Logo Passei Direto
Buscar
Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Prévia do material em texto

<p>Received: 26 August 2021 Revised: 5 October 2021 Accepted: 3 November 2021</p><p>DOI: 10.1002/fft2.120</p><p>R E V I EW ART I C L E</p><p>The utilization of oat for the production of wholegrain foods:</p><p>Processing technology and products</p><p>HuijiaMao1 Minghao Xu1 Jingyun Ji1 Mengsha Zhou1 Hongyan Li1</p><p>YangyangWen2 JingWang1 Baoguo Sun1</p><p>1 China–Canada Joint Lab of FoodNutrition</p><p>andHealth (Beijing), School of Food and</p><p>Health, Beijing Technology and Business</p><p>University, Beijing, China</p><p>2 College of Chemistry andMaterials</p><p>Engineering, Beijing Technology and Business</p><p>University, Beijing, China</p><p>Correspondence</p><p>HongyanLi and JingWang,China–Canada</p><p>Joint LabofFoodNutritionandHealth</p><p>(Beijing), School of FoodandHealth, Beijing</p><p>TechnologyandBusinessUniversity, Beijing</p><p>100048,China.</p><p>Email: hongyan.li@btbu.edu.cn,</p><p>wangjing@th.btbu.edu.cn</p><p>Funding information</p><p>NationalNatural ScienceFoundationofChina,</p><p>Grant/AwardNumbers: 32172236, 31901729</p><p>Abstract</p><p>Globally, oat is one of themost important but underutilized cereal grains. Oat grain is a</p><p>health-beneficial cereal crop with a high content of multiple nutrient substances. The</p><p>desire of consumers for health has led to the exploration of functional ingredients and</p><p>novel food-processing techniques for oat grain. This review first evaluates the nutri-</p><p>ent composition of oats, with a specific emphasis on oat starch, β-glucans, proteins,</p><p>and phenolics, which is an explanation for the health potential in terms of nutrition.</p><p>Recently, oat grain has been used to develop functional foods and beverages and as an</p><p>ingredient incorporated into other foods. Then, the processing methods of oat-based</p><p>foods in various physical formats, such as whole grain, flakes, and flour, are systemat-</p><p>ically summarized. In addition, the effects of bran and β-glucan as food ingredients on</p><p>the sensory and nutritional quality of products are also discussed. Finally, this review</p><p>highlights the effects of interactions between β-glucan, used as a potential naturalmul-</p><p>tifunctional additive in food applications, and different components on the processing</p><p>and nutritional properties of oat products. The objective of this review is to synthesize</p><p>knowledge in the field to provide a comprehensive understanding of the nutritional</p><p>composition and processingmethods of oats and to demonstrate interactions between</p><p>different components, thereby further benefiting the development of oats in food sys-</p><p>tems as a functional component and food additive to improve food quality, safety, and</p><p>health functions.</p><p>KEYWORDS</p><p>oat, utilization, oat bran, β-glucan, processing, interactions</p><p>1 INTRODUCTION</p><p>Oat belongs to the tribe Aveneae of the Poaceae grass family and</p><p>has been widely cultivated for more than 2000 years throughout the</p><p>world. Oat is one of the leading cereal crops worldwide, and following</p><p>This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided</p><p>the original work is properly cited.</p><p>© 2021 The Authors. Food Frontiers published by JohnWiley & Sons Australia, Ltd and Nanchang University, Northwest University, Jiangsu University, Zhejiang Univer-</p><p>sity, Fujian Agriculture and Forestry University</p><p>corn, wheat, rice, barely, sorghum and millet, is ranked seventh in</p><p>the production of cereal crops, with over 25.9 million tons produced</p><p>annually globally in 2017, which is mainly used for food and livestock</p><p>feed. The major producers are Russia, Canada, Poland, Australia,</p><p>Germany, Finland, the USA, and China, which are located in temperate</p><p>28 wileyonlinelibrary.com/journal/fft2 Food Frontiers. 2022;3:28–45.</p><p>https://orcid.org/0000-0001-7260-2957</p><p>mailto:hongyan.li@btbu.edu.cn</p><p>mailto:wangjing@th.btbu.edu.cn</p><p>http://creativecommons.org/licenses/by/4.0/</p><p>https://wileyonlinelibrary.com/journal/fft2</p><p>MAO ET AL. 29</p><p>regions. Avena sativa L. (hulled oat) and Avena nuda L. (naked oat)</p><p>are two important cultivated oat species. Hulled oat is mainly grown</p><p>in Western countries and consumed in the form of rolled oats and</p><p>steel-cut groats (Xu et al., 2016). In contrast, naked oat is the most</p><p>common species in northern China and is used as a staple food crop.</p><p>Other species with importance for agriculture have been discovered,</p><p>including A. strigose, A. byzantina, and A. abyssinica (Zhu, 2017).</p><p>Oat is well known for its tolerance for harsher growing conditions</p><p>(e.g., wet climate and acidic soil) and is much more resilient than other</p><p>cereals (Givens et al., 2004). In addition to its agronomic attributes,</p><p>oat grain has a well-balanced nutritional profile and, above all, con-</p><p>tains higher concentrations of β-glucan and low glycemic starch, essen-</p><p>tial amino acids, unsaturated fatty acids, and phenolic compounds. Cer-</p><p>tain nutrients and phytochemicals confer oat with numerous human</p><p>health benefits, such as glycemic control, cholesterol lowering, weight</p><p>control, heart and vascular disease prevention, and antioxidant and</p><p>anti-inflammatory effects. Due to these health benefits, five approved</p><p>European Food Safety Authority (EFSA) health claims apply to oats,</p><p>including the maintenance and reduction of blood cholesterol, better</p><p>blood glucose balance, increased fecal bulk, and the reduction of risks</p><p>of heart and vascular disease (Smulders et al., 2018). As the only cereal</p><p>listed as a health food by theWorld Health Organization, oat has enor-</p><p>mous potential for development into functional foods and food addi-</p><p>tives. Attempts have been made to use whole grain oat or ingredients</p><p>to improve food quality and health benefits.</p><p>Several reviews on oat have been published, involving the analyti-</p><p>cal methods, processing effects, and health benefits of certain nutri-</p><p>ents (Kosová et al., 2020; Peterson, 2001; Turrini et al., 2019). How-</p><p>ever, there has been no previous review of the utilization of oat for</p><p>the production of whole-grain foods in terms of processing technol-</p><p>ogy and products. This review focuses on the nutritional composition</p><p>and processingmethods of oat and,most importantly, the effects of the</p><p>interaction of components in oat on the sensory and nutritional prop-</p><p>erties of foods, thereby further benefiting the development of oat in</p><p>food systems as a functional component and food additive to improve</p><p>food quality, safety, and health functions. The concept of this review is</p><p>illustrated in Figure 1.</p><p>2 OAT STRUCTURE AND NUTRITIONAL</p><p>PROFILE</p><p>2.1 Oat grain structure</p><p>Oat grains are composed of a protective hull and groat (caryopsis), the</p><p>latter containing a coarse bran layer, germ, and starchy endosperm</p><p>(Figure 2). The hull consists mainly of cellulose and hemicellulose, with</p><p>less lignin or related phenolic compounds. The bran typically consists</p><p>of the pericarp, testa or seed coat, nucellus, aleurone layer, and sub-</p><p>aleurone starchy endosperms. Themajor chemical constituents of bran</p><p>are minerals, vitamins, phytate, and cell wall polysaccharides, mainly</p><p>cellulose, arabinoxylan, and β-glucan.</p><p>2.2 Oat grain nutritional profile</p><p>Oat grain nutritional composition varies among varieties. On average,</p><p>100 g of grains has approximately 67.7 g of carbohydrates, 10.84 g</p><p>of water, 13.15 g of protein, 10.1 g of fiber, and 6.52 g of lipids and</p><p>provides approximately 379 kcal of energy (USDA, 2019). It is noted</p><p>that the content and composition of nutrients are related to genetics</p><p>and growth conditions.</p><p>2.2.1 Starch</p><p>Starch is the major component of oat grains, accounting for 60% of</p><p>the dry weight, and possesses several unique chemical, physical, and</p><p>structural characteristics compared to other grain starches (Li et al.,</p><p>2013). Amylose is the dominant starch, with a content ranging from</p><p>2% to 34% and a molecular weight of 1.68 × 105 Da, which is similar</p><p>to that of corn and rice (Li et al., 2018; Li et al., 2020a). In contrast,</p><p>the amylopectin fractions are larger than those of other common</p><p>cereals (Li et al., 2019a, Li et al., 2020b). Variation in amylose and</p><p>amylopectin proportion along</p><p>https://doi.org/10.1016/j.ultsonch.2017.08.029</p><p>MAO ET AL. 43</p><p>Duque, S. M. M., Leong, S. Y., Agyei, D., Singh, J., Larsen, N., & Oey, I.</p><p>(2020). Understanding the impact of pulsed electric fields treatment</p><p>on the thermal and pasting properties of raw and thermally processed</p><p>oat flours. Food Research International, 129, 108839. https://doi.org/10.</p><p>1016/j.foodres.2019.108839</p><p>Espinosa-Solis, V., Zamudio-Flores, P. B., Tirado-Gallegos, J. M., Ramírez-</p><p>Mancinas, S., Olivas-Orozco, G. I., Espino-Díaz,M., Hernández-González,</p><p>M., García-Cano, V. G., Sánchez-Ortíz, O., Buenrostro-Figueroa, J. J., &</p><p>Baeza-Jiménez, R. (2019). Evaluation of cooking quality, nutritional and</p><p>texture characteristics of pasta added with oat bran and apple flour.</p><p>Foods, 8(8), 1-12. https://doi.org/10.3390/foods8080299</p><p>Flander, L., Rouau, X.,Morel,M.-H., Autio, K., Seppänen-Laakso, T., Kruus, K.,</p><p>& Buchert, J. (2008). Effects of laccase and xylanase on the chemical and</p><p>rheological properties of oat and wheat doughs. Journal of Agricultural</p><p>Food Chemistry, 56(14), 5732-5742. https://doi.org/10.1021/jf800264a</p><p>Fredlund, K., Asp, N.-G., Larsson,M.,Marklinder, I., & Sandberg, A.-S. (1997).</p><p>Phytate reduction in whole grains of wheat, rye, barley and oats after</p><p>hydrothermal treatment. Journal of Cereal Science, 25(1), 83-91. https:</p><p>//doi.org/10.1006/jcrs.1996.0070</p><p>Gamel, T. H., Abdel-Aal, E.-S. M., Ames, N. P., Duss, R., & Tosh, S. M. (2014).</p><p>Enzymatic extraction of beta-glucan fromoat bran cereals and oat crack-</p><p>ers and optimization of viscosity measurement. Journal of Cereal Science,</p><p>59(1), 33-40. https://doi.org/10.1016/j.jcs.2013.10.011</p><p>Gamel, T. H., Badali, K., & Tosh, S. M. (2013). Changes of β-glucan physico-</p><p>chemical characteristics in frozen and freeze dried oat bran bread and</p><p>porridge. Journal of Cereal Science, 58(1), 104-109. https://doi.org/10.</p><p>1016/j.jcs.2013.03.014</p><p>Gangopadhyay, N., Hossain, M. B., Rai, D. K., & Brunton, N. P. (2015). Opti-</p><p>misation of yield and molecular weight of β-glucan from barley flour</p><p>using response surfacemethodology. Journal of Cereal Science, 62, 38-44.</p><p>https://doi.org/10.1016/j.jcs.2014.10.007</p><p>Gao, R., Liu, H., Peng, Z., Wu, Z., Wang, Y., & Zhao, G. (2012). Adsorption of</p><p>(−)-epigallocatechin-3-gallate (EGCG) onto oat β-glucan. FoodChemistry,</p><p>132(4), 1936-1943. https://doi.org/10.1016/j.foodchem.2011.12.029</p><p>Givens,D. I., Davies, T.W.,&Laverick, R.M. (2004). Effect of variety, nitrogen</p><p>fertiliser and various agronomic factors on the nutritive value of husked</p><p>and naked oats grain. Animal Feed Science and Technology, 113(1-4), 169-</p><p>181. https://doi.org/10.1016/j.anifeedsci.2003.11.009</p><p>Gouseti, O., Lovegrove, A., Kosik, O., Fryer, P. J., Mills, C., Gates, F., Tucker,</p><p>G., Latty, C., Shewry, P., & Bakalis, S. (2019). Exploring the role of cereal</p><p>dietary fiber in digestion. Journal of Agricultural Food Chemistry, 67(30),</p><p>8419-8424. https://doi.org/10.1021/acs.jafc.9b01847</p><p>Grundy, M. M. L., Fardet, A., Tosh, S. M., Rich, G. T., & Wilde, P. J. (2018).