Logo Passei Direto
Buscar

Lista_de_Exercicios_Campo_Eletrico

User badge image
Neusa Adelina

em

Ferramentas de estudo

Questões resolvidas

1. Uma partícula de carga q = 2,5 . 10-8 C e massa m = 5,0 . 10-4 kg, colocada num determinado ponto P de uma região onde existe um campo elétrico, adquire aceleração de 3,0 . 103 m/s2, devida exclusivamente a esse campo.
a) Qual é o módulo do vetor campo elétrico E nesse ponto?
b) Qual a intensidade da força elétrica que atua numa carga q = 5,0 μC, colocada nesse mesmo ponto P?

a) Se a partícula foi acelerada, ela recebeu a ação de uma força. Nesse caso é exclusivamente a força elétrica. A segunda lei de Newton nos diz que a somatória das forças que atuam no corpo produzem uma aceleração que é proporcional a sua massa de acordo com a relação: F = m . a, mas a força elétrica também pode ser calculada assim: F = q . E, igualando as duas equações temos: q . E = m . a, E = m⋅a / q, substituindo os valores dados no exercício: E = 5⋅10^-4 ⋅ 3⋅10^3 / 2,5⋅10^-8, E = 15⋅10^-1 / 2,5⋅10^-8, E = 6⋅10^7 N/C
b) Nesse ponto sabemos que existe um campo elétrico de módulo E = 6 . 10^7 N/C. Se colocarmos uma carga q = 5 μC = 5 . 10^-6 C; sobre ela atuará uma força elétrica de módulo: F = q . E, F = 5 . 10^-6. 6 . 10^7, F = 30 . 10^1, F = 300 N

2. Uma partícula de carga q = 3,0 μC está em determinado ponto A do espaço.
a) Qual é o módulo, direção e sentido do vetor campo elétrico EB gerado por essa partícula no ponto B, a 30 cm de A?
b) A que distância de A está o ponto C, cujo vetor campo elétrico Ec vale em módulo 2,5 . 10^3 N/C?

a) A partícula de carga q faz aparecer próximo a ela um campo elétrico que para cada ponto no espaço terá um valor numérico, uma direção e um sentido. A direção do vetor será a direção da reta que une a partícula e o ponto (direção radial). O sentido depende do sinal da carga. Como ele é positivo o sentido será de afastamento, ou divergente. Para saber o módulo usamos a expressão: E = ko⋅Q / d^2. Para o item a, a carga q = 3,0 μC = 3 . 10^-6 C; e a distância d = 30 cm = 0,3 m. Substituindo os valores: E = 9⋅10^9 ⋅ 3⋅10^-6 / 0,3^2, E = 27⋅10^3 / 0,09, E = 300⋅10^3, E = 3⋅10^5 N/C
b) Usamos a mesma expressão, só que agora não sabemos a distância que o ponto C está da partícula carregada, mas sabemos que nesse ponto existe um campo elétrico de módulo E = 2,5 . 10^3 N/C, então: E = ko⋅Q / d^2, 2,5⋅10^3 = 9⋅10^9 ⋅ 3⋅10^-6 / d^2; multiplicando em cruz: 2,5⋅10^3 ⋅ d^2 = 27⋅10^3, d^2 = 10,8, d = √10,8, d = 3,28m

Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Questões resolvidas

1. Uma partícula de carga q = 2,5 . 10-8 C e massa m = 5,0 . 10-4 kg, colocada num determinado ponto P de uma região onde existe um campo elétrico, adquire aceleração de 3,0 . 103 m/s2, devida exclusivamente a esse campo.
a) Qual é o módulo do vetor campo elétrico E nesse ponto?
b) Qual a intensidade da força elétrica que atua numa carga q = 5,0 μC, colocada nesse mesmo ponto P?

a) Se a partícula foi acelerada, ela recebeu a ação de uma força. Nesse caso é exclusivamente a força elétrica. A segunda lei de Newton nos diz que a somatória das forças que atuam no corpo produzem uma aceleração que é proporcional a sua massa de acordo com a relação: F = m . a, mas a força elétrica também pode ser calculada assim: F = q . E, igualando as duas equações temos: q . E = m . a, E = m⋅a / q, substituindo os valores dados no exercício: E = 5⋅10^-4 ⋅ 3⋅10^3 / 2,5⋅10^-8, E = 15⋅10^-1 / 2,5⋅10^-8, E = 6⋅10^7 N/C
b) Nesse ponto sabemos que existe um campo elétrico de módulo E = 6 . 10^7 N/C. Se colocarmos uma carga q = 5 μC = 5 . 10^-6 C; sobre ela atuará uma força elétrica de módulo: F = q . E, F = 5 . 10^-6. 6 . 10^7, F = 30 . 10^1, F = 300 N

2. Uma partícula de carga q = 3,0 μC está em determinado ponto A do espaço.
a) Qual é o módulo, direção e sentido do vetor campo elétrico EB gerado por essa partícula no ponto B, a 30 cm de A?
b) A que distância de A está o ponto C, cujo vetor campo elétrico Ec vale em módulo 2,5 . 10^3 N/C?

