizado na 
lavagem dos olhos, nariz, feridas e lentes de contato. Em um laboratório de Química um aluno 
misturou 250 mL de uma solução de cloreto de bário (0,4 mol/L) com 150 mL de uma solução de 
sulfato de sódio (0,2 mol/L), formando um precipitado branco (sulfato de bário) e cloreto de sódio. 
Dados: Massa molar do sulfato de bário = 233 g/mol. Considere o sulfato de bário 
completamente insolúvel nas condições abordadas. 
 
Baseado nas informações fornecidas e nos conceitos químicos, assinale a alternativa correta 
que contém respectivamente a massa do precipitado formado e a concentração do cloreto de 
sódio formado. 
 
a) 23,3 g e 0,075 mol/L. 
b) 6,99g e 0,15 mol/L. 
c) 23,3 g e 0,15 mol/L. 
d) 6,99 g e 0,075 mol/L. 
 
39. (Faculdade Santo Agostinho BA/2018) 
Quando águas subterrâneas com alta concentração em dióxido de carbono a elevadas 
pressões ultrapassam rochas contendo calcário, ocorre a reação como demonstrado na equação 
a seguir: 
 
CaCO3(s) + CO2(aq) + H2O(l) Ca2+(aq) + 2 HCO (aq) 
 
Considerando a reação direta, pode-se afirmar que o fenômeno descrito 
 
a) favorece a fixação e o aumento de cálcio nas rochas. 
b) facilita a dissolução de carbonato de cálcio. 
c) facilita o aumento da alcalinidade da água. 
d) facilita o aumento de carbono na estrutura da rocha. 
 
40. (IME RJ/2018) 
Admitindo que a solubilidade da azida de chumbo Pb(N3)2 em água seja 29,1 g/L, pode-se 
dizer que o produto de solubilidade (Kps) para esse composto é: (Dados: N = 14 g/mol, Pb = 207 
g/mol) 
−
3
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 42 
 
a) 4,0 10–3 
b) 1,0 10–4 
c) 2,0 10–4 
d) 1,0 10–3 
e) 3,0 10–4 
 
41. (UEL PR/2019) 
A contaminação de ecossistemas em função do crescimento populacional e da industrialização 
tem sido cada vez maior ao longo dos anos, mesmo com o advento de tecnologias voltadas à 
descontaminação ambiental. Um dos efeitos deletérios ao ambiente é a elevada acidez da chuva 
e de solos. A figura a seguir mostra o efeito que a acidez do solo causa na velocidade de 
lixiviação de íons Cd2+. 
 
 
Dados: Kps para Cd(OH)2(s) = 2,5 · 10–14 
Quanto maior a velocidade de lixiviação, maior o transporte de Cd2+ para os lagos por meio da 
corrente superficial ou subsuperficial, transferido para os aquíferos ou absorvido pela vegetação, 
com efeitos tóxicos. 
Com base na figura e nos conhecimentos sobre solubilidade de metais e equilíbrio químico, é 
correto afirmar que a lixiviação de cádmio 
 
a) em solos agrícolas é menor porque a concentração de íons H+ na água do solo é maior se 
comparada à água do solo urbano. 
b) em solos urbanos é maior porque o solo retém mais cádmio na forma de Cd2+ e porque a 
concentração de H+ na água do solo é baixa se comparada ao solo agrícola. 
c) em solos urbanos é maior porque a concentração de cádmio na forma Cd(OH)2(s) é elevada 
se comparada ao solo agrícola. 
d) em solos agrícolas é menor porque usualmente esses solos são tratados com ureia 
(fertilizante com caráter básico), o que pode reduzir o pH da água do solo e, por consequência, 
tornar os íons Cd2+ mais móveis na água do solo. 
e) em solos agrícolas é menor porque usualmente esses solos são tratados com CaCO3, o que 
pode elevar o pH da água do solo e, por consequência, precipitar os íons Cd2+ na forma de 
Cd(OH)2(s), tornando-os menos móveis. 





t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIOIÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 43 
 