</p><p>Processing of oat: the impact on oat’s cholesterol lowering effect. Food</p><p>& Function, 9(3), 1328–1343. https://doi.org/10.1039/C7FO02006F</p><p>Grundy, M. M. L., Quint, J., Rieder, A., Ballance, S., Dreiss, C. A., Cross, K. L.,</p><p>Gray,R., Bajka,B.H., Butterworth, P. J., Ellis, P. R., &Wilde, P. J. (2017). The</p><p>impact of oat structure and β-glucan on in vitro lipid digestion. Journal of</p><p>Functional Foods, 38, 378-388. https://doi.org/10.1016/j.jff.2017.09.011</p><p>Gujral, H. S., Sharma, P., Gill, B. S., & Kaur, S. (2013). Effect of incorporat-</p><p>ing hydrothermal, kilned and defatted oats on antioxidant and chapatti</p><p>making properties of wheat flour. Food Chemistry, 138(2-3), 1400-1406.</p><p>https://doi.org/10.1016/j.foodchem.2012.09.115</p><p>He, Y., Liu, X., &Wang, F. (2010).A study on influences of oat bran to the quality</p><p>of steamed bread. Cereal & Feed Industry.</p><p>Hu, X., Xing, X., & Ren, C. (2010). The effects of steaming and roasting treat-</p><p>ments on β-glucan, lipid and starch in the kernels of naked oat (Avena</p><p>nuda). Journal of the Science of Food Agriculture, 90(4), 690-695. https:</p><p>//doi.org/10.1002/jsfa.3870</p><p>Hyun Jung, K., & White, P. J. (2010). In vitro bile-acid binding and fermen-</p><p>tation of high, medium, and lowmolecular weight beta-glucan. Journal of</p><p>Agricultural and Food Chemistry, 58(1), 628-634 https://doi.org/10.1021/</p><p>jf902508t</p><p>Inglett, G. E., Peterson, S. C., Carriere, C. J., & Maneepun, S. (2005). Rheo-</p><p>logical, textural, and sensory properties of Asian noodles containing an</p><p>oat cereal hydrocolloid. Food Chemistry, 90(1-2), 1-8. https://doi.org/10.</p><p>1016/j.foodchem.2003.08.023</p><p>İsmail, Y., & Orhan, D. (2003). The effect of replacing fat with oat bran</p><p>on fatty acid composition and physicochemical properties of meatballs.</p><p>Meat Science, 65(2), 819-823. https://doi.org/10.1016/S0309-1740(02)</p><p>00286-3</p><p>Jakobek, L., &Matić, P. (2019). Non-covalent dietary fiber-polyphenol inter-</p><p>actions and their influence on polyphenol bioaccessibility. Trends in Food</p><p>Science Technology, 83, 235-247. https://doi.org/10.1016/j.tifs.2018.11.</p><p>024</p><p>Jaskari, J., Henriksson, K., Nieminen, A., Suortti, T., Salovaara, H., & Pouta-</p><p>nen, K. (1995). Effect of hydrothermal and enzymic treatments on the</p><p>viscous behavior of dry-andwet-milled oat brans.Cereal Chemistry,72(6),</p><p>625-631.</p><p>Kalinga,D.,&Mishra,V.K. (2009). Rheological andphysical propertiesof low</p><p>fat cakes produced by addition of cereal β-glucan concentrate. Journal</p><p>of Food Processing Preservation, 33(3), 384-400. https://doi.org/10.1111/</p><p>j.1745-4549.2008.00260.x</p><p>Konak, Ü. İ., Ercili-Cura,D., Sibakov, J., Sontag-Strohm, T., Certel,M., & Lopo-</p><p>nen, J. (2014). CO2-defatted oats: Solubility, emulsification and foam-</p><p>ing properties. Journal of Cereal Science, 60(1), 37-41. https://doi.org/10.</p><p>1016/j.jcs.2014.01.013</p><p>Kosová, K., Leišová-Svobodová, L., & Dvořáček, V. (2020). Oats as a safe</p><p>alternative to Triticeae cereals for people suffering from celiac disease?</p><p>A review. Plant Foods for Human Nutrition, 75, 131–141. https://doi.org/</p><p>10.1007/s11130-020-00800-8</p><p>Lazaridou, A., Serafeimidou, A., Biliaderis, C. G., Moschakis, T., & Tzanetakis,</p><p>N. (2014). Structure development and acidification kinetics in fermented</p><p>milk containing oat β-glucan, yogurt culture and a probiotic strain. Food</p><p>Hydrocolloids, 39, 204-214. https://doi.org/10.1016/j.foodhyd.2014.01.</p><p>015</p><p>Lee, S., Warner, K., & Inglett, G. E. (2005). Rheological properties and</p><p>baking performance of new oat β-glucan-rich hydrocolloids. Journal of</p><p>Agricultural Food Chemistry, 53(25), 9805-9809. https://doi.org/10.1021/</p><p>jf051368o</p><p>Lehtinen, P., Kiiliäinen, K., Lehtomäki, I., & Laakso, S. (2003). Effect of heat</p><p>treatment on lipid stability in processed oats. Journal of Cereal Science,</p><p>37(2), 215-221. https://doi.org/10.1006/jcrs.2002.0496</p><p>Li, H. Y., Lei, N. Y., Yan, S., Gao,M. Y., Yang, J. Y.,Wang, J., & Sun, B. G. (2019a).</p><p>Molecular causes for the effect of cooking methods on rice stickiness:</p><p>A mechanism explanation from the view of starch leaching. International</p><p>Journal of BiologicalMacromolecules,128, 49-53. https://doi.org/10.1016/</p><p>j.ijbiomac.2019.01.113</p><p>Li, H., Lei, N., Yan, S., Yang, J., Yu, T., Wen, Y., Wang, J., & Sun, B. (2019b). The</p><p>importance of amylopectin molecular size in determining the viscoelas-</p><p>ticity of rice starch gels. Carbohydrate Polymers, 212, 112-118. https://</p><p>doi.org/10.1016/j.carbpol.2019.02.043</p><p>Li, H. Y., Wen, Y. Y., Wang, J., & Sun, B. G. (2018). Relations between chain-</p><p>length distribution, molecular size, and amylose content of rice starches.</p><p>International Journal of Biological Macromolecules, 120, 2017-2025. https:</p><p>//doi.org/10.1016/j.ijbiomac.2018.09.204</p><p>Li, H., Yan, S., Mao, H., Ji, J., Xu, M., Zhang, S., Wang, J., Liu, Y., & Sun,</p><p>B. (2020a). Insights into maize starch degradation by sulfuric acid</p><p>from molecular structure changes. Carbohydrate Polymers, 229, 115542.</p><p>https://doi.org/10.1016/j.carbpol.2019.115542</p><p>Li, H., Yan, S., Yang, Lu, Xu, M., Ji, J., Liu, Y., Wang, J., & Sun, B. (2020b).</p><p>High-pressure homogenization thinned starch paste and its application</p><p>in improving the stickiness of cooked non-glutinous rice. LWT-Food Sci-</p><p>ence and Technology, 131, 109750. https://doi.org/10.1016/j.lwt.2020.</p><p>109750</p><p>Li, H., Yan, S., Yang, L., Xu, M., Ji, J., Mao, H., Song, Y., Wang, J., &</p><p>Sun, B. (2021). Starch gelatinization in the surface layer of rice</p><p>grains is crucial in reducing the stickiness of parboiled rice. Food</p><p>Chemistry, 341, 128202. https://doi.org/10.1016/j.foodchem.2020.</p><p>128202</p><p>26438429, 2022, 1, D</p><p>ow</p><p>nloaded from</p><p>https://onlinelibrary.w</p><p>iley.com</p><p>/doi/10.1002/fft2.120 by C</p><p>A</p><p>PE</p><p>S, W</p><p>iley O</p><p>nline L</p><p>ibrary on [30/10/2023]. See the T</p><p>erm</p><p>s and C</p><p>onditions (https://onlinelibrary.w</p><p>iley.com</p><p>/term</p><p>s-and-conditions) on W</p><p>iley O</p><p>nline L</p><p>ibrary for rules of use; O</p><p>A</p><p>articles are governed by the applicable C</p><p>reative C</p><p>om</p><p>m</p><p>ons L</p><p>icense</p><p>https://doi.org/10.1016/j.foodres.2019.108839</p><p>https://doi.org/10.1016/j.foodres.2019.108839</p><p>https://doi.org/10.3390/foods8080299</p><p>https://doi.org/10.1021/jf800264a</p><p>https://doi.org/10.1006/jcrs.1996.0070</p><p>https://doi.org/10.1006/jcrs.1996.0070</p><p>https://doi.org/10.1016/j.jcs.2013.10.011</p><p>https://doi.org/10.1016/j.jcs.2013.03.014</p><p>https://doi.org/10.1016/j.jcs.2013.03.014</p><p>https://doi.org/10.1016/j.jcs.2014.10.007</p><p>https://doi.org/10.1016/j.foodchem.2011.12.029</p><p>https://doi.org/10.1016/j.anifeedsci.2003.11.009</p><p>https://doi.org/10.1021/acs.jafc.9b01847</p><p>https://doi.org/10.1039/C7FO02006F</p><p>https://doi.org/10.1016/j.jff.2017.09.011</p><p>https://doi.org/10.1016/j.foodchem.2012.09.115</p><p>https://doi.org/10.1002/jsfa.3870</p><p>https://doi.org/10.1002/jsfa.3870</p><p>https://doi.org/10.1021/jf902508t</p><p>https://doi.org/10.1021/jf902508t</p><p>https://doi.org/10.1016/j.foodchem.2003.08.023</p><p>https://doi.org/10.1016/j.foodchem.2003.08.023</p><p>https://doi.org/10.1016/S0309-1740(02)00286-3</p><p>https://doi.org/10.1016/S0309-1740(02)00286-3</p><p>https://doi.org/10.1016/j.tifs.2018.11.024</p><p>https://doi.org/10.1016/j.tifs.2018.11.024</p><p>https://doi.org/10.1111/j.1745-4549.2008.00260.x</p><p>https://doi.org/10.1111/j.1745-4549.2008.00260.x</p><p>https://doi.org/10.1016/j.jcs.2014.01.013</p><p>https://doi.org/10.1016/j.jcs.2014.01.013</p><p>https://doi.org/10.1007/s11130-020-00800-8</p><p>https://doi.org/10.1007/s11130-020-00800-8</p><p>https://doi.org/10.1016/j.foodhyd.2014.01.015</p><p>https://doi.org/10.1016/j.foodhyd.2014.01.015</p><p>https://doi.org/10.1021/jf051368o</p><p>https://doi.org/10.1021/jf051368o</p><p>https://doi.org/10.1006/jcrs.2002.0496</p><p>https://doi.org/10.1016/j.ijbiomac.2019.01.113</p><p>https://doi.org/10.1016/j.ijbiomac.2019.01.113</p><p>https://doi.org/10.1016/j.carbpol.2019.02.043</p><p>https://doi.org/10.1016/j.carbpol.2019.02.043</p><p>https://doi.org/10.1016/j.ijbiomac.2018.09.204</p><p>https://doi.org/10.1016/j.ijbiomac.2018.09.204</p><p>https://doi.org/10.1016/j.carbpol.2019.115542</p><p>https://doi.org/10.1016/j.lwt.2020.109750</p><p>https://doi.org/10.1016/j.lwt.2020.109750</p><p>https://doi.org/10.1016/j.foodchem.2020.128202</p><p>https://doi.org/10.1016/j.foodchem.2020.128202</p><p>44 MAO ET AL.</p><p>Li, H. Y., Yang, J. Y., Yan, S., Lei, N. Y., Wang, J., & Sun, B. G. (2019c). Molec-</p><p>ular causes for the increased stickiness of cooked non-glutinous rice by</p><p>enzymatic hydrolysis of the grain surface protein.Carbohydrate Polymers,</p><p>216, 197-203. https://doi.org/10.1016/j.carbpol.2019.04.031</p><p>Li, H. Y., Yu, L., Yu, W. W., Li, H. T., & Gilbert, R. (2019d). Autoclaved Rice:</p><p>the textural property and its relation to starch leaching and the molec-</p><p>ular structure of leached starch. Food Chemistry, 283, 199-205. https:</p><p>//doi.org/10.1016/j.foodchem.2019.01.030</p><p>Li, H., Zhu, Y., Jiao, A., Zhao, J., Chen, X., Wei, B., Hu, X., Wu, C., Jin, Z.,</p><p>& Tian, Y. (2013). Impact of alpha-amylase combined with hydrochloric</p><p>acid hydrolysis on structure and digestion of waxy rice starch. Interna-</p><p>tional Journal of Biological Macromolecules, 55, 276-281. https://doi.org/</p><p>10.1016/j.ijbiomac.2013.01.021</p><p>Liu, J., Li, J., Ma, Y., Chen, F., & Zhao, G. (2013). Synthesis, characteriza-</p><p>tion, and aqueous self-assembly of octenyl succinate oat β-glucan. Jour-</p><p>nal of Agricultural Food Chemistry, 61(51), 12683-12691. https://doi.org/</p><p>10.1021/jf4035354</p><p>Liu, R., Wang, N., Li, Q., & Zhang, M. (2015). Comparative studies on physic-</p><p>ochemical properties of raw and hydrolyzed oat β-glucan and their appli-</p><p>cation in low-fat meatballs. Food Hydrocolloids, 51, 424-431. https://doi.</p><p>org/10.1016/j.chemosphere.2015.03.036.</p><p>Liu, S., Li, Y., Obadi, M., Jiang, Y., Chen, Z., Jiang, S., & Xu, B. (2019). Effect of</p><p>steaming and defatting treatments of oats on the processing and eating</p><p>quality of noodles with a high oat flour content. Journal of Cereal Science,</p><p>89, 102794. https://doi.org/10.1016/j.jcs.2019.102794</p><p>Liu, Y., Bailey, T. B., &White, P. J. (2010). Individual and interactional effects</p><p>of β-glucan, starch, and protein on pasting properties of oat flours. Jour-</p><p>nal of Agricultural Food Chemistry, 58(16), 9198-9203. https://doi.org/10.</p><p>1021/jf1007852</p><p>Londono, D. M., Smulders, M. J., Visser, R. G., Gilissen, L. J., & Hamer, R. J.</p><p>(2015). Effect of kilning and milling on the dough-making properties of</p><p>oat flour. LWT-Food Science Technology, 63(2), 960-965.</p><p>Huijia Mao, Zhijun Chen, Jie Li, Xueyang Zhai, Hongyan Li, Yangyang Wen,</p><p>JingWang,&BaoguoSun (2021). Structural comparisonsof pyrodextrins</p><p>during thermal degradation process: The role of hydrochloric acid. Food</p><p>Chemistry, 129174. https://doi.org/10.1016/j.foodchem.2021.129174</p><p>Mejía, S.M.V., de Francisco, A., &Bohrer, B. (2020). A comprehensive review</p><p>on cereal β-glucan: Extraction, characterization, causes of degradation,</p><p>and foodapplication.Critical Reviews in Food ScienceNutrition, 1-12. https:</p><p>//doi.org/10.1080/10408398.2019.1706444</p><p>Moisio, T., Forssell, P., Partanen, R., Damerau, A., &Hill, S. E. (2015). Reorgan-</p><p>isation of starch, proteins and lipids in extrusion of oats. Journal of Cereal</p><p>Science, 64, 48-55. https://doi.org/10.1016/j.jcs.2015.04.001</p><p>Nguela, J. M., Poncet-Legrand, C., Sieczkowski, N., & Vernhet, A. (2016).