a) A partícula de carga q faz aparecer próximo a ela um campo elétrico que para cada ponto no espaço terá um valor numérico, uma direção e um sentido. A direção do vetor será a direção da reta que une a partícula e o ponto (direção radial). O sentido depende do sinal da carga. Como ele é positivo o sentido será de afastamento, ou divergente. Para saber o módulo usamos a expressão: E = ko⋅Q / d^2. Para o item a, a carga q = 3,0 μC = 3 . 10^-6 C; e a distância d = 30 cm = 0,3 m. Substituindo os valores: E = 9⋅10^9 ⋅ 3⋅10^-6 / 0,3^2, E = 27⋅10^3 / 0,09, E = 300⋅10^3, E = 3⋅10^5 N/C
b) Usamos a mesma expressão, só que agora não sabemos a distância que o ponto C está da partícula carregada, mas sabemos que nesse ponto existe um campo elétrico de módulo E = 2,5 . 10^3 N/C, então: E = ko⋅Q / d^2, 2,5⋅10^3 = 9⋅10^9 ⋅ 3⋅10^-6 / d^2; multiplicando em cruz: 2,5⋅10^3 ⋅ d^2 = 27⋅10^3, d^2 = 10,8, d = √10,8, d = 3,28m

Prévia do material em texto

Lista de Exercícios – Campo Elétrico
Considere ko = 9,0 . 109 N . m2/C2
1. Uma partícula de carga q = 2,5 . 10-8 C e massa m = 5,0 . 10-4 kg, colocada num determinado 
ponto P de uma região onde existe um campo elétrico, adquire aceleração de 3,0 . 103 m/s2, 
devida exclusivamente a esse campo.
a) Qual é o módulo do vetor campo elétrico E nesse ponto?
b) Qual a intensidade da força elétrica que atua numa carga q = 5,0 μC, colocada nesse 
mesmo ponto P?
Resposta: a) Se a partícula foi acelerada, ela recebeu a ação de uma força. Nesse caso é 
exclusivamente a força elétrica. A segunda lei de Newton nos diz que a somatória das forças 
que atuam no corpo produzem uma aceleração que é proporcional a sua massa de acordo 
com a relação:
F = m . a
mas a força elétrica também pode ser calculada assim:
F = q . E
igualando as duas equações temos:
q . E = m . a
E=
m⋅a
q
substituindo os valores dados no exercício:
E=
5⋅10
−4
⋅3⋅10
3
2,5⋅10
−8
E=
15⋅10
−1
2,5⋅10
−8
E=6⋅10
7
N /C
b) Nesse ponto sabemos que existe um campo elétrico de módulo E = 6 . 107 N/C. Se 
colocarmos uma carga q = 5 μC = 5 . 10 -6 C ; sobre ela atuará uma força elétrica de módulo:
F = q . E
F = 5 . 10 -6. 6 . 107
F = 30 . 101
F = 300 N 
2. Uma partícula de carga q = 3,0 μC está em determinado ponto A do espaço.
a) Qual é o módulo, direção e sentido do vetor campo elétrico EB gerado por essa partícula no ponto 
B, a 30 cm de A?
b) A que distância de A está o ponto C, cujo vetor campo elétrico Ec vale em módulo 2,5 . 103 N/C?
Resposta: a) A partícula de carga q faz aparecer próximo a ela um campo elétrico que para 
cada ponto no espaço terá um valor numérico, uma direção e um sentido. A direção do vetor será a 
direção da reta que une a partícula e o ponto (direção radial). O sentido depende do sinal da carga. 
Como ele é positivo o sentido será de afastamento, ou divergente. Para saber o módulo usamos a 
expressão:
E=
ko⋅Q
d
2
Para o item a, a carga q = 3,0 μC = 3 . 10 -6 C ; e a distância d = 30 cm = 0,3 m
Substituindo os valores:
E=
9⋅10
9
⋅3⋅10
−6
0,3
2
E=
27⋅10
3
0,09
E=300⋅10
3
E=3⋅10
5
N /C
b) Usamos a mesma expressão, só que agora não sabemos a distância que o ponto C está da 
partícula carregada, mas sabemos que nesse ponto existe um campo elétrico de módulo 
E = 2,5 . 103 N/C , então:
E=
k o⋅Q
d
2
2,5⋅10
3
=
9⋅10
9
⋅3⋅10
−6
d
2
; multiplicando−se emcruz
2,5⋅10
3
⋅d
2
=27⋅10
3
d
2
=
27⋅10
3
2,5⋅10
3
d
2
=10,8
d=√10,8
d=3,28m
3. Na figura estão representadas duas partículas de carga QA = 2,0 . 10-6 C, negativa, e 
QB = 5,0 . 10-6 C, positiva, nas extremidades do segmento AB de 20 cm de comprimento. Determine 
o vetor campo elétrico resultante gerado por essas partículas nos pontos 1, 2 e 3 da reta que contém 
AB, sabendo que:
a) 1 está a 10 cm à esquerda de A;
b) 2 é o ponto médio de AB;
c) 3 está 10 cm à direita de B.
 EB EA EA EB
 