42. (UEG GO/2018) 
Um sal hipotético XY apresenta produto de solubilidade (Kps) igual a 1,6·10–23 a determinada 
temperatura. A sua solubilidade, em mol·L–1, é igual a 
 
a) 2·10–6 
b) 3·10–8 
c) 4·10–12 
d) 5·10–16 
e) 6·10–24 
 
43. (UNIFOR CE/2018) 
A precipitação química é um dos métodos utilizados para tratamento de efluentes indústriais, 
tendo como vantagem o baixo custo de agentes alcalinizantes como o Ca(OH)2, capaz de 
remover íons metálicos na forma de precipitados insolúveis. Considere um efluente cuja 
caracterização por espectroscopia de absorção atômica determinou a presença de íons Cr3+ e 
Fe3+ em concentração de 52 mg/L e 560 mg/L, respectivamente. A concentração de hidroxila 
necessária para que ocorra apenas a precipitação de um destes íons na forma de hidróxido deve 
ser 
Dados: 
Cr(OH)3, Kps = 2,7·10–29 
Fe(OH)3, Kps = 8,0·10–38 
massa molar, em g·mol–1: Fe = 56 e Cr = 52 
 
a) Maior que 2,7·10–8 M e menor que 8·10–6 M 
b) Maior que 8,0·10–15 M e menor que 2,7·10–7 M 
c) Maior que 2,0·10–12 M e menor que 3,0·10–9 M 
d) Maior que 3,0·10–7 M e maior que 2·10–5 M 
e) Maior que 9,0·10–10 M e menor que 4·10–8M 
 
44. (UFRGS RS/2018) 
O sulfato de cálcio CaSO4 possui produto de solubilidade igual a 9·10–6. Se uma quantidade 
suficientemente grande de sulfato de cálcio for adicionada a um recipiente contendo 1 litro de 
água, qual será, ao se atingir o equilíbrio, a concentração, em mol L–1, esperada de Ca2+ em 
solução aquosa? 
 
a) 9,0·10–6. 
b) 4,5·10–6. 
c) 3,0·10–6. 
d) 1,5·10–3. 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 44 
e) 3,0·10–3. 
 
45. (UEPG PR/2017) 
Os cálculos renais, popularmente conhecidos como pedra nos rins, são compostos por alguns 
sais pouco solúveis, dentre eles o fosfato de cálcio, Ca3(PO4)2, cujo equilíbrio entre seus íons e 
sua respectiva constante de produto de solubilidade, Kps, estão representados abaixo. Sobre o 
assunto, assinale o que for correto. 
Ca3(PO4)2(s) ⇌ 3Ca2+(aq) + 2PO43–(aq) Kps = 1,3·10–32 
 
01. A constante de produto de solubilidade do fosfato de cálcio pode ser representada como 
Kps = [Ca2+]3[PO43–]2. 
02. O aumento na pressão pode favorecer a formação de pedra nos rins. 
04. Se a concentração de íons [Ca2+] = 1·10–5 mol L–1 e de íons [PO43–] = 1·10–3 mol L–1, haverá 
a precipitação do Ca3(PO4)2(s). 
08. A formação de pedra nos rins é favorecida por uma alta concentração de íons cálcio no 
sangue. 
16. A formação de pedra nos rins é favorecida por uma baixa concentração de íons fosfato no 
sangue. 
 
Solução Tampão 
46. (UniCESUMAR PR/2020) 
Dentre os pares de substâncias presentes nas seguintes alternativas, qual constitui um sistema 
tampão em meio aquoso (solução-tampão)? 
 
a) Na2CO3 e NaHCO3. 
b) HCl e H3PO4. 
c) NaOH e NaCl. 
d) HCl e KBr. 
e) NH3 e NaOH. 
 
47. (UEM PR/2019) 
Um laboratorista dispõe das seguintes soluções estoque: 
 
I) ácido acético 0,1mol/L; pKa = 4,74 
II) acetato de sódio 0,1mol/L 
III) NaOH 0,1mol/L 
IV) HCl 0,1mol/L 
 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 45 
Assinale a(s) alternativa(s) que apresenta(m) uma correta descrição do pH ou das 
características de tamponamento dessas soluções ou de suas misturas. 
 
01) Para se obter uma solução-tampão, pode-se preparar uma solução entre I e II. 
02) A mistura das soluções III e IV formará uma solução-tampão de pH variável, que é 
dependente da proporção de NaOH e HCl utilizados. 
04. Uma solução-tampão preparada pela adição de volumes iguais das soluções I e II terá pH 
= 4,74. 
08. Uma solução-tampão preparada com 300mL da solução I e 100mL da solução III 
apresentará pH > 4,74. 
16. Utilizando-se quantidades apropriadas das quatro soluções é possível preparar uma 
solução-tampão de pH > 9. 
 