</p><p>Interactions of grape tannins and wine polyphenols with a yeast pro-</p><p>tein extract, mannoproteins and β-glucan. Food Chemistry, 210, 671-682.</p><p>https://doi.org/10.1016/j.foodchem.2016.04.050</p><p>Omana, D. A., Plastow, G., & Betti, M. (2011). The use of β-glucan as a partial</p><p>salt replacer in high pressure processed chicken breastmeat. FoodChem-</p><p>istry, 129(3), 768-776. https://doi.org/10.1016/j.foodchem.2011.05.018</p><p>Papageorgiou, M., Lakhdara, N., Lazaridou, A., Biliaderis, C., & Izydorczyk,</p><p>M. (2005). Water extractable (1→ 3, 1→ 4)-β-D-glucans from barley and</p><p>oats: An intervarietal study on their structural features and rheological</p><p>behaviour. Journal of Cereal Science, 42(2), 213-224. https://doi.org/10.</p><p>1016/j.jcs.2005.03.002</p><p>Pérez-Quirce, S., Lazaridou, A., Biliaderis, C. G., & Ronda, F. (2017). Effect of</p><p>β-glucan molecular weight on rice flour dough rheology, quality parame-</p><p>ters of breads and in vitro starch digestibility. LWT-Food Science Technol-</p><p>ogy, 82, 446-453. https://doi.org/10.1016/j.lwt.2017.04.065</p><p>Peterson, D. M. (2001). Oat antioxidants. Journal of Cereal Science, 33, 115-</p><p>129.</p><p>Phan, A. D. T., D’Arcy, B. R., & Gidley, M. J. (2016). Polyphenol–cellulose</p><p>interactions: effects of pH, temperature and salt. International Journal</p><p>of Food Science Technology, 51(1), 203-211. https://doi.org/10.1111/ijfs.</p><p>13009</p><p>Pinero,M., Parra,K.,Huerta-Leidenz,N.,DeMoreno, L.A., Ferrer,M., Araujo,</p><p>S., & Barboza, Y. (2008). Effect of oat’s soluble fibre (β-glucan) as a fat</p><p>replacer on physical, chemical, microbiological and sensory properties</p><p>of low-fat beef patties.Meat Science, 80(3), 675-680. https://doi.org/10.</p><p>1016/j.meatsci.2008.03.006</p><p>Qian, X., Sun, B., Zhu, C., Zhang, Z., Tian, X., &Wang, X. (2020). Effect of stir-</p><p>frying on oatmilling and pasting properties and rheological properties of</p><p>oat flour. Journal of Cereal Science, 92, 102908. https://doi.org/10.1016/j.</p><p>jcs.2020.102908</p><p>Ragaee, S., Seethraman, K., & Abdel-Aal, E.-S. M. (2016). 14 effects of pro-</p><p>cessing on nutritional and functional properties of cereal products. In</p><p>R. de Pinho Ferreira</p><p>Guine & P. M. dos Reis Correia (Eds.), Engineering</p><p>Aspects of Cereal and Cereal-Based Products (p. 311–334). CRC Press.</p><p>Ramadhan, K., & Foster, T. J. (2017). Effects of ball milling on the structural,</p><p>thermal, and rheological properties of oat bran protein flour. Journal of</p><p>Food Engineering, 229, 50–56.</p><p>Rasane, P., Jha, A., Sabikhi, L., Kumar, A., & Unnikrishnan, V. S. (2015). Nutri-</p><p>tional advantages of oats and opportunities for its processing as value</p><p>added foods—A review. Journal of Food Science Technology, 52(2), 662-</p><p>675. https://doi.org/10.1007/s13197-013-1072-1</p><p>Regand, A., Chowdhury, Z., Tosh, S. M., Wolever, T. M., & Wood, P.</p><p>(2011). The molecular weight, solubility and viscosity of oat beta-glucan</p><p>affect human glycemic response by modifying starch digestibility. Food</p><p>Chemistry, 129(2), 297-304. https://doi.org/10.1016/j.foodchem.2011</p><p>.04.053</p><p>Ronda, F., Perez-Quirce, S., Lazaridou, A., & Biliaderis, C. G. (2015). Effect of</p><p>barley and oat β-glucan concentrates on gluten-free rice-based doughs</p><p>and bread characteristics. Food Hydrocolloids, 48, 197-207. https://doi.</p><p>org/10.1016/j.foodhyd.2015.02.031</p><p>Ruiling, S., Shanshan, C., & Yong, Z. (2008). Effects of fine grinding on nutri-</p><p>ent components and physical characteristics of oat bran. Cereal & Feed</p><p>Industry, 3, 17–18.</p><p>Ryu, D., Kowalski, R. J., Ganjyal, G., & Lee, H. J. (2019). Reduction of ochra-</p><p>toxin A in oats and rice by twin-screw extrusion processing with baking</p><p>soda. Food Control, 105, 21-28. https://doi.org/10.1016/j.foodcont.2019.</p><p>05.014</p><p>Sang, S., & Chu, Y. F. (2017). Whole grain oats, more than just a fiber: Role</p><p>of unique phytochemicals.Molecular Nutrition Food Research, 61(7), 1-12.</p><p>https://doi.org/10.1002/mnfr.201600715</p><p>Sarteshnizi, R. A., Hosseini, H., Bondarianzadeh, D., & Colmenero, F. J.</p><p>(2015). Optimization of prebiotic sausage formulation: Effect of using β-</p><p>glucan and resistant starch by D-optimal mixture design approach. LWT-</p><p>Food Science Technology, 62(1), 704-710. https://doi.org/10.1016/j.lwt.</p><p>2014.05.014</p><p>Sharafbafi, N., Tosh, S. M., Alexander, M., & Corredig, M. (2014). Phase</p><p>behaviour, rheological properties, and microstructure of oat β-glucan-</p><p>milk mixtures. Food Hydrocolloids, 41, 274-280. https://doi.org/10.1016/</p><p>j.foodhyd.2014.03.030</p><p>Shen, R., Cheng, S., & Yong, Z. (2008). Effects of fine grinding on nutrient com-</p><p>ponents and physical characteristics of oat bran. Cereal & Feed Industry.</p><p>Sibakov, J., Abecassis, J., Barron, C., Poutanen, K., & Technologies, E. (2014).</p><p>Electrostatic separation combined with ultra-fine grinding to produce β-</p><p>glucan enriched ingredients from oat bran. Innovative Food Science, 26,</p><p>445-455.</p><p>Sibakov, J., Myllymäki, O., Holopainen, U., Kaukovirta-Norja, A., Hietaniemi,</p><p>V., Pihlava, J. M., Poutanen, K., & Lehtinen, P. (2011). Lipid removal</p><p>enhances separation of oat grain cell wall material from starch and pro-</p><p>tein. Journal of Cereal Science, 54(1), 104-109. https://doi.org/10.1016/j.</p><p>jcs.2011.04.003</p><p>Skendi, A., Biliaderis, C., Lazaridou, A., & Izydorczyk, M. (2003). Structure</p><p>and rheological properties of water-soluble β-glucans from oat cultivars</p><p>ofAvena sativaandAvenabysantina. Journal of Cereal Science,38(1), 15-31.</p><p>https://doi.org/10.1016/S0733-5210(02)00137-6</p><p>Skoglund, M., Peterson, D. M., Andersson, R., Nilsson, J., & Dimberg, L. H.</p><p>(2008). Avenanthramide content and related enzyme activities in oats</p><p>26438429, 2022, 1, D</p><p>ow</p><p>nloaded from</p><p>https://onlinelibrary.w</p><p>iley.com</p><p>/doi/10.1002/fft2.120 by C</p><p>A</p><p>PE</p><p>S, W</p><p>iley O</p><p>nline L</p><p>ibrary on [30/10/2023]. See the T</p><p>erm</p><p>s and C</p><p>onditions (https://onlinelibrary.w</p><p>iley.com</p><p>/term</p><p>s-and-conditions) on W</p><p>iley O</p><p>nline L</p><p>ibrary for rules of use; O</p><p>A</p><p>articles are governed by the applicable C</p><p>reative C</p><p>om</p><p>m</p><p>ons L</p><p>icense</p><p>https://doi.org/10.1016/j.carbpol.2019.04.031</p><p>https://doi.org/10.1016/j.foodchem.2019.01.030</p><p>https://doi.org/10.1016/j.foodchem.2019.01.030</p><p>https://doi.org/10.1016/j.ijbiomac.2013.01.021</p><p>https://doi.org/10.1016/j.ijbiomac.2013.01.021</p><p>https://doi.org/10.1021/jf4035354</p><p>https://doi.org/10.1021/jf4035354</p><p>https://doi.org/10.1016/j.chemosphere.2015.03.036</p><p>https://doi.org/10.1016/j.chemosphere.2015.03.036</p><p>https://doi.org/10.1016/j.jcs.2019.102794</p><p>https://doi.org/10.1021/jf1007852</p><p>https://doi.org/10.1021/jf1007852</p><p>https://doi.org/10.1016/j.foodchem.2021.129174</p><p>https://doi.org/10.1080/10408398.2019.1706444</p><p>https://doi.org/10.1080/10408398.2019.1706444</p><p>https://doi.org/10.1016/j.jcs.2015.04.001</p><p>https://doi.org/10.1016/j.foodchem.2016.04.050</p><p>https://doi.org/10.1016/j.foodchem.2011.05.018</p><p>https://doi.org/10.1016/j.jcs.2005.03.002</p><p>https://doi.org/10.1016/j.jcs.2005.03.002</p><p>https://doi.org/10.1016/j.lwt.2017.04.065</p><p>https://doi.org/10.1111/ijfs.13009</p><p>https://doi.org/10.1111/ijfs.13009</p><p>https://doi.org/10.1016/j.meatsci.2008.03.006</p><p>https://doi.org/10.1016/j.meatsci.2008.03.006</p><p>https://doi.org/10.1016/j.jcs.2020.102908</p><p>https://doi.org/10.1016/j.jcs.2020.102908</p><p>https://doi.org/10.1007/s13197-013-1072-1</p><p>https://doi.org/10.1016/j.foodchem.2011.04.053</p><p>https://doi.org/10.1016/j.foodchem.2011.04.053</p><p>https://doi.org/10.1016/j.foodhyd.2015.02.031</p><p>https://doi.org/10.1016/j.foodhyd.2015.02.031</p><p>https://doi.org/10.1016/j.foodcont.2019.05.014</p><p>https://doi.org/10.1016/j.foodcont.2019.05.014</p><p>https://doi.org/10.1002/mnfr.201600715</p><p>https://doi.org/10.1016/j.lwt.2014.05.014</p><p>https://doi.org/10.1016/j.lwt.2014.05.014</p><p>https://doi.org/10.1016/j.foodhyd.2014.03.030</p><p>https://doi.org/10.1016/j.foodhyd.2014.03.030</p><p>https://doi.org/10.1016/j.jcs.2011.04.003</p><p>https://doi.org/10.1016/j.jcs.2011.04.003</p><p>https://doi.org/10.1016/S0733-5210(02)00137-6</p><p>MAO ET AL. 45</p><p>as affected by steeping and germination. Journal of Cereal Science, 48(2),</p><p>294-303. https://doi.org/10.1016/j.jcs.2007.09.010</p><p>Smulders, M. J. M., Van De Wiel, C. C. M., Van Den Broeck, H. C., Van Der</p><p>Meer, I. M., Israel-Hoevelaken, T. P. M., Timmer, R. D., Van Dinter, B. - J.,</p><p>Braun, S., & Gilissen, L. J. W. J. (2018). Oats in healthy gluten-free and</p><p>regular diets: A perspective. Food Research International,110, 3-10. https:</p><p>//doi.org/10.1016/j.foodres.2017.11.031</p><p>Spaen, J., & Silva, J. V. C. (2021). Oat proteins: Review of extractionmethods</p><p>and techno-functionality for liquid and semi-solid applications. LWT-Food</p><p>Science and Technology, 147, Article 111478. https://doi.org/10.1016/j.</p><p>lwt.2021.111478</p><p>Turrini, E., Maffei, F., Milelli, A., Calcabrini, C., & Fimognari, C. (2019).</p><p>Overview of the anticancer profile of avenanthramides from oat. Inter-</p><p>national Journal of Molecular Sciences, 20(4536), 1-23. https://doi.org/10.</p><p>3390/ijms20184536</p><p>USDA. (2019). National nutrient database for standard reference legacy</p><p>release: Full report (all nutrients) 20067, oat grain.</p><p>Veverka, M., Dubaj, T., Gallovič, J., Jorík, V., Veverková, E., Mičušík, M., &</p><p>Šimon, P. (2014). Beta-glucan complexes with selected nutraceuticals:</p><p>Synthesis, characterization, and stability. Journal of Functional Foods, 8,</p><p>309-318. https://doi.org/10.1016/j.jff.2014.03.032</p><p>Walton, M. C., Hendriks, W. H., Broomfield, A. M., & McGhie, T. K.</p><p>(2009). Viscous food matrix influences absorption and excretion but not</p><p>metabolism of blackcurrant anthocyanins in rats. Journal of Food Science,</p><p>74(1), H22-H29. https://doi.org/10.1111/j.1750-3841.2008.00996.x</p><p>Wang, L., Ye, F., Li, S., Wei, F., Chen, J., & Zhao, G. (2017). Wheat flour</p><p>enriched with oat β-glucan: A study of hydration, rheological and fer-</p><p>mentation properties of dough. Journal of Cereal Science, 75, 143-150.</p><p>https://doi.org/10.1016/j.jcs.2017.03.004</p><p>Wang, L., Ye, F., Li, S., Wei, F., Wang, Y., & Zhao, G. (2017). Effects of oat</p><p>β-glucan incorporation on the gelatinization, flowability and moisture</p><p>sorption of wheat flour. Powder Technology, 315, 430-437. https://doi.</p><p>org/10.1016/j.powtec.2017.04.039</p><p>Wang, Y.-J., Yang, L., & Sontag-Strohm, T. (2020). Co-migration of phytate</p><p>with cereal β-glucan and its role in starch hydrolysis in-vitro. Journal of</p><p>Cereal Science, 93, 102933. https://doi.org/10.1016/j.jcs.2020.102933</p><p>Wood, P. J., Siddiqui,</p><p>I. R., & Paton, D. (1978). Extraction of high-viscosity</p><p>gums from oats. Cereal Chemistry, 55(6), 1038-1049.</p><p>Wu, Z., Li, H., Ming, J., & Zhao, G. (2011). Optimization of adsorption of</p><p>tea polyphenols into oat β-glucan using response surface methodology.</p><p>Journal of Agricultural Food Chemistry, 59(1), 378-385. https://doi.org/10.</p><p>1021/jf103003q</p><p>Wu, Z.,Ming, J., Gao, R.,Wang, Y., Liang,Q., Yu,H., &Zhao,G. (2011). Charac-</p><p>terization and antioxidant activity of the complex of tea polyphenols and</p><p>oat β-glucan. Journal of Agricultural FoodChemistry,59(19), 10737-10746.</p><p>https://doi.org/10.1021/jf202722w</p><p>Xu, J., Kuang, Q., Wang, K., Zhou, S., Wang, S., Liu, X., & Wang, S. (2016).</p><p>Insights into molecular structure and digestion rate of oat starch.