 1 A 2 B 3
Resposta: No ponto 1, atuará um campo elétrico devido à carga que está em A e outro campo 
elétrico devido à carga que está em B, conforme indicado na figura. 
Como em A a carga é negativa o campo elétrico (EA) no ponto 1 devido a ela terá o sentido 
para a direita (convergente). Já o campo elétrico devido à carga colocada em B (EB) terá o 
sentido para a esquerda (divergente), pois em B a carga é positiva. Para os pontos 2 e 3 a 
análise é a mesma. Os vetores estão indicados na figura.
a) Para calcularmos o campo elétrico resultante no ponto 1, primeiro calculamos o campo 
elétrico EA e EB , depois subtraimos os dois, pois eles estão em sentidos opostos.
E A=
k o⋅QA
d
2
E A=
9⋅10
9
⋅2⋅10
−6
0,1
2
;usamos d=0,1m pois é a distância entre acargaQA e o ponto1
E A=
18⋅10
3
0,01
E A=18⋅10
5
N /C
Agora calculamos EB :
E B=
k o⋅QB
d
2
E B=
9⋅10
9
⋅5⋅10
−6
0,3
2
; usamosd=0,3m pois é adistância entrea cargaQB e o ponto 1
E B=
45⋅10
3
0,09
E B=5⋅10
5
N /C
O campo elétrico resultante no ponto 1 será:
E R=E A−E B
E R=18⋅10
5
−5⋅10
5
E R=13⋅10
5
N /C
E
A
E
B
Se na sua conta o resultado deu negativo, não tem problema, ignore o sinal, pois queremos o 
valor em módulo do campo elétrico. E o módulo é sempre positivo.
Concluindo a questão, já calculamos o módulo do vetor campo elétrico no ponto 1. Agora 
falta a direção e o sentido. A direção é a reta que une os dois pontos. O sentido do campo 
elétrico será para a direita, pois o campo elétrico EA é maior que EB .
b) No ponto 2, o campo elétrico devido à carga A será para a esquerda, pois ela é negativa 
(sentido de atração), e o campo elétrico devido à carga B também será para a esquerda, pois ela é 
positiva (sentido de repulsão). Assim, calcularemos o valor do campo elétrico para cada carga e 
depois somaremos os dois valores:
E A=
k o⋅QA
d
2
E A=
9⋅10
9
⋅2⋅10
−6
0,1
2
;usamos d=0,1m pois é a distância entre acargaQA e o ponto 2
E A=
18⋅10
3
0,01
E A=18⋅10
5
N /C
Como a distância é a mesma que no item a (10 cm), o valor do campo elétrico também será 
o mesmo. Agora para EB :
E B=
k o⋅QB
d
2
E B=
9⋅10
9
⋅5⋅10
−6
0,1
2
; usamosd=0,1m pois é adistância entrea cargaQB e o ponto 2
E B=
45⋅10
3
0,01
E B=45⋅10
5
N /C
O campo elétrico resultante será a soma dos dois:
E R=E A+E B
E R=18⋅10
5
+45⋅10
5
E R=63⋅10
5
N /C
c) No ponto 3, o raciocínio é o mesmo. Vamos direto às contas:
E A=
k o⋅QA
d
2
E A=
9⋅10
9
⋅2⋅10
−6
0,3
2
;usamos d=0,3m pois é a distância entre acargaQA e o ponto3
E A=
18⋅10
3
0,09
E A=2⋅10
5
N /C
Agora EB . Como o ponto 3 está a mesma distância em relação à carga B que o ponto 2 
(10 cm), o campo elétrico terá o mesmo valor:
EB = 45 . 105 N/C
O campo elétrico resultante será a diferença entre os dois:
E R=E A−E B
E R=2⋅10
5
−45⋅10
5
E R=−43⋅10
5
N /C ; desconsiderando−seo sinal :
E R=43⋅10
5
N /C
4. Uma partícula de carga q = 5,0 . 10-6 C e massa m = 4,0 . 10-4 kg, colocada num ponto P do 
espaço adquire aceleração de 2,0 . 103 m/s2.
a) Qual é o módulo do vetor campo elétrico E nesse ponto?
b) Qual é a intensidade da força que atuaria numa carga q = 3,0 . 10-8 C, colocada nesse 
mesmo ponto P?
Resposta: Neste exercício usamos o mesmo raciocínio da questão 1:
a) Usamos:
E=
m⋅a
q
;
E=
4⋅10
−4
⋅2⋅10
3
5⋅10
−6
E=1,6⋅10
5
N /C
b) Usamos: E=
F
q
; assim:
F=q⋅E
F=3⋅10
−8
⋅1,6⋅10
5
F=4,8⋅10
−3
N

Mais conteúdos dessa disciplina