48. (UNIT AL/2019) 
O sangue humano, na condição normal, apresenta faixa de pH entre 7,35 e 7,45. Isso é 
decorrente de um sistema tamponante CO2(aq)/HCO3– (aq). Na condição normal, o plasma 
sanguíneo contém cerca de 0,024 molL–1 de HCO3– e 0,0012 molL–1 de CO2(aq). 
Em uma dada condição de pH, diferente do normal, o cérebro lança receptores para que o 
indivíduo respire mais rapidamente e profundamente, de modo que há eliminação do dióxido de 
carbono dos pulmões. 
 
Baseando-se nestas informações, conclui-se: 
 
a) O sangue humano só se encontra na condição normal quando o meio for neutro. 
b) É na condição de pH maior que 7,45 que o cérebro lança receptores para que o indivíduo 
respire mais rapidamente e profundamente. 
c) Sendo a reação do dióxido de carbono com a água exotérmica, a constante de acidez do 
dióxido de carbono na condição ambiente, 25 °C, é maior do que na condição do meio fisiológico, 
37 ºC. 
d) O sistema-tampão que ocorre no sangue só é adequado para diminuir a acidez do meio, 
uma vez que a concentração de HCO3–, na condição normal, é maior que a do CO2(aq). 
e) Caso o pH do sangue seja 7,4, a constante de equilíbrio da reação do hidrogenocarbonato 
com o íon hidrônio, H3O+, para formar dióxido de carbono e água, no meio fisiológico, é 2,0 10–
9. 
 
49. (IFRS/2018) 
O sangue funciona como uma solução-tampão, que evita que o seu pH sofra grandes 
alterações. Esse pH decorre do fato das células produzirem continuamente dióxido de carbono 
como produto do metabolismo celular. Parte desse gás se dissolve no sangue, estabelecendo o 
equilíbrio iônico abaixo. 
 
CO2(aq) + H2O(l) H2CO3(aq) H1+(aq) + HCO3–(aq) 

t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 46 
 
Esses equilíbrios químicos mantêm o pH do sangue em aproximadamente 7,4. A razão normal 
entre o HCO3–(aq) e o H2CO3(aq) é de 20:1, respectivamente. Se ela for alterada, pode causar 
danos ao organismo, devido às alterações metabólicas, podendo causar a morte. 
 
Levando em conta as informações acima, é correto afirmar que 
 
a) a concentração molar do íon H1+(aq) no sangue é, aproximadamente, 7,4 mol/L. 
b) se a quantidade de HCO3–(aq) aumentar muito em relação a H2CO3(aq), o pH do sangue 
da pessoa irá subir (alcalose), deslocando o equilíbrio químico para a esquerda, diminuindo a 
quantidade de H1+(aq). 
c) se a quantidade de HCO3–(aq) aumentar muito em relação a H2CO3(aq), o pH do sangue 
da pessoa irá cair (acidose), deslocando o equilíbrio químico para a direita, diminuindo a 
quantidade de H1+(aq). 
d) Se a concentração molar de gás carbônico no sangue aumenta, o pH sanguíneo aumenta. 
e) Se a concentração molar de gás carbônico no sangue diminui, o pH sanguíneo diminui. 
 
50. (UCS RS/2018) 
Se você está vivo (e deve estar, porque está lendo este texto), agradeça ao pH do seu sangue. 
Isso mesmo! No caso do ser humano, o pH do sangue deve ficar entre 7,3 e 7,5. Uma alteração 
de apenas 0,4 unidades (para mais ou para menos) pode ser fatal. Assim, os médicos devem ter 
na manga uma solução rápida que corrija possíveis variações de pH. E aí, mais uma vez, a 
Química entra em campo. 
Nas células do corpo, o dióxido de carbono é continuamente produzido com um produto 
terminal do metabolismo. Parte desse gás se dissolve no sangue, estabelecendo o seguinte 
equilíbrio químico: 
 
CO2 (g) + H2O (l) H+ (aq) + (aq) 
 