</p><p>Food Chemistry, 220, 25-30. https://doi.org/10.1016/j.foodchem.2016</p><p>.09.191</p><p>Xue, X., Wang, J., Li, S., Zhang, X., Dong, J., Gui, L., & Chang, Q. (2019). Effect</p><p>of micronised oat bran by ultrafine grinding on dietary fibre, texture and</p><p>rheological characteristics of soft cheese. International Journal of Food Sci-</p><p>ence & Technology, 55, 578–588.</p><p>Yang, H., Gao, J., Yang, A., & Chen, H. (2015). The ultrasound-treated</p><p>soybean seeds improve edibility and nutritional quality of soybean</p><p>sprouts. Food Research International, 77, 704-710. https://doi.org/10.</p><p>1016/j.foodres.2015.01.011</p><p>Yoo, H.-U., Ko, M.-J., & Chung,M.-S. (2020). Hydrolysis of beta-glucan in oat</p><p>flour during subcritical-water extraction. Food Chemistry, 308, 125670.</p><p>https://doi.org/10.1016/j.foodchem.2019.125670</p><p>Zhang, H., Zhang, X., Cao, X. R., Iftikhar, M., & Wang, J. (2018). Semi-solid</p><p>state fermentation and enzymatic hydrolysis impeded the destroy of</p><p>wheat bran on gluten polymerization. LWT, 98, 306-313.</p><p>Zhang, J., Luo, K., & Zhang, G. (2017). Impact of native form oat β-glucan on</p><p>starch digestion and postprandial glycemia. Journal of Cereal Science, 73,</p><p>84-90. https://doi.org/10.1016/j.jcs.2016.11.013</p><p>Zhang, M., Bai, X., & Zhang, Z. (2011). Extrusion process improves the func-</p><p>tionality of soluble dietary fiber in oat bran. Journal of Cereal Science,</p><p>54(1), 98-103. https://doi.org/10.1016/j.jcs.2011.04.001</p><p>Zhu, F. (2017). Structures, properties, modifications, and uses of oat starch.</p><p>Food Chemistry, 229, 329-340. https://doi.org/10.1016/j.foodchem.</p><p>2017.02.064</p><p>Zielke, C., Lu, Y., & Nilsson, L. (2019). Aggregation and microstructure of</p><p>cereal β-glucan and its association with other biomolecules. Colloids Sur-</p><p>faces A: Physicochemical Engineering Aspects, 560, 402-409. https://doi.</p><p>org/10.1016/j.colsurfa.2018.10.042</p><p>Zielke, C., Lu, Y., Poinsot, R., &Nilsson, L. (2018). Interaction between cereal</p><p>β-glucan and proteins in solution and at interfaces. Colloids Surfaces B:</p><p>Biointerfaces, 162, 256-264. https://doi.org/10.1016/j.colsurfb.2017.11.</p><p>059</p><p>How to cite this article: Mao, H., Xu, M., Ji, J., Zhou, M., Li, H.,</p><p>Wen, Y.,Wang, J., & Sun, B. (2022). The utilization of oat for the</p><p>production of wholegrain foods: Processing technology and</p><p>products. Food Frontiers, 3, 28–45.</p><p>https://doi.org/10.1002/fft2.120</p><p>26438429, 2022, 1, D</p><p>ow</p><p>nloaded from</p><p>https://onlinelibrary.w</p><p>iley.com</p><p>/doi/10.1002/fft2.120 by C</p><p>A</p><p>PE</p><p>S, W</p><p>iley O</p><p>nline L</p><p>ibrary on [30/10/2023]. See the T</p><p>erm</p><p>s and C</p><p>onditions (https://onlinelibrary.w</p><p>iley.com</p><p>/term</p><p>s-and-conditions) on W</p><p>iley O</p><p>nline L</p><p>ibrary for rules of use; O</p><p>A</p><p>articles are governed by the applicable C</p><p>reative C</p><p>om</p><p>m</p><p>ons L</p><p>icense</p><p>https://doi.org/10.1016/j.jcs.2007.09.010</p><p>https://doi.org/10.1016/j.foodres.2017.11.031</p><p>https://doi.org/10.1016/j.foodres.2017.11.031</p><p>https://doi.org/10.1016/j.lwt.2021.111478</p><p>https://doi.org/10.1016/j.lwt.2021.111478</p><p>https://doi.org/10.3390/ijms20184536</p><p>https://doi.org/10.3390/ijms20184536</p><p>https://doi.org/10.1016/j.jff.2014.03.032</p><p>https://doi.org/10.1111/j.1750-3841.2008.00996.x</p><p>https://doi.org/10.1016/j.jcs.2017.03.004</p><p>https://doi.org/10.1016/j.powtec.2017.04.039</p><p>https://doi.org/10.1016/j.powtec.2017.04.039</p><p>https://doi.org/10.1016/j.jcs.2020.102933</p><p>https://doi.org/10.1021/jf103003q</p><p>https://doi.org/10.1021/jf103003q</p><p>https://doi.org/10.1021/jf202722w</p><p>https://doi.org/10.1016/j.foodchem.2016.09.191</p><p>https://doi.org/10.1016/j.foodchem.2016.09.191</p><p>https://doi.org/10.1016/j.foodres.2015.01.011</p><p>https://doi.org/10.1016/j.foodres.2015.01.011</p><p>https://doi.org/10.1016/j.foodchem.2019.125670</p><p>https://doi.org/10.1016/j.jcs.2016.11.013</p><p>https://doi.org/10.1016/j.jcs.2011.04.001</p><p>https://doi.org/10.1016/j.foodchem.2017.02.064</p><p>https://doi.org/10.1016/j.foodchem.2017.02.064</p><p>https://doi.org/10.1016/j.colsurfa.2018.10.042</p><p>https://doi.org/10.1016/j.colsurfa.2018.10.042</p><p>https://doi.org/10.1016/j.colsurfb.2017.11.059</p><p>https://doi.org/10.1016/j.colsurfb.2017.11.059</p><p>https://doi.org/10.1002/fft2.120</p><p>The utilization of oat for the production of wholegrain foods: Processing technology and products</p><p>Abstract</p><p>1 | INTRODUCTION</p><p>2 | OAT STRUCTURE AND NUTRITIONAL PROFILE</p><p>2.1 | Oat grain structure</p><p>2.2 | Oat grain nutritional profile</p><p>2.2.1 | Starch</p><p>2.2.2 | Protein</p><p>2.2.3 | Lipids</p><p>2.2.4 | Dietary fiber</p><p>2.2.5 | Antioxidants</p><p>3 | PROCESSING AND APPLICATIONS OF OAT GRAIN</p><p>3.1 | Utilization of the whole grain</p><p>3.1.1 | Grains</p><p>3.1.2 | Flakes</p><p>3.1.3 | Flour</p><p>3.2 | Comprehensive utilization of oat bran</p><p>3.2.1 | Different pretreatment methods on oat bran</p><p>3.2.2 | Applications of oat bran</p><p>3.3 | b-glucan: Extraction and applications in food matrices</p><p>3.3.1 | Extraction and separation of b-glucan</p><p>3.3.2 | Applications of b-glucan in matrices</p><p>4 | EFFECTS OF INTERACTIONS BETWEEN DIFFERENT COMPONENTS ON THE PROCESSING AND NUTRITIONAL PROPERTIES OF OAT PRODUCTS</p><p>4.1 | Dietary fiber-polyphenol interactions</p><p>4.2 | Dietary fiber-starch interactions</p><p>4.3 | Dietary fiber-protein interactions</p><p>4.4 | Dietary fiber-lipid interactions</p><p>5 | CONCLUSION AND PROSPECTIVE</p><p>ACKNOWLEDGMENT</p><p>CONFLICT OF INTEREST</p><p>ORCID</p><p>REFERENCES</p><p>with the properties associated with</p><p>the amylopectin molecule may greatly determine the health features</p><p>and product quality. Oat contains approximately 7% rapidly digestible</p><p>starch, 22% slowly digestible starch, and 25% resistant starch and can</p><p>be consumed as a low-glycemic index food. Oat starch could be used in</p><p>a range of food products; however, there are limitations due to certain</p><p>pasting and rheological properties. Many efforts have been made to</p><p>overcome these challenges, including the introduction of phosphate</p><p>or acetyl groups, hydrolysis, and autoclave-cooling treatment. Starch</p><p>is not the focus of this review, as several reviews have discussed this</p><p>compound in-depth, and the reader is directed to these reviews (Xu</p><p>et al., 2016; Zhu, 2017).</p><p>2.2.2 Protein</p><p>Oat is considered to be a potential source of low-cost protein due to its</p><p>higher protein content (9–20%) compared to other commercial cereal</p><p>grains, such as corn, barley, wheat, and sorghum (Li et al., 2019b). The</p><p>structural properties and protein fraction distribution of oat protein</p><p>are different from those of other cereals. Globulins comprise the</p><p>major protein fraction in oats, accounting for up to 70–80%, and the</p><p>remaining albumin, glutelin, and prolamin account for 1–12%, <10%,</p><p>and 4–14% of the total protein, respectively (Spaen & Silva, 2021). In</p><p>contrast to other cereals (e.g., sorghum), oat is rich in lysine content</p><p>due to the albumin and globulins with a higher lysine concentration,</p><p>while the content of glutamic acid is lower. However, this problem can</p><p>be improved by oat breeding or food fortification.</p><p>Moreover, in contrast to wheat, barley, and rye, oat is generally</p><p>gluten-free. Gluten is a mixture of hardly hydrolyzable polypeptides</p><p>rich in proline and glutamine that arises by hydrolysis of grain storage</p><p>proteins belonging to the prolamin family and can lead some people to</p><p>26438429, 2022, 1, D</p><p>ow</p><p>nloaded from</p><p>https://onlinelibrary.w</p><p>iley.com</p><p>/doi/10.1002/fft2.120 by C</p><p>A</p><p>PE</p><p>S, W</p><p>iley O</p><p>nline L</p><p>ibrary on [30/10/2023]. See the T</p><p>erm</p><p>s and C</p><p>onditions (https://onlinelibrary.w</p><p>iley.com</p><p>/term</p><p>s-and-conditions) on W</p><p>iley O</p><p>nline L</p><p>ibrary for rules of use; O</p><p>A</p><p>articles are governed by the applicable C</p><p>reative C</p><p>om</p><p>m</p><p>ons L</p><p>icense</p><p>30 MAO ET AL.</p><p>F IGURE 1 Schematic diagram of oat grain nutritional components, potential health benefits, industrial applications, and interactions between</p><p>different components (Grundy et al., 2018)</p><p>develop various forms of gluten intolerance, especially celiac disease</p><p>(Kosová et al., 2020). The only treatment is to completely exclude</p><p>gluten from the diet of gluten-intolerant persons. Although there</p><p>is controversy over the safety of oats for certain persons and the</p><p>positive health effects of oat products in a gluten-free diet, oat is also</p><p>a promising cereal to replace wheat and its related grains.</p><p>2.2.3 Lipids</p><p>Compared with other cereals, oat contains a higher content of lipids</p><p>ranging from 2% to 13%. The lipids are mostly present in the</p><p>endosperm. Unsaturated fatty acids are the major components of oat</p><p>lipids. One health claim approved by the EFSA states that the high con-</p><p>tent of unsaturated fatty acids in oats could reduce the risks of heart</p><p>and vascular diseases. The fat amount accounts for 5–9% of total lipids</p><p>in oat. Endogenous antioxidants (e.g., tocopherols, L-ascorbic acid, thi-</p><p>ols, phenolic amino acids, and other phenolic compounds) can protect</p><p>lipids from oxidation, which contributes to the stabilization of the lipid</p><p>contents during short-term storage at room temperature. When used</p><p>for animal feed, the high lipid content of oat provides high energy and</p><p>a good fatty acid composition. However, this advantage is detrimental</p><p>to the processing and preservation of oat food, causing various nega-</p><p>tive effects, such as poor flavor, excessive browning of toasted prod-</p><p>ucts, rancidity, and short storage life.</p><p>2.2.4 Dietary fiber</p><p>Dietary fibers (DF) are the edible part of plants or analogous carbohy-</p><p>drates resistant to digestion and absorption in the human small intes-</p><p>tine, with complete or partial fermentation in the large intestine. The</p><p>DF composition of whole oats is 0.2% resistant starch, 0.1% fructans,</p><p>0.6% cellulose, 3.8% β-glucan, 2.1% arabinoxylan, 2.0% lignin, and 1.0%</p><p>others, based on the dry weight (Bach Knudsen et al., 2017; Mao et al.,</p><p>2021). β-glucan accounts for a larger proportion of DF compared to</p><p>other cereals and usually exists in the endosperm cell wall (75%) and</p><p>bran (10.4%) of oat. The average content of oat β-glucan ranges from 3</p><p>to8 g/100gof dryweight, 82%ofwhich is soluble. Four approvedEFSA</p><p>health claims for oats are related to this special soluble fiber, β-glucan,</p><p>relating to the maintenance and reduction of blood cholesterol, better</p><p>blood glucose balance, and increased fecal bulk.</p><p>2.2.5 Antioxidants</p><p>In addition to the common nutritional components mentioned above,</p><p>oat is also a source ofmany antioxidant compounds contributing to the</p><p>functional and nutritional properties of the grain. Vitamin E (tocols),</p><p>phytic acid, phenolic compounds, and avenanthramides (AVAs) are the</p><p>abundant antioxidants in oats.</p><p>The total tocols range from 19 to 30.3 mg/kg in oats and consist of</p><p>tocopherols present in the germ and tocotrienols in the endosperm, of</p><p>which α isomers are the main form (up to 90%), along with other trace</p><p>vitamins (e.g., thiamine, riboflavin, and niacin) (Peterson, 2001).