Quando alguém, em uma crise de ansiedade ou de histeria, respira muito rapidamente, esse 
equilíbrio é perturbado, fazendo com que o pH mude rapidamente em poucos minutos. Nesses 
casos, os médicos podem até dar um calmante para que a respiração volte ao normal. Mas, 
quando nem isso funciona, torna-se necessária uma intervenção mais agressiva que consiste, 
em algumas situações, na administração de uma solução aquosa de cloreto de amônio por via 
endovenosa. A situação contrária tambémpode ocorrer. Se a respiração é deficiente, como em 
casos de pneumonia ou de asma, por exemplo, a intervenção médica também deve ser rápida, 
sendo administrada uma solução de bicarbonato de sódio. 
Sem tratamento rápido, ambas as situações podem levar a inúmeras complicações, como 
problemas renais crônicos, inclusive insuficiência renal, doença óssea e atraso no crescimento 
(no caso de diminuição do pH do sangue), além de arritmias cardíacas, coma e desiquilíbrio 
eletrolítico (no caso de aumento do pH do sangue) e, conforme mencionado anteriormente, até 
a morte. 
Disponível em: <http://www1.folha.uol.com.br/folha/educacao/ult305u10444.shtml>. 
Disponível em: <http://www.abc.med.br/p/sinais.-sintomas-e-doencas/820804/acidose+o+que+e+importante+conhecer.htm>. 
Disponível em: <http://www.abc.med.br/p/sinais.-sintomas-e-doencas/820749/alcalose+como+ela+e.htm 
−
3HCO
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 47 
https://www.paisefilhos.com.br/crianca/sete-dicas-para-fazer-exame-de-sangue/>. 
Acesso em: 29 ago. 17. (Parcial e adaptado.) 
 
Com base nas informações apresentadas no texto acima, assinale a alternativa correta. 
 
a) A concentração molar de íons hidrônio em uma amostra de sangue com pH entre 7,3 e 
7,5 é superior a 1,0 10–7 mol/L. 
b) O equilíbrio químico, em uma crise de ansiedade ou histeria, é deslocado para a direita, o 
que implica uma diminuição do pH do sangue. 
c) A administração de uma solução aquosa de cloreto de amônio é recomendada nos casos 
de ansiedade ou histeria, com o objetivo de elevar o pH do sangue, uma vez que somente o 
cátion desse sal sofre hidrólise. 
d) O equilíbrio químico, em casos de pneumonia ou de asma, é deslocado para a esquerda, 
o que implica aumento do pH do sangue. 
e) A administração de uma solução aquosa de bicarbonato de sódio é recomendada nos 
casos de pneumonia ou asma com o objetivo de elevar o pH do sangue, uma vez que somente 
o ânion desse sal sofre hidrólise. 
 
51. (UNIT AL/2018) 
I. CO2 (g) + H2O(l) H2CO3(aq) 
II. H2CO3(aq) + H2O(l) HCO3–(aq) + H3O+(aq) 
 
O sangue humano tem uma variação de pH entre 7,35 e 7,45, e qualquer modificação dessa 
faixa de pH interfere na estabilidade das membranas celulares, estruturas das proteínas e 
atividades enzimáticas, resultando em várias doenças, dentre as quais acidose ou alcalose. O 
sistema tampão ácido carbônico – hidrogeno-carbonato, representado de forma simplificada 
pelas equações químicas I e II, é o principal sistema usado para manter a faixa de pH do sangue. 
 
Considerando-se a análise das informações e os conhecimentos sobre equilíbrio químico em 
soluções aquosas, é correto afirmar: 
 
a) A concentração de íons H3O+(aq) e de íons OH–(aq), no sangue humano, é igual a 1,0
10–7molL–1. 
b) O íon hidrogeno-carbonato, HCO3–, é a base conjugada do ácido carbônico, H2CO3, 
segundo o conceito de Brönsted-Lowry. 
c) Em II, a adição de íons OH– ao sistema desloca o equilíbrio químico no sentido de 
consumo do íon hidrogeno-carbonato. 
d) O ácido carbônico, H2CO3(aq), é um oxiácido forte e estável, de acordo com as reações 
químicas representadas em I e II. 
e) A remoção de moléculas do gás carbônico, durante o processo respiratório, contribui para 
o aumento da concentração do ácido carbônico. 
 
52. (UNIT SE/2016) 


t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 48 
CH3CH(OH)COOH(aq) + H2O(l) CH3CH(OH)COO–(aq) + H3O+(aq) Keq = 1,4 10–4 
 
No interior das células do corpo, acontece a todo instante um número incontável de reações 
químicas, a grande maioria delas requer um pH adequado para ocorrer. Ao impedir variações 
bruscas de pH, o organismo conta com as soluções-tampão. O plasma sanguíneo é o principal 
exemplo, no qual age o tampão ácido láctico/lactato de sódio, CH3CH(OH)COOH / 
CH3CH(OH)COONa. 
 