</p><p>The phenolic compounds in oat mainly include ferulic, p-coumaric,</p><p>caffeic, and vanillic acids, hydroxybenzoic acid, and its derivatives, and</p><p>small amounts of flavonoids. These phenolic acids are potent antioxi-</p><p>dants and provide antioxidant properties both in vitro and in vivo. Oat</p><p>hulls, having no present food use, contain significant amounts of solu-</p><p>ble ferulic acid and several other phenolic acids. The total free pheno-</p><p>lic acid esters in oats are found to be low at approximately 8.7 mg/kg,</p><p>whereas soluble phenolic acid esters account for 20.6mg/kg and insol-</p><p>uble phenolic acids account for approximately 57.7 mg/kg (Rasane</p><p>et al., 2015).</p><p>26438429, 2022, 1, D</p><p>ow</p><p>nloaded from</p><p>https://onlinelibrary.w</p><p>iley.com</p><p>/doi/10.1002/fft2.120 by C</p><p>A</p><p>PE</p><p>S, W</p><p>iley O</p><p>nline L</p><p>ibrary on [30/10/2023]. See the T</p><p>erm</p><p>s and C</p><p>onditions (https://onlinelibrary.w</p><p>iley.com</p><p>/term</p><p>s-and-conditions) on W</p><p>iley O</p><p>nline L</p><p>ibrary for rules of use; O</p><p>A</p><p>articles are governed by the applicable C</p><p>reative C</p><p>om</p><p>m</p><p>ons L</p><p>icense</p><p>MAO ET AL. 31</p><p>F IGURE 2 Detailed structure of oat grain (Grundy et al., 2018)</p><p>AVAs, as low-molecular-weight hydroxycinnamoyl anthranilate</p><p>alkaloids, are uniquely present in oats, and their content ranges</p><p>widely from 2 to 289 mg/kg. AVAs are constitutively expressed in</p><p>the hulls, groats, and outer layers of oat kernels but are mainly con-</p><p>centrated in brans. At least 25 forms of AVAs have been found,</p><p>including the three predominant forms (e.g., 2c, 2f, and 2p) that have</p><p>better biological profiles as well as other congeners with very low</p><p>concentrations. AVA concentrations remain stable during the com-</p><p>mon storage process, but the subsequent treatment (e.g., commer-</p><p>cial hydrothermal processes, steeped, and milled) affects the content,</p><p>which needs to be considered during oat product processing (Bryn-</p><p>gelsson et al., 2003). Numerous scientific studies have demonstrated</p><p>the anti-inflammatory, anti-itch, antiatherosclerotic, and weight loss</p><p>effects of AVAs. AVAs also exert antioxidant and antiproliferative</p><p>effects, which help in preventing or treating cancer. AVAs are not</p><p>the focus of this review, and readers are directed to reviews that</p><p>discuss these compounds in-depth (Sang & Chu, 2017; Turrini et al.,</p><p>2019).</p><p>3 PROCESSING AND APPLICATIONS OF OAT</p><p>GRAIN</p><p>Oat (i.e., dehulled oat grain) can be processed to produce oat-based</p><p>food products with health benefits due to the nutritional potential;</p><p>however, the processing and nutritional properties of the products</p><p>depend on the consumed parts of the grain</p><p>(e.g., endosperm and</p><p>bran) and the processing methods. Currently, the oat ingredients</p><p>frequently found in the literature are flakes (also called oatmeal or</p><p>rolled oats), flour, bran, and purified β-glucan. Table 1 illustrates the</p><p>26438429, 2022, 1, D</p><p>ow</p><p>nloaded from</p><p>https://onlinelibrary.w</p><p>iley.com</p><p>/doi/10.1002/fft2.120 by C</p><p>A</p><p>PE</p><p>S, W</p><p>iley O</p><p>nline L</p><p>ibrary on [30/10/2023]. See the T</p><p>erm</p><p>s and C</p><p>onditions (https://onlinelibrary.w</p><p>iley.com</p><p>/term</p><p>s-and-conditions) on W</p><p>iley O</p><p>nline L</p><p>ibrary for rules of use; O</p><p>A</p><p>articles are governed by the applicable C</p><p>reative C</p><p>om</p><p>m</p><p>ons L</p><p>icense</p><p>32 MAO ET AL.</p><p>T</p><p>A</p><p>B</p><p>L</p><p>E</p><p>1</p><p>A</p><p>p</p><p>p</p><p>lic</p><p>at</p><p>io</p><p>n</p><p>s</p><p>o</p><p>fo</p><p>at</p><p>-b</p><p>as</p><p>ed</p><p>p</p><p>ro</p><p>d</p><p>u</p><p>ct</p><p>s</p><p>O</p><p>at</p><p>-b</p><p>as</p><p>ed</p><p>p</p><p>ro</p><p>d</p><p>u</p><p>ct</p><p>s</p><p>Fo</p><p>o</p><p>d</p><p>st</p><p>yl</p><p>e</p><p>P</p><p>ro</p><p>ce</p><p>ss</p><p>/</p><p>A</p><p>p</p><p>p</p><p>lic</p><p>at</p><p>io</p><p>n</p><p>m</p><p>et</p><p>h</p><p>o</p><p>d</p><p>s</p><p>N</p><p>u</p><p>tr</p><p>it</p><p>io</p><p>n</p><p>al</p><p>ch</p><p>ar</p><p>ac</p><p>te</p><p>ri</p><p>st</p><p>ic</p><p>s</p><p>P</p><p>ro</p><p>ce</p><p>ss</p><p>in</p><p>g</p><p>ch</p><p>ar</p><p>ac</p><p>te</p><p>ri</p><p>st</p><p>ic</p><p>s</p><p>Se</p><p>n</p><p>so</p><p>ry</p><p>p</p><p>ro</p><p>p</p><p>er</p><p>ti</p><p>es</p><p>St</p><p>o</p><p>ra</p><p>ge</p><p>p</p><p>ro</p><p>p</p><p>er</p><p>ti</p><p>es</p><p>R</p><p>ef</p><p>er</p><p>en</p><p>ce</p><p>s</p><p>W</p><p>h</p><p>o</p><p>le</p><p>gr</p><p>ai</p><p>n</p><p>o</p><p>at</p><p>W</p><p>h</p><p>o</p><p>le</p><p>o</p><p>at</p><p>gr</p><p>ai</p><p>n</p><p>s</p><p>H</p><p>yd</p><p>ro</p><p>th</p><p>er</p><p>m</p><p>al</p><p>tr</p><p>ea</p><p>tm</p><p>en</p><p>t</p><p>P</p><p>hy</p><p>ti</p><p>c</p><p>ac</p><p>id</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>St</p><p>ab</p><p>ili</p><p>ty</p><p>en</p><p>h</p><p>an</p><p>ce</p><p>d</p><p>B</p><p>it</p><p>te</p><p>r</p><p>fl</p><p>av</p><p>o</p><p>r</p><p>re</p><p>d</p><p>u</p><p>ce</p><p>d</p><p>St</p><p>o</p><p>ra</p><p>ge</p><p>ti</p><p>m</p><p>e</p><p>ex</p><p>te</p><p>n</p><p>d</p><p>ed</p><p>Fr</p><p>ed</p><p>lu</p><p>n</p><p>d</p><p>et</p><p>al</p><p>.(</p><p>1</p><p>9</p><p>9</p><p>7</p><p>),</p><p>Le</p><p>h</p><p>ti</p><p>n</p><p>en</p><p>et</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>0</p><p>3</p><p>)</p><p>Fe</p><p>rm</p><p>en</p><p>ta</p><p>ti</p><p>o</p><p>n</p><p>tr</p><p>ea</p><p>tm</p><p>en</p><p>t</p><p>Fr</p><p>ee</p><p>p</p><p>h</p><p>en</p><p>o</p><p>la</p><p>n</p><p>d</p><p>b</p><p>in</p><p>d</p><p>in</p><p>g</p><p>p</p><p>h</p><p>en</p><p>o</p><p>li</p><p>n</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>A</p><p>n</p><p>ti</p><p>ox</p><p>id</p><p>an</p><p>t</p><p>ac</p><p>ti</p><p>vi</p><p>ty</p><p>en</p><p>h</p><p>an</p><p>ce</p><p>d</p><p>-</p><p>-</p><p>-</p><p>C</p><p>h</p><p>en</p><p>et</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>2</p><p>0</p><p>)</p><p>G</p><p>er</p><p>m</p><p>in</p><p>at</p><p>io</p><p>n</p><p>tr</p><p>ea</p><p>tm</p><p>en</p><p>t</p><p>E</p><p>n</p><p>d</p><p>o</p><p>ge</p><p>n</p><p>o</p><p>u</p><p>s</p><p>av</p><p>en</p><p>an</p><p>th</p><p>ra</p><p>m</p><p>id</p><p>es</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>P</p><p>hy</p><p>ti</p><p>c</p><p>ac</p><p>id</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>-</p><p>-</p><p>St</p><p>o</p><p>ra</p><p>ge</p><p>ti</p><p>m</p><p>e</p><p>ex</p><p>te</p><p>n</p><p>d</p><p>ed</p><p>Sk</p><p>o</p><p>gl</p><p>u</p><p>n</p><p>d</p><p>et</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>0</p><p>8</p><p>)</p><p>O</p><p>at</p><p>fl</p><p>ak</p><p>e</p><p>D</p><p>ef</p><p>at</p><p>te</p><p>d</p><p>tr</p><p>ea</p><p>tm</p><p>en</p><p>t</p><p>-</p><p>St</p><p>ab</p><p>ili</p><p>ty</p><p>en</p><p>h</p><p>an</p><p>ce</p><p>d</p><p>P</p><p>ro</p><p>te</p><p>in</p><p>an</p><p>d</p><p>β-</p><p>gl</p><p>u</p><p>ca</p><p>n</p><p>ex</p><p>tr</p><p>ac</p><p>ti</p><p>o</p><p>n</p><p>ra</p><p>te</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>-</p><p>-</p><p>Si</p><p>b</p><p>ak</p><p>ov</p><p>et</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>1</p><p>1</p><p>)</p><p>E</p><p>xt</p><p>ru</p><p>si</p><p>o</p><p>n</p><p>p</p><p>ro</p><p>ce</p><p>ss</p><p>in</p><p>g</p><p>O</p><p>ch</p><p>ra</p><p>to</p><p>xi</p><p>n</p><p>A</p><p>co</p><p>n</p><p>te</p><p>n</p><p>t</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>So</p><p>lu</p><p>b</p><p>le</p><p>D</p><p>F</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>E</p><p>n</p><p>d</p><p>o</p><p>ge</p><p>n</p><p>o</p><p>u</p><p>s</p><p>lip</p><p>as</p><p>e</p><p>co</p><p>n</p><p>te</p><p>n</p><p>t</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>A</p><p>n</p><p>ti</p><p>n</p><p>u</p><p>tr</p><p>it</p><p>io</p><p>n</p><p>al</p><p>fa</p><p>ct</p><p>o</p><p>rs</p><p>co</p><p>n</p><p>te</p><p>n</p><p>t</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>-</p><p>-</p><p>St</p><p>o</p><p>ra</p><p>ge</p><p>ti</p><p>m</p><p>e</p><p>ex</p><p>te</p><p>n</p><p>d</p><p>ed</p><p>R</p><p>yu</p><p>et</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>1</p><p>9</p><p>)</p><p>O</p><p>at</p><p>fl</p><p>o</p><p>u</p><p>r</p><p>D</p><p>ef</p><p>at</p><p>te</p><p>d</p><p>tr</p><p>ea</p><p>tm</p><p>en</p><p>t</p><p>-</p><p>E</p><p>m</p><p>u</p><p>ls</p><p>if</p><p>ic</p><p>at</p><p>io</p><p>n</p><p>ac</p><p>ti</p><p>vi</p><p>ty</p><p>an</p><p>d</p><p>em</p><p>u</p><p>ls</p><p>io</p><p>n</p><p>st</p><p>ab</p><p>ili</p><p>ty</p><p>en</p><p>h</p><p>an</p><p>ce</p><p>d</p><p>-</p><p>-</p><p>K</p><p>o</p><p>n</p><p>ak</p><p>et</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>1</p><p>4</p><p>)</p><p>St</p><p>ir</p><p>-f</p><p>ry</p><p>in</p><p>g</p><p>tr</p><p>ea</p><p>tm</p><p>en</p><p>t</p><p>A</p><p>n</p><p>ti</p><p>ag</p><p>in</p><p>g</p><p>ab</p><p>ili</p><p>ty</p><p>en</p><p>h</p><p>an</p><p>ce</p><p>d</p><p>N</p><p>et</p><p>w</p><p>o</p><p>rk</p><p>st</p><p>ru</p><p>ct</p><p>u</p><p>re</p><p>m</p><p>o</p><p>re</p><p>st</p><p>ab</p><p>le</p><p>M</p><p>ill</p><p>in</p><p>g</p><p>yi</p><p>el</p><p>d</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>P</p><p>ea</p><p>k</p><p>vi</p><p>sc</p><p>o</p><p>si</p><p>ty</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>D</p><p>o</p><p>u</p><p>gh</p><p>el</p><p>as</p><p>ti</p><p>c</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>-</p><p>-</p><p>Q</p><p>ia</p><p>n</p><p>et</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>2</p><p>0</p><p>)</p><p>H</p><p>yd</p><p>ro</p><p>th</p><p>er</p><p>m</p><p>al</p><p>tr</p><p>ea</p><p>tm</p><p>en</p><p>t</p><p>P</p><p>hy</p><p>ti</p><p>c</p><p>ac</p><p>id</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>Li</p><p>p</p><p>as</p><p>e</p><p>an</p><p>d</p><p>p</p><p>er</p><p>ox</p><p>id</p><p>as</p><p>e</p><p>in</p><p>ac</p><p>ti</p><p>va</p><p>te</p><p>d</p><p>St</p><p>ab</p><p>ili</p><p>ty</p><p>en</p><p>h</p><p>an</p><p>ce</p><p>d</p><p>C</p><p>o</p><p>ld</p><p>p</p><p>as</p><p>te</p><p>vi</p><p>sc</p><p>o</p><p>si</p><p>ty</p><p>en</p><p>h</p><p>an</p><p>ce</p><p>d</p><p>B</p><p>it</p><p>te</p><p>r</p><p>fl</p><p>av</p><p>o</p><p>r</p><p>re</p><p>d</p><p>u</p><p>ce</p><p>d</p><p>St</p><p>o</p><p>ra</p><p>ge</p><p>ti</p><p>m</p><p>e</p><p>en</p><p>h</p><p>an</p><p>ce</p><p>d</p><p>S.</p><p>Li</p><p>u</p><p>et</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>1</p><p>9</p><p>)</p><p>E</p><p>xt</p><p>ru</p><p>si</p><p>o</p><p>n</p><p>p</p><p>ro</p><p>ce</p><p>ss</p><p>in</p><p>g</p><p>So</p><p>lu</p><p>b</p><p>le</p><p>D</p><p>F</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>E</p><p>n</p><p>d</p><p>o</p><p>ge</p><p>n</p><p>o</p><p>u</p><p>s</p><p>lip</p><p>as</p><p>e</p><p>co</p><p>n</p><p>te</p><p>n</p><p>t</p><p>an</p><p>d</p><p>an</p><p>ti</p><p>n</p><p>u</p><p>tr</p><p>it</p><p>io</p><p>n</p><p>al</p><p>fa</p><p>ct</p><p>o</p><p>rs</p><p>co</p><p>n</p><p>te</p><p>n</p><p>t</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>P</p><p>u</p><p>ff</p><p>in</p><p>g</p><p>te</p><p>m</p><p>p</p><p>er</p><p>at</p><p>u</p><p>re</p><p>,</p><p>so</p><p>lu</p><p>b</p><p>ili</p><p>ty</p><p>,a</p><p>p</p><p>p</p><p>ar</p><p>en</p><p>t</p><p>vi</p><p>sc</p><p>o</p><p>si</p><p>ty</p><p>,c</p><p>o</p><p>n</p><p>si</p><p>st</p><p>en</p><p>cy</p><p>co</p><p>ef</p><p>fi</p><p>ci</p><p>en</p><p>t,</p><p>an</p><p>d</p><p>fo</p><p>am</p><p>in</p><p>g</p><p>ab</p><p>ili</p><p>ty</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>-</p><p>-</p><p>M</p><p>o</p><p>is</p><p>io</p><p>et</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>1</p><p>5</p><p>),</p><p>M</p><p>.</p><p>Z</p><p>h</p><p>an</p><p>g</p><p>et</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>1</p><p>1</p><p>)</p><p>(C</p><p>o</p><p>n</p><p>ti</p><p>n</p><p>u</p><p>es</p><p>)</p><p>26438429, 2022, 1, D</p><p>ow</p><p>nloaded from</p><p>https://onlinelibrary.w</p><p>iley.com</p><p>/doi/10.1002/fft2.120 by C</p><p>A</p><p>PE</p><p>S, W</p><p>iley O</p><p>nline L</p><p>ibrary on [30/10/2023]. See the T</p><p>erm</p><p>s and C</p><p>onditions (https://onlinelibrary.w</p><p>iley.com</p><p>/term</p><p>s-and-conditions) on W</p><p>iley O</p><p>nline L</p><p>ibrary for rules of use; O</p><p>A</p><p>articles are governed by the applicable C</p><p>reative C</p><p>om</p><p>m</p><p>ons L</p><p>icense</p><p>MAO ET AL. 33</p><p>T</p><p>A</p><p>B</p><p>L</p><p>E</p><p>1</p><p>(C</p><p>o</p><p>n</p><p>ti</p><p>n</p><p>u</p><p>ed</p><p>)</p><p>O</p><p>at</p><p>-b</p><p>as</p><p>ed</p><p>p</p><p>ro</p><p>d</p><p>u</p><p>ct</p><p>s</p><p>Fo</p><p>o</p><p>d</p><p>st</p><p>yl</p><p>e</p><p>P</p><p>ro</p><p>ce</p><p>ss</p><p>/</p><p>A</p><p>p</p><p>p</p><p>lic</p><p>at</p><p>io</p><p>n</p><p>m</p><p>et</p><p>h</p><p>o</p><p>d</p><p>s</p><p>N</p><p>u</p><p>tr</p><p>it</p><p>io</p><p>n</p><p>al</p><p>ch</p><p>ar</p><p>ac</p><p>te</p><p>ri</p><p>st</p><p>ic</p><p>s</p><p>P</p><p>ro</p><p>ce</p><p>ss</p><p>in</p><p>g</p><p>ch</p><p>ar</p><p>ac</p><p>te</p><p>ri</p><p>st</p><p>ic</p><p>s</p><p>Se</p><p>n</p><p>so</p><p>ry</p><p>p</p><p>ro</p><p>p</p><p>er</p><p>ti</p><p>es</p><p>St</p><p>o</p><p>ra</p><p>ge</p><p>p</p><p>ro</p><p>p</p><p>er</p><p>ti</p><p>es</p><p>R</p><p>ef</p><p>er</p><p>en</p><p>ce</p><p>s</p><p>C</p><p>ar</p><p>b</p><p>o</p><p>hy</p><p>d</p><p>ra</p><p>se</p><p>s</p><p>tr</p><p>ea</p><p>tm</p><p>en</p><p>t</p><p>P</p><p>h</p><p>en</p><p>o</p><p>lic</p><p>ac</p><p>id</p><p>(f</p><p>er</p><p>u</p><p>lic</p><p>ac</p><p>id</p><p>)</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>A</p><p>n</p><p>ti</p><p>ox</p><p>id</p><p>an</p><p>t</p><p>ac</p><p>ti</p><p>vi</p><p>ty</p><p>en</p><p>h</p><p>an</p><p>ce</p><p>d</p><p>-</p><p>-</p><p>-</p><p>A</p><p>lr</p><p>ah</p><p>m</p><p>an</p><p>y</p><p>et</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>1</p><p>3</p><p>),</p><p>F</p><p>la</p><p>n</p><p>d</p><p>er</p><p>et</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>0</p><p>8</p><p>)</p><p>E</p><p>n</p><p>zy</p><p>m</p><p>o</p><p>ly</p><p>si</p><p>s</p><p>an</p><p>d</p><p>fe</p><p>rm</p><p>en</p><p>ta</p><p>ti</p><p>o</p><p>n</p><p>So</p><p>lu</p><p>b</p><p>le</p><p>an</p><p>d</p><p>in</p><p>so</p><p>lu</p><p>b</p><p>le</p><p>p</p><p>h</p><p>en</p><p>o</p><p>ls</p><p>an</p><p>d</p><p>an</p><p>ti</p><p>ox</p><p>id</p><p>an</p><p>t</p><p>ac</p><p>ti</p><p>vi</p><p>ty</p><p>en</p><p>h</p><p>an</p><p>ce</p><p>d</p><p>-</p><p>-</p><p>-</p><p>B</p><p>ei</p><p>et</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>1</p><p>8</p><p>)</p><p>H</p><p>ea</p><p>t</p><p>tr</p><p>ea</p><p>tm</p><p>en</p><p>t</p><p>o</p><p>f</p><p>o</p><p>at</p><p>s</p><p>af</p><p>te</p><p>r</p><p>d</p><p>eg</p><p>re</p><p>as</p><p>in</p><p>g</p><p>M</p><p>et</p><p>al</p><p>ch</p><p>el</p><p>at</p><p>io</p><p>n</p><p>ac</p><p>ti</p><p>vi</p><p>ty</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>To</p><p>ta</p><p>lp</p><p>h</p><p>en</p><p>o</p><p>ls</p><p>,f</p><p>la</p><p>vo</p><p>n</p><p>o</p><p>id</p><p>s,</p><p>an</p><p>d</p><p>an</p><p>ti</p><p>ox</p><p>id</p><p>an</p><p>t</p><p>ac</p><p>ti</p><p>vi</p><p>ty</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>B</p><p>ro</p><p>w</p><p>n</p><p>in</p><p>g</p><p>in</p><p>d</p><p>ex</p><p>,w</p><p>at</p><p>er</p><p>ab</p><p>so</p><p>rp</p><p>ti</p><p>o</p><p>n</p><p>,s</p><p>o</p><p>lu</p><p>b</p><p>ili</p><p>ty</p><p>,a</p><p>n</p><p>d</p><p>th</p><p>e</p><p>p</p><p>as</p><p>ty</p><p>vi</p><p>sc</p><p>o</p><p>si</p><p>ty</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>-</p><p>-</p><p>G</p><p>u</p><p>jr</p><p>al</p><p>et</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>1</p><p>3</p><p>),</p><p>S.</p><p>Li</p><p>u</p><p>et</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>1</p><p>9</p><p>)</p><p>P</p><p>u</p><p>ls</p><p>ed</p><p>el</p><p>ec</p><p>tr</p><p>ic</p><p>fi</p><p>el</p><p>d</p><p>tr</p><p>ea</p><p>tm</p><p>en</p><p>t</p><p>an</p><p>d</p><p>h</p><p>ea</p><p>t</p><p>tr</p><p>ea</p><p>tm</p><p>en</p><p>t</p><p>-</p><p>G</p><p>el</p><p>at</p><p>in</p><p>iz</p><p>at</p><p>io</p><p>n</p><p>st</p><p>ab</p><p>ili</p><p>ty</p><p>o</p><p>f</p><p>st</p><p>ar</p><p>ch</p><p>en</p><p>h</p><p>an</p><p>ce</p><p>d</p><p>D</p><p>eh</p><p>yd</p><p>ra</p><p>ti</p><p>o</p><p>n</p><p>sh</p><p>ri</p><p>n</p><p>ka</p><p>ge</p><p>an</p><p>d</p><p>h</p><p>ar</p><p>d</p><p>n</p><p>es</p><p>s</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>-</p><p>-</p><p>D</p><p>u</p><p>q</p><p>u</p><p>e</p><p>et</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>2</p><p>0</p><p>)</p><p>O</p><p>at</p><p>b</p><p>ra</p><p>n</p><p>-</p><p>b</p><p>as</p><p>ed</p><p>p</p><p>ro</p><p>d</p><p>u</p><p>ct</p><p>s</p><p>F</p><p>lo</p><p>u</p><p>r-</p><p>b</p><p>as</p><p>ed</p><p>p</p><p>ro</p><p>d</p><p>u</p><p>ct</p><p>s</p><p>C</p><p>o</p><p>o</p><p>ki</p><p>es</p><p>D</p><p>ep</p><p>hy</p><p>ti</p><p>n</p><p>iz</p><p>ed</p><p>D</p><p>ie</p><p>ta</p><p>ry</p><p>fi</p><p>b</p><p>er</p><p>co</p><p>n</p><p>te</p><p>n</p><p>t,</p><p>p</p><p>h</p><p>en</p><p>o</p><p>lic</p><p>co</p><p>m</p><p>p</p><p>o</p><p>u</p><p>n</p><p>d</p><p>s</p><p>co</p><p>n</p><p>te</p><p>n</p><p>t,</p><p>an</p><p>ti</p><p>ox</p><p>id</p><p>an</p><p>t</p><p>ac</p><p>ti</p><p>vi</p><p>ty</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>-</p><p>Ta</p><p>st</p><p>e,</p><p>te</p><p>xt</p><p>u</p><p>re</p><p>,a</p><p>n</p><p>d</p><p>ap</p><p>p</p><p>ea</p><p>ra</p><p>n</p><p>ce</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>-</p><p>A</p><p>kt</p><p>as</p><p>-A</p><p>ky</p><p>ild</p><p>iz</p><p>et</p><p>al</p><p>.</p><p>(2</p><p>0</p><p>1</p><p>8</p><p>)</p><p>P</p><p>as</p><p>ta</p><p>-</p><p>To</p><p>ta</p><p>ld</p><p>ie</p><p>ta</p><p>ry</p><p>fi</p><p>b</p><p>er</p><p>an</p><p>d</p><p>an</p><p>ti</p><p>ox</p><p>id</p><p>an</p><p>t</p><p>ac</p><p>ti</p><p>vi</p><p>ty</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>C</p><p>al</p><p>o</p><p>ri</p><p>c</p><p>co</p><p>n</p><p>te</p><p>n</p><p>t</p><p>an</p><p>d</p><p>d</p><p>ig</p><p>es</p><p>ti</p><p>b</p><p>ili</p><p>ty</p><p>o</p><p>fi</p><p>ts</p><p>st</p><p>ar</p><p>ch</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>-</p><p>H</p><p>ar</p><p>d</p><p>n</p><p>es</p><p>s</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>-</p><p>E</p><p>sp</p><p>in</p><p>o</p><p>sa</p><p>-S</p><p>o</p><p>lis</p><p>et</p><p>al</p><p>.</p><p>(2</p><p>0</p><p>1</p><p>9</p><p>)</p><p>M</p><p>ea</p><p>t</p><p>p</p><p>ro</p><p>d</p><p>u</p><p>ct</p><p>s</p><p>-</p><p>To</p><p>ta</p><p>lt</p><p>ra</p><p>n</p><p>s-</p><p>fa</p><p>tt</p><p>y</p><p>ac</p><p>id</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>D</p><p>ie</p><p>ta</p><p>ry</p><p>fi</p><p>b</p><p>er</p><p>fi</p><p>b</p><p>er</p><p>,p</p><p>ro</p><p>te</p><p>in</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>H</p><p>ar</p><p>d</p><p>n</p><p>es</p><p>s,</p><p>vi</p><p>sc</p><p>o</p><p>si</p><p>ty</p><p>,a</p><p>n</p><p>d</p><p>ch</p><p>ew</p><p>in</p><p>es</p><p>s</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>βv</p><p>al</p><p>u</p><p>e</p><p>(y</p><p>el</p><p>lo</p><p>w</p><p>n</p><p>es</p><p>s)</p><p>h</p><p>ig</p><p>h</p><p>es</p><p>t</p><p>-</p><p>İs</p><p>m</p><p>ai</p><p>la</p><p>n</p><p>d</p><p>O</p><p>rh</p><p>an</p><p>(2</p><p>0</p><p>0</p><p>3</p><p>)</p><p>B</p><p>ev</p><p>er</p><p>ag</p><p>e</p><p>-</p><p>D</p><p>ie</p><p>ta</p><p>ry</p><p>fi</p><p>b</p><p>er</p><p>fi</p><p>b</p><p>er</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>W</p><p>at</p><p>er</p><p>-h</p><p>o</p><p>ld</p><p>in</p><p>g</p><p>ca</p><p>p</p><p>ac</p><p>it</p><p>y</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>Se</p><p>n</p><p>so</p><p>ry</p><p>sc</p><p>o</p><p>re</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>-</p><p>C</p><p>h</p><p>ak</p><p>ra</p><p>b</p><p>o</p><p>rt</p><p>y</p><p>et</p><p>al</p><p>.</p><p>(2</p><p>0</p><p>1</p><p>9</p><p>)</p><p>(C</p><p>o</p><p>n</p><p>ti</p><p>n</p><p>u</p><p>es</p><p>)</p><p>26438429, 2022, 1, D</p><p>ow</p><p>nloaded from</p><p>https://onlinelibrary.w</p><p>iley.com</p><p>/doi/10.1002/fft2.120 by C</p><p>A</p><p>PE</p><p>S, W</p><p>iley O</p><p>nline L</p><p>ibrary on [30/10/2023]. See the T</p><p>erm</p><p>s and C</p><p>onditions (https://onlinelibrary.w</p><p>iley.com</p><p>/term</p><p>s-and-conditions) on W</p><p>iley O</p><p>nline L</p><p>ibrary for rules of use; O</p><p>A</p><p>articles are governed by the applicable C</p><p>reative C</p><p>om</p><p>m</p><p>ons L</p><p>icense</p><p>34 MAO ET AL.</p><p>T</p><p>A</p><p>B</p><p>L</p><p>E</p><p>1</p><p>(C</p><p>o</p><p>n</p><p>ti</p><p>n</p><p>u</p><p>ed</p><p>)</p><p>O</p><p>at</p><p>-b</p><p>as</p><p>ed</p><p>p</p><p>ro</p><p>d</p><p>u</p><p>ct</p><p>s</p><p>Fo</p><p>o</p><p>d</p><p>st</p><p>yl</p><p>e</p><p>P</p><p>ro</p><p>ce</p><p>ss</p><p>/</p><p>A</p><p>p</p><p>p</p><p>lic</p><p>at</p><p>io</p><p>n</p><p>m</p><p>et</p><p>h</p><p>o</p><p>d</p><p>s</p><p>N</p><p>u</p><p>tr</p><p>it</p><p>io</p><p>n</p><p>al</p><p>ch</p><p>ar</p><p>ac</p><p>te</p><p>ri</p><p>st</p><p>ic</p><p>s</p><p>P</p><p>ro</p><p>ce</p><p>ss</p><p>in</p><p>g</p><p>ch</p><p>ar</p><p>ac</p><p>te</p><p>ri</p><p>st</p><p>ic</p><p>s</p><p>Se</p><p>n</p><p>so</p><p>ry</p><p>p</p><p>ro</p><p>p</p><p>er</p><p>ti</p><p>es</p><p>St</p><p>o</p><p>ra</p><p>ge</p><p>p</p><p>ro</p><p>p</p><p>er</p><p>ti</p><p>es</p><p>R</p><p>ef</p><p>er</p><p>en</p><p>ce</p><p>s</p><p>O</p><p>at</p><p>β-</p><p>gl</p><p>u</p><p>ca</p><p>n</p><p>-</p><p>b</p><p>as</p><p>ed</p><p>p</p><p>ro</p><p>d</p><p>u</p><p>ct</p><p>s</p><p>D</p><p>ai</p><p>ry</p><p>p</p><p>ro</p><p>d</p><p>u</p><p>ct</p><p>s</p><p>Sk</p><p>im</p><p>m</p><p>ed</p><p>fr</p><p>es</p><p>h</p><p>m</p><p>ilk</p><p>D</p><p>is</p><p>p</p><p>er</p><p>si</p><p>n</p><p>g</p><p>at</p><p>9</p><p>0</p><p>°C</p><p>fo</p><p>r</p><p>3</p><p>h</p><p>in</p><p>p</p><p>er</p><p>m</p><p>ea</p><p>te</p><p>F</p><p>at</p><p>su</p><p>b</p><p>st</p><p>it</p><p>u</p><p>te</p><p>P</p><p>h</p><p>as</p><p>e</p><p>se</p><p>p</p><p>ar</p><p>at</p><p>io</p><p>n</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>-</p><p>-</p><p>Sh</p><p>ar</p><p>af</p><p>b</p><p>af</p><p>ie</p><p>t</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>1</p><p>4</p><p>)</p><p>Fe</p><p>rm</p><p>en</p><p>te</p><p>d</p><p>sk</p><p>im</p><p>m</p><p>ed</p><p>m</p><p>ilk</p><p>In</p><p>it</p><p>ia</p><p>lly</p><p>so</p><p>lu</p><p>b</p><p>ili</p><p>ze</p><p>d</p><p>at</p><p>8</p><p>0</p><p>°C</p><p>,c</p><p>o</p><p>o</p><p>le</p><p>d</p><p>to</p><p>4</p><p>0</p><p>°C</p><p>B</p><p>lo</p><p>o</p><p>d</p><p>se</p><p>ru</p><p>m</p><p>ch</p><p>o</p><p>le</p><p>st</p><p>er</p><p>o</p><p>l</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>P</p><p>ro</p><p>te</p><p>in</p><p>ag</p><p>gr</p><p>eg</p><p>at</p><p>io</p><p>n</p><p>,</p><p>ac</p><p>id</p><p>if</p><p>ic</p><p>at</p><p>io</p><p>n</p><p>,a</p><p>n</p><p>d</p><p>ge</p><p>l</p><p>st</p><p>re</p><p>n</p><p>gt</p><p>h</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>Li</p><p>q</p><p>u</p><p>id</p><p>-l</p><p>ik</p><p>e</p><p>st</p><p>ru</p><p>ct</p><p>u</p><p>re</p><p>en</p><p>h</p><p>an</p><p>ce</p><p>d</p><p>V</p><p>ia</p><p>b</p><p>ili</p><p>ty</p><p>o</p><p>ft</p><p>h</p><p>e</p><p>p</p><p>ro</p><p>b</p><p>io</p><p>ti</p><p>c</p><p>st</p><p>ra</p><p>in</p><p>en</p><p>h</p><p>an</p><p>ce</p><p>d</p><p>La</p><p>za</p><p>ri</p><p>d</p><p>o</p><p>u</p><p>et</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>1</p><p>4</p><p>)</p><p>M</p><p>ea</p><p>t</p><p>p</p><p>ro</p><p>d</p><p>u</p><p>ct</p><p>s</p><p>P</p><p>re</p><p>b</p><p>io</p><p>ti</p><p>c</p><p>sa</p><p>u</p><p>sa</p><p>ge</p><p>D</p><p>ir</p><p>ec</p><p>t</p><p>m</p><p>ix</p><p>in</p><p>g</p><p>-</p><p>C</p><p>o</p><p>o</p><p>ki</p><p>n</p><p>g</p><p>yi</p><p>el</p><p>d</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>W</p><p>ei</p><p>gh</p><p>t</p><p>lo</p><p>ss</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>A</p><p>cc</p><p>ep</p><p>ta</p><p>b</p><p>ili</p><p>ty</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>H</p><p>ar</p><p>d</p><p>n</p><p>es</p><p>s</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>Li</p><p>gh</p><p>tn</p><p>es</p><p>s</p><p>o</p><p>fc</p><p>o</p><p>lo</p><p>r</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