Considerando-se as informações do texto e associando-se aos estudos sobre equilíbrio 
químico em soluções eletrolíticas, é correto afirmar: 
 
a) A base lactato é conjugada do ácido H3O+(aq). 
b) A adição de pequena quantidade de ácido clorídrico faz diminuir o pH da solução-tampão. 
c) A concentração de ácido láctico na solução-tampão permanece inalterada com o aumento 
de concentração de íons lactato. 
d) Ao se adicionar 0,08 mol de base forte por litro de solução ao sistema em equilíbrio o pH 
da solução-tampão não é alterado. 
e) A solução aquosa que contém 1,2 10–1molL–1 de ácido láctico e 1,0 10–1molL–1 de íons 
lactato possui pH a 25ºC menor do que 4. 
 
53. (UNIT AL/2018) 
I. CO2 (g) + H2O(l) H2CO3(aq) 
II. H2CO3(aq) + H2O(l) HCO3–(aq) + H3O+(aq) 
 
O sangue humano tem uma variação de pH entre 7,35 e 7,45, e qualquer modificação dessa 
faixa de pH interfere na estabilidade das membranas celulares, estruturas das proteínas e 
atividades enzimáticas, resultando em várias doenças, dentre as quais acidose ou alcalose. O 
sistema tampão ácido carbônico – hidrogeno-carbonato, representado de forma simplificada 
pelas equações químicas I e II, é o principal sistema usado para manter a faixa de pH do sangue. 
 
Ainda em relação a equilíbrio químico em soluções aquosas, é correto afirmar: 
 
a) Para o bom funcionamento do organismo, o sangue deve ser ácido. 
b) Se o pH do sangue de uma pessoa for 7,0, ela está com alcalose. 
c) As estruturas das proteínas e as atividades enzimáticas independem do pH do sangue. 
d) Se a concentração de íons OH–(aq) no sangue de uma pessoa for 10–6,85molL–1, ela está 
com acidose. 
e) A membrana celular, por ser lipoproteica, não é influenciada pelas concentrações de íons, 
como H3O+(aq) e OH–(aq). 
 
 
54. (FCM PB/2015) 

 
t.me/CursosDesignTelegramhub
ESTRATÉGIA VESTIBULARES – EQUILÍBRIO IÔNICO – PARTE II 
 
AULA 24 – EQUILÍBRIO IÔNICO – PARTE II 49 
Soluções tampões são bastante utilizadas em laboratórios de química, de bioquímica e de 
alimentos, por evitar grandes alterações do pH do meio reacional. Num laboratório, um estudante 
encontrou na prateleira soluções aquosas de: NaNO3, NH4NO3, NaC, NaOH, HNO3, NH4OH. 
Quais soluções ao serem misturadas, em proporção estequiométrica, podem formar uma solução 
tampão? 
 
a) NaNO3 e HNO3. 
b) NH4NO3 e NH4OH. 
c) NaC e NaOH. 
d) NaOH e NaNO3. 
e) NaC e HNO3. 
 
55. (PUC SP/2018) 
O pH plasmático deve ser mantido na faixa de 7,35 - 7,45. Variações do pH afetam a estrutura 
das proteínas e, consequentemente, os processos bioquímicos. Nosso organismo produz várias 
substâncias capazes de alterar o pH do plasma como, por exemplo, o ácido láctico e os corpos 
cetônicos. A manutenção do pH ideal é feita graças à existência: dos sistemas tampão, do centro 
respiratório e do sistema renal. O principal sistema tampão presente no plasma é constituído por 
ácido carbônico/hidrogenocarbonato. Esse sistema envolve três equilíbrios, os quais estão 
representados abaixo. Observe os equilíbrios e avalie as afirmativas. 
 
(1) CO2 (g) ⇌ CO2(aq) 
(2) CO2 (aq) + H2O () ⇌ H2CO3 (aq) 
(3) H2CO3 (aq) + H2O () ⇌ HCO3- (aq) + H3O+ (aq) 
 
I. O equilíbrio representado na equação 3 mostra o ácido carbônico, que é um ácido fraco, 
e o HCO3- sua base conjugada. 
II. A adição de H3O+, proveniente de uma substância ácida, reage com os íons 
hidrogenocarbonato deslocando o equilíbrio (equação 3) para a esquerda. 
III. A solução tampão impede a variação de pH somente quando substâncias ácidas são 
adicionadas, não sendo possível a manutenção do pH frente à adição de substâncias básicas. 
IV. A solução tampão mantém o pH relativamente constante, independentemente da 
quantidade de H3O+ adicionada. 
 
É CORRETO afirmar que 
 
a) as afirmativas I e II estão corretas. 
b) as afirmativas I e III estão corretas. 
c) as afirmativas II e III estão corretas. 
d) as afirmativas I, II e III estão corretas. 
t.me/CursosDesignTelegramhub

Continue navegando