>-</p><p>Sa</p><p>rt</p><p>es</p><p>h</p><p>n</p><p>iz</p><p>ie</p><p>t</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>1</p><p>5</p><p>)</p><p>Lo</p><p>w</p><p>-f</p><p>at</p><p>m</p><p>ea</p><p>tb</p><p>al</p><p>ls</p><p>D</p><p>ir</p><p>ec</p><p>t</p><p>m</p><p>ix</p><p>in</p><p>g</p><p>F</p><p>at</p><p>su</p><p>b</p><p>st</p><p>it</p><p>u</p><p>te</p><p>Fo</p><p>rm</p><p>at</p><p>io</p><p>n</p><p>o</p><p>fp</p><p>ro</p><p>te</p><p>in</p><p>n</p><p>et</p><p>w</p><p>o</p><p>rk</p><p>re</p><p>d</p><p>u</p><p>ce</p><p>d</p><p>M</p><p>o</p><p>is</p><p>tu</p><p>re</p><p>en</p><p>tr</p><p>ap</p><p>m</p><p>en</p><p>t</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>F</p><p>ir</p><p>m</p><p>n</p><p>es</p><p>s,</p><p>sp</p><p>ri</p><p>n</p><p>gi</p><p>n</p><p>es</p><p>s,</p><p>co</p><p>h</p><p>es</p><p>iv</p><p>en</p><p>es</p><p>s,</p><p>an</p><p>d</p><p>ra</p><p>ti</p><p>o</p><p>ch</p><p>ew</p><p>in</p><p>es</p><p>s</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>A</p><p>cc</p><p>ep</p><p>ta</p><p>b</p><p>ili</p><p>ty</p><p>en</p><p>h</p><p>an</p><p>ce</p><p>d</p><p>-</p><p>R</p><p>.L</p><p>iu</p><p>et</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>1</p><p>5</p><p>)</p><p>M</p><p>ea</p><p>t</p><p>b</p><p>at</p><p>te</p><p>rs</p><p>H</p><p>yd</p><p>ra</p><p>te</p><p>d</p><p>to</p><p>p</p><p>ro</p><p>d</p><p>u</p><p>ce</p><p>1</p><p>0</p><p>%</p><p>ge</p><p>l</p><p>F</p><p>at</p><p>su</p><p>b</p><p>st</p><p>it</p><p>u</p><p>te</p><p>W</p><p>ei</p><p>gh</p><p>t</p><p>lo</p><p>ss</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>M</p><p>o</p><p>is</p><p>tu</p><p>re</p><p>re</p><p>te</p><p>n</p><p>ti</p><p>o</p><p>n</p><p>,c</p><p>o</p><p>o</p><p>ki</p><p>n</p><p>g</p><p>yi</p><p>el</p><p>d</p><p>,e</p><p>m</p><p>u</p><p>ls</p><p>io</p><p>n</p><p>st</p><p>ab</p><p>ili</p><p>ty</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>te</p><p>xt</p><p>u</p><p>re</p><p>m</p><p>ai</p><p>n</p><p>ta</p><p>in</p><p>ed</p><p>B</p><p>ro</p><p>w</p><p>n</p><p>co</p><p>lo</p><p>r</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>Fr</p><p>ac</p><p>tu</p><p>ra</p><p>b</p><p>ili</p><p>ty</p><p>-h</p><p>ar</p><p>d</p><p>n</p><p>es</p><p>s,</p><p>co</p><p>h</p><p>es</p><p>iv</p><p>en</p><p>es</p><p>s,</p><p>gu</p><p>m</p><p>m</p><p>in</p><p>es</p><p>s,</p><p>ch</p><p>ew</p><p>in</p><p>es</p><p>s,</p><p>an</p><p>d</p><p>sp</p><p>ri</p><p>n</p><p>gi</p><p>n</p><p>es</p><p>s</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>-</p><p>Á</p><p>lv</p><p>ar</p><p>ez</p><p>&</p><p>B</p><p>ar</p><p>b</p><p>u</p><p>t</p><p>(2</p><p>0</p><p>1</p><p>3</p><p>)</p><p>C</p><p>h</p><p>ic</p><p>ke</p><p>n</p><p>b</p><p>re</p><p>as</p><p>t</p><p>m</p><p>ea</p><p>t</p><p>D</p><p>ir</p><p>ec</p><p>t</p><p>m</p><p>ix</p><p>in</p><p>g</p><p>Sa</p><p>lt</p><p>re</p><p>p</p><p>la</p><p>ce</p><p>r</p><p>To</p><p>ta</p><p>lp</p><p>ro</p><p>te</p><p>in</p><p>so</p><p>lu</p><p>b</p><p>ili</p><p>ty</p><p>an</p><p>d</p><p>ge</p><p>l</p><p>st</p><p>re</p><p>n</p><p>gt</p><p>h</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>-</p><p>-</p><p>O</p><p>m</p><p>an</p><p>a</p><p>et</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>1</p><p>1</p><p>)</p><p>Lo</p><p>w</p><p>-f</p><p>at</p><p>b</p><p>ee</p><p>f</p><p>p</p><p>at</p><p>ti</p><p>es</p><p>H</p><p>yd</p><p>ra</p><p>te</p><p>d</p><p>to</p><p>p</p><p>ro</p><p>d</p><p>u</p><p>ce</p><p>2</p><p>5</p><p>%</p><p>ge</p><p>l</p><p>F</p><p>at</p><p>su</p><p>b</p><p>st</p><p>it</p><p>u</p><p>te</p><p>M</p><p>o</p><p>is</p><p>tu</p><p>re</p><p>re</p><p>te</p><p>n</p><p>ti</p><p>o</p><p>n</p><p>en</p><p>h</p><p>an</p><p>ce</p><p>d</p><p>-</p><p>-</p><p>P</p><p>in</p><p>er</p><p>o</p><p>et</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>0</p><p>8</p><p>)</p><p>(C</p><p>o</p><p>n</p><p>ti</p><p>n</p><p>u</p><p>es</p><p>)</p><p>26438429, 2022, 1, D</p><p>ow</p><p>nloaded from</p><p>https://onlinelibrary.w</p><p>iley.com</p><p>/doi/10.1002/fft2.120 by C</p><p>A</p><p>PE</p><p>S, W</p><p>iley O</p><p>nline L</p><p>ibrary on [30/10/2023]. See the T</p><p>erm</p><p>s and C</p><p>onditions (https://onlinelibrary.w</p><p>iley.com</p><p>/term</p><p>s-and-conditions) on W</p><p>iley O</p><p>nline L</p><p>ibrary for rules of use; O</p><p>A</p><p>articles are governed by the applicable C</p><p>reative C</p><p>om</p><p>m</p><p>ons L</p><p>icense</p><p>MAO ET AL. 35</p><p>T</p><p>A</p><p>B</p><p>L</p><p>E</p><p>1</p><p>(C</p><p>o</p><p>n</p><p>ti</p><p>n</p><p>u</p><p>ed</p><p>)</p><p>O</p><p>at</p><p>-b</p><p>as</p><p>ed</p><p>p</p><p>ro</p><p>d</p><p>u</p><p>ct</p><p>s</p><p>Fo</p><p>o</p><p>d</p><p>st</p><p>yl</p><p>e</p><p>P</p><p>ro</p><p>ce</p><p>ss</p><p>/</p><p>A</p><p>p</p><p>p</p><p>lic</p><p>at</p><p>io</p><p>n</p><p>m</p><p>et</p><p>h</p><p>o</p><p>d</p><p>s</p><p>N</p><p>u</p><p>tr</p><p>it</p><p>io</p><p>n</p><p>al</p><p>ch</p><p>ar</p><p>ac</p><p>te</p><p>ri</p><p>st</p><p>ic</p><p>s</p><p>P</p><p>ro</p><p>ce</p><p>ss</p><p>in</p><p>g</p><p>ch</p><p>ar</p><p>ac</p><p>te</p><p>ri</p><p>st</p><p>ic</p><p>s</p><p>Se</p><p>n</p><p>so</p><p>ry</p><p>p</p><p>ro</p><p>p</p><p>er</p><p>ti</p><p>es</p><p>St</p><p>o</p><p>ra</p><p>ge</p><p>p</p><p>ro</p><p>p</p><p>er</p><p>ti</p><p>es</p><p>R</p><p>ef</p><p>er</p><p>en</p><p>ce</p><p>s</p><p>F</p><p>lo</p><p>u</p><p>r-</p><p>b</p><p>as</p><p>ed</p><p>p</p><p>ro</p><p>d</p><p>u</p><p>ct</p><p>s</p><p>A</p><p>si</p><p>an</p><p>n</p><p>o</p><p>o</p><p>d</p><p>le</p><p>s</p><p>D</p><p>ir</p><p>ec</p><p>t</p><p>m</p><p>ix</p><p>in</p><p>g</p><p>-</p><p>-</p><p>N</p><p>o</p><p>o</p><p>d</p><p>le</p><p>te</p><p>n</p><p>si</p><p>le</p><p>st</p><p>re</p><p>n</p><p>gt</p><p>h</p><p>re</p><p>d</p><p>u</p><p>ce</p><p>d</p><p>A</p><p>p</p><p>p</p><p>ea</p><p>ra</p><p>n</p><p>ce</p><p>,c</p><p>o</p><p>lo</p><p>r,</p><p>o</p><p>d</p><p>o</p><p>r,</p><p>fl</p><p>av</p><p>o</p><p>r,</p><p>te</p><p>xt</p><p>u</p><p>re</p><p>,a</p><p>n</p><p>d</p><p>ac</p><p>ce</p><p>p</p><p>ta</p><p>n</p><p>ce</p><p>en</p><p>h</p><p>an</p><p>ce</p><p>d</p><p>-</p><p>In</p><p>gl</p><p>et</p><p>t</p><p>et</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>0</p><p>5</p><p>)</p><p>W</p><p>h</p><p>ea</p><p>t</p><p>fl</p><p>o</p><p>u</p><p>r</p><p>D</p><p>ir</p><p>ec</p><p>t</p><p>m</p><p>ix</p><p>in</p><p>g</p><p>-</p><p>W</p><p>at</p><p>er</p><p>ab</p><p>so</p><p>rp</p><p>ti</p><p>o</p><p>n</p><p>,</p><p>d</p><p>ev</p><p>el</p><p>o</p><p>p</p><p>m</p><p>en</p><p>t</p><p>ti</p><p>m</p><p>e,</p><p>re</p><p>si</p><p>st</p><p>an</p><p>ce</p><p>in</p><p>ge</p><p>la</p><p>ti</p><p>n</p><p>iz</p><p>at</p><p>io</p><p>n</p><p>an</p><p>d</p><p>re</p><p>tr</p><p>o</p><p>gr</p><p>ad</p><p>at</p><p>io</p><p>n</p><p>,a</p><p>n</p><p>d</p><p>fl</p><p>o</p><p>w</p><p>ab</p><p>ili</p><p>ty</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>G</p><p>lu</p><p>ca</p><p>n</p><p>n</p><p>et</p><p>w</p><p>o</p><p>rk</p><p>st</p><p>ru</p><p>ct</p><p>u</p><p>re</p><p>d</p><p>et</p><p>er</p><p>io</p><p>ra</p><p>te</p><p>d</p><p>D</p><p>o</p><p>u</p><p>gh</p><p>st</p><p>ab</p><p>ili</p><p>ty</p><p>,g</p><p>as</p><p>re</p><p>te</p><p>n</p><p>ti</p><p>o</p><p>n</p><p>ca</p><p>p</p><p>ac</p><p>it</p><p>y</p><p>o</p><p>fd</p><p>o</p><p>u</p><p>gh</p><p>,p</p><p>as</p><p>ti</p><p>n</p><p>g</p><p>vi</p><p>sc</p><p>o</p><p>si</p><p>ty</p><p>re</p><p>d</p><p>u</p><p>ce</p><p>d</p><p>F</p><p>av</p><p>o</p><p>r</p><p>co</p><p>lo</p><p>r</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>-</p><p>W</p><p>an</p><p>g,</p><p>Ye</p><p>,L</p><p>i,</p><p>W</p><p>ei</p><p>,C</p><p>h</p><p>en</p><p>,</p><p>et</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>1</p><p>7</p><p>)a</p><p>n</p><p>d</p><p>W</p><p>an</p><p>g,</p><p>Ye</p><p>,L</p><p>i,</p><p>W</p><p>ei</p><p>,</p><p>W</p><p>an</p><p>g,</p><p>et</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>1</p><p>7</p><p>)</p><p>G</p><p>lu</p><p>ca</p><p>n</p><p>-f</p><p>re</p><p>e</p><p>ri</p><p>ce</p><p>-b</p><p>as</p><p>ed</p><p>d</p><p>o</p><p>u</p><p>gh</p><p>s</p><p>an</p><p>d</p><p>b</p><p>re</p><p>ad</p><p>D</p><p>ir</p><p>ec</p><p>t</p><p>m</p><p>ix</p><p>in</p><p>g</p><p>Se</p><p>ru</p><p>m</p><p>ch</p><p>o</p><p>le</p><p>st</p><p>er</p><p>o</p><p>ld</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>-</p><p>-</p><p>-</p><p>R</p><p>o</p><p>n</p><p>d</p><p>a</p><p>et</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>1</p><p>5</p><p>)</p><p>N</p><p>o</p><p>o</p><p>d</p><p>le</p><p>s</p><p>D</p><p>ir</p><p>ec</p><p>t</p><p>m</p><p>ix</p><p>in</p><p>g</p><p>C</p><p>ar</p><p>b</p><p>o</p><p>hy</p><p>d</p><p>ra</p><p>te</p><p>d</p><p>ig</p><p>es</p><p>ti</p><p>b</p><p>ili</p><p>ty</p><p>an</p><p>d</p><p>G</p><p>I(</p><p>gl</p><p>yc</p><p>ae</p><p>m</p><p>ic</p><p>in</p><p>d</p><p>ex</p><p>)o</p><p>f</p><p>n</p><p>o</p><p>o</p><p>d</p><p>le</p><p>s</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>-</p><p>-</p><p>-</p><p>C</p><p>h</p><p>o</p><p>o</p><p>an</p><p>d</p><p>A</p><p>zi</p><p>z</p><p>(2</p><p>0</p><p>1</p><p>0</p><p>)</p><p>C</p><p>o</p><p>o</p><p>ki</p><p>e</p><p>D</p><p>ir</p><p>ec</p><p>t</p><p>m</p><p>ix</p><p>in</p><p>g</p><p>in</p><p>p</p><p>ro</p><p>d</p><p>u</p><p>ct</p><p>fo</p><p>rm</p><p>u</p><p>la</p><p>ti</p><p>o</p><p>n</p><p>-</p><p>E</p><p>la</p><p>st</p><p>ic</p><p>p</p><p>ro</p><p>p</p><p>er</p><p>ti</p><p>es</p><p>,w</p><p>at</p><p>er</p><p>co</p><p>n</p><p>te</p><p>n</p><p>t,</p><p>an</p><p>d</p><p>w</p><p>at</p><p>er</p><p>ac</p><p>ti</p><p>vi</p><p>ty</p><p>en</p><p>h</p><p>an</p><p>ce</p><p>d</p><p>C</p><p>ar</p><p>d</p><p>b</p><p>o</p><p>ar</p><p>d</p><p>,c</p><p>h</p><p>ew</p><p>in</p><p>es</p><p>s,</p><p>co</p><p>h</p><p>es</p><p>iv</p><p>en</p><p>es</p><p>s,</p><p>d</p><p>en</p><p>si</p><p>ty</p><p>,</p><p>m</p><p>o</p><p>is</p><p>tn</p><p>es</p><p>s</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>Sw</p><p>ee</p><p>t</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>-</p><p>Le</p><p>e</p><p>et</p><p>al</p><p>.(</p><p>2</p><p>0</p><p>0</p><p>5</p><p>)</p><p>Lo</p><p>w</p><p>-f</p><p>at</p><p>ca</p><p>ke</p><p>D</p><p>ir</p><p>ec</p><p>t</p><p>m</p><p>ix</p><p>in</p><p>g</p><p>in</p><p>p</p><p>ro</p><p>d</p><p>u</p><p>ct</p><p>fo</p><p>rm</p><p>u</p><p>la</p><p>ti</p><p>o</p><p>n</p><p>Sh</p><p>o</p><p>rt</p><p>en</p><p>in</p><p>gs</p><p>su</p><p>b</p><p>st</p><p>it</p><p>u</p><p>te</p><p>F</p><p>lo</p><p>w</p><p>b</p><p>eh</p><p>av</p><p>io</p><p>r</p><p>in</p><p>d</p><p>ic</p><p>es</p><p>an</p><p>d</p><p>st</p><p>o</p><p>ra</p><p>ge</p><p>en</p><p>h</p><p>an</p><p>ce</p><p>d</p><p>Lo</p><p>ss</p><p>m</p><p>o</p><p>d</p><p>u</p><p>li</p><p>an</p><p>d</p><p>ca</p><p>ke</p><p>vo</p><p>lu</p><p>m</p><p>e</p><p>d</p><p>ec</p><p>re</p><p>as</p><p>ed</p><p>H</p><p>ar</p><p>d</p><p>n</p><p>es</p><p>s</p><p>in</p><p>cr</p><p>ea</p><p>se</p><p>d</p><p>-</p><p>K</p><p>al</p><p>in</p><p>ga</p><p>an</p><p>d</p><p>M</p><p>is</p><p>h</p><p>ra</p><p>(2</p><p>0</p><p>0</p><p>9</p><p>)</p><p>26438429, 2022, 1, D</p><p>ow</p><p>nloaded from</p><p>https://onlinelibrary.w</p><p>iley.com</p><p>/doi/10.1002/fft2.120 by C</p><p>A</p><p>PE</p><p>S, W</p><p>iley O</p><p>nline L</p><p>ibrary on [30/10/2023]. See the T</p><p>erm</p><p>s and C</p><p>onditions (https://onlinelibrary.w</p><p>iley.com</p><p>/term</p><p>s-and-conditions) on W</p><p>iley O</p><p>nline L</p><p>ibrary for rules of use; O</p><p>A</p><p>articles are governed by the applicable C</p><p>reative C</p><p>om</p><p>m</p><p>ons L</p><p>icense</p><p>36 MAO ET AL.</p><p>food types associated with oat and the processing, sensory, storage,</p><p>and nutritional quality of the products.</p><p>3.1 Utilization of the whole grain</p><p>Based on the format of the ingredients, oat-based foods can be mainly</p><p>classified as grains, flakes, and flours.</p><p>3.1.1 Grains</p><p>Oat grains are obtained after hulling and retain almost all the nutrients</p><p>in oats, which can be used as a staple food. Many efforts have been</p><p>devoted to improving nutritional performance. Biological treatments,</p><p>such as microbial fermentation and germination, have been proven to</p><p>improve the release and antioxidant activity of phenolic substances in</p><p>oat (Bei et al., 2018; Ding, Hou, et al., 2018; Li et al.,2019c ). In addi-</p><p>tion, as an emerging nonthermal processing technology, ultrasound</p><p>can be used to enhance the production of bioactive compounds in</p><p>plant foods, including primary and secondary metabolites (da Silva &</p><p>Dobránszki, 2014;Ding, Ulanov, et al., 2018; Li et al.,2019d ; Yang et al.,</p><p>2015). When ultrasonic-assisted germination occurs, the contents of</p><p>β-glucan and antioxidants increase. However, similar to brown rice, an</p><p>unpleasant mouthfeel results in limited acceptability by consumers (Li</p><p>et al., 2021). Therefore, many attempts have beenmade to improve the</p><p>sensory quality of oats while preserving their nutritional properties.</p><p>Hydrothermal treatment can not only inactivate fat oxidase in oats,</p><p>which contributes to preventing fat oxidation from causing rancidity</p><p>and sensory bitterness (Lehtinen et al., 2003), but also reduce the</p><p>phytic acid content and improve the bioavailability of minerals in oats.</p><p>It is noted that the treatment time is important, which affects the</p><p>solubility and utilization of protein.</p><p>3.1.2 Flakes</p><p>Oat flakes are the most common and popular forms of oat products</p><p>due to their convenience and palatability and can be divided into large</p><p>flakes, Irish steel-cut flakes, Scottish flakes, and quick and instant oat</p><p>flakes depending on the particle sizes. The process of warming and</p><p>humidification before tableting helps the starch gelatinize, resulting in</p><p>better digestibility. With the increasing demand for delicious oatmeal,</p><p>multinutrient oatmeal with other ingredients has been produced.</p><p>3.1.3 Flour</p><p>Oat flour is obtained through different crushing methods of oats,</p><p>and the dissolution rate of functional components is improved to a</p><p>certain extent compared with oat grains. Ultrafine pulverization is</p><p>an effective processing technology. Additionally, oat flour contains a</p><p>high lipid content, resulting in poor processing characteristics; thus,</p><p>degreasing is used to improve the processing quality and shelf life</p><p>of oat flour (Liu et al., 2019). Preliminary experiments have shown</p><p>that lipid removal can enhance the functional properties of oat water</p><p>extracts and β-glucan separation (Sibakov et al., 2011) from oat flours.</p><p>Oat flour degreased with supercritical carbon dioxide was shown to</p><p>have improved foaming and emulsifying properties under alkaline</p><p>conditions (Konak et al., 2014), which is a promising cereal raw mate-</p><p>rial for beverages and other aqueous food applications. In addition,</p><p>heat treatment has become a key step in processing, affecting the</p><p>stability, quality, and application of oat flour. Infrared baking or hot air</p><p>baking increases the peak viscosity and decreases the decomposition</p><p>rate of oat flour (Hu et al., 2010). In contrast, Londono et al. (2015)</p><p>reported that infrared baking technology is not suitable for making</p><p>oatmeal bread because of the negative impact on the dough-making</p><p>performance of oat flour. Extrusion, pulsed electric field treatment,</p><p>and enzymes can also improve the stability of oat flour and increase</p><p>the content of soluble dietary fiber (SDF) and antioxidants. Oat flour is</p><p>usuallymixedwith other food ingredients (e.g., wheat flour) to improve</p><p>the nutritional quality of flour-based products, but this may have a</p><p>negative effect on the sensory properties. High hydrostatic pressure</p><p>treatment is an effective technique to solve this problem (Angioloni &</p><p>Collar, 2012).</p><p>3.2 Comprehensive utilization of oat bran</p><p>3.2.1 Different pretreatment methods on oat bran</p><p>Oat bran, of a variety of particle sizes, is produced by grinding and</p><p>sieving to remove part of the starch, including the pericarp, seed</p><p>coat, nucellus, aleurone layer, and a portion of subaleurone starchy</p><p>endosperm. Oat bran is an important source</p><p>of nutritional bene-</p><p>fits, especially SDF. The American Association for Cereal Chemistry</p><p>requires that oat bran must contain at least 5.5% β-glucan. However,</p><p>the utilization value of oat bran is still at a very low level, such as the</p><p>presenceof insolubledietary fiber (IDF) affecting the flavor and texture</p><p>of products and low bioavailability of phenolic compounds. To improve</p><p>these deficiencies, physical, chemical, and compound pretreatments</p><p>have been developed (Table 2).</p><p>Physical pretreatment</p><p>Extrusion is a common method used in the processing of bran that</p><p>can change the structure of out bran, thus increasing the content and</p><p>solubility of DF and improving its flavor and taste (Gao et al., 2012),</p><p>enhancing the stability of food by inhibiting enzymes (lipase and lipoxy-</p><p>genase), increasing the digestibility of protein and starch, and reduc-</p><p>ing the content of free fatty acids in oatmeal skins, contributing to the</p><p>reduction of rancidity of oil and fat components during product stor-</p><p>age and transportation. High temperature also plays a role in killing</p><p>enzymes, thereby extending the shelf life of the product. Thermal pro-</p><p>cessing can improve the content and type of phenolic acid in oat bran</p><p>by breaking down cellular components and cell walls to release bound</p><p>phenolic acids (Ragaee et al., 2016) and enhance the ability to scavenge</p><p>26438429, 2022, 1, D</p><p>ow</p><p>nloaded from</p><p>https://onlinelibrary.w</p><p>iley.com</p><p>/doi/10.1002/fft2.120 by C</p><p>A</p><p>PE</p><p>S, W</p><p>iley O</p><p>nline L</p><p>ibrary on [30/10/2023]. See the T</p><p>erm</p><p>s and C</p><p>onditions (https://onlinelibrary.w</p><p>iley.com</p><p>/term</p><p>s-and-conditions) on W</p><p>iley O</p><p>nline L</p><p>ibrary for rules of use; O</p><p>A</p><p>articles are governed by the applicable C</p><p>reative C</p><p>om</p><p>m</p><p>ons L</p><p>icense</p><p>MAO ET AL. 37</p><p>TABLE 2 Effect of different pretreatment methods on oat bran</p><p>Conclusion</p><p>Treatmentmethod</p><p>Yield of soluble</p><p>dietary fiber Stability</p><p>Total phenolic</p><p>contents</p><p>Antioxidant</p><p>activity Reference</p><p>Extrusion Increased Enhanced - - S. Gao et al. (2012)</p><p>Thermal treatment - Enhanced Increased Enhanced Călinoiu and Vodnar (2020)</p><p>Ultrafine grinding Increased - Increased Enhanced Xue et al. (2019), Ruiling et al. (2008)</p><p>Solid-state fermentation - - Increased Enhanced Călinoiu et al. (2019)</p><p>Enzymatic method - Reduced Increased Enhanced Jaskari et al. (1995)</p><p>free radicals due to the browning reactions associated with dissocia-</p><p>tion of conjugated phenolics followed by polymerization or oxidation</p><p>reactions (or both) and the generation of nonendogenous phenolics in</p><p>the grains.Micronization (e.g., ballmilling, high-pressuremicronization,</p><p>and jet milling) is a feasible technique to reduce the particle size and</p><p>improve thecontentof SDF in cereals.Good results havebeenobtained</p><p>in the treatment of wheat bran (Ramadhan & Foster, 2017; Shen et al.,</p><p>2008). Therefore, micronization has great potential in improving the</p><p>functional properties of oat bran.</p><p>Biological pretreatment</p><p>Solid-state fermentation (SSF) using Saccharomyces cerevisiae,</p><p>Aspergillus, and Lactobacillus can produce enzymes such as β-</p><p>glucosidase, carboxylesterase, and possibly feruloyl esterase to</p><p>improve the phenolic acid content and composition and the antioxi-</p><p>dant activity of wheat and oat bran (Călinoiu et al., 2019). In addition</p><p>to SSF, enzymatic processing is also a practical way to modify oat bran,</p><p>which can reduce the molecular weight and increase the solubility</p><p>of DF. Although there are a few studies on the composite method to</p><p>improve the functional properties of wheat bran (Zhang et al., 2018),</p><p>little research has been performed on oat bran.</p><p>3.2.2 Applications of oat bran</p><p>Currently, there are many foods on the market made from whole oats</p><p>and β-glucan, but the research and development of oat bran have been</p><p>relatively delayed. With increasing knowledge about the nutritional</p><p>benefits of oat bran, much more attention has been given to the devel-</p><p>opment of oat bran as a raw material food. They can be incorporated</p><p>into food products, such as flour-based products, meat products, and</p><p>drinks.</p><p>Flour-based products</p><p>Flour-based products are important parts of the daily diet of theworld.</p><p>Oatbran canbe incorporated into foodproducts, suchasbiscuits, cook-</p><p>ies, steamed buns, noodles, and breads. Dietary fiber in bran may neg-</p><p>atively impact the forming time of dough, tensile resistance, and exten-</p><p>sion, but an appropriate amount of oat bran can improve the nutri-</p><p>tional characteristics of the foodstuffs (He et al., 2010). Baumgart-</p><p>ner et al. (2018) compared two dephytinization treatments (fermenta-</p><p>tion vs. hydrothermal) and found that dephytinized oat bran addition</p><p>enhanced theDF content, phenolic compound content and antioxidant</p><p>activity of cookies and that fermented oat bran was a better choice in</p><p>terms of overall acceptability. Espinosa-Solis et al. (2019) reported that</p><p>a 50% replacement of durum wheat semolina with oat bran increased</p><p>the antioxidant activity by 46% of pasta, decreased the caloric content</p><p>and digestibility of its starch components, and only slight changeswere</p><p>observed in the texture characteristics of samples.</p><p>Meat products</p><p>Meat products may cause health problems due to the high content of</p><p>fat and cholesterol. Similar to other cereal brans, oat bran can also be</p><p>used as a fat substitute in the production of meat products due to its</p><p>ability to retainwater and emulate particles of color and texture. İsmail</p><p>and Orhan (2003) indicated that the total fat and total trans fatty acid</p><p>contents were lower, and samples with 20% oat bran had high accept-</p><p>ability.</p><p>Beverage</p><p>Recently, the application of oat bran in beverage production, including</p><p>yogurt and fiber-fortified beverages, has become a hot area of inter-</p><p>est. Chakraborty et al. (2019) investigated the texture and mouthfeel</p><p>perceptions of amodel hydrocolloid beverage and found that IDF dom-</p><p>inated sensory perceptions when the samples had >2% (w/w) IDF;</p><p>in contrast, when the concentration was <1.5% (w/w), SDF played a</p><p>major role, which highlights the complex physicochemical interactions</p><p>between thepolysaccharides.Clinical trials have shown that foodprod-</p><p>ucts containing oat bran can reduce the postprandial blood glucose</p><p>response (Cecilia et al., 2015).</p><p>3.3 β-glucan: Extraction and applications in food</p><p>matrices</p><p>3.3.1 Extraction and separation of β-glucan</p><p>β-glucan, the main DF of oats, has the potential to be applied to a</p><p>variety of food industries as a functional food ingredient or quality</p><p>improver.Manyextraction procedures havebeendeveloped,which can</p><p>be classified into two types: dry extraction and wet extraction. The</p><p>dry extraction process includes milling and sieving steps to separate</p><p>26438429, 2022, 1, D</p><p>ow</p><p>nloaded from</p><p>https://onlinelibrary.w</p><p>iley.com</p><p>/doi/10.1002/fft2.120 by C</p><p>A</p><p>PE</p><p>S, W</p><p>iley O</p><p>nline L</p><p>ibrary on [30/10/2023]. See the T</p><p>erm</p><p>s and C</p><p>onditions (https://onlinelibrary.w</p><p>iley.com</p><p>/term</p><p>s-and-conditions) on W</p><p>iley O</p><p>nline L</p><p>ibrary for rules of use; O</p><p>A</p><p>articles are governed by the applicable C</p><p>reative C</p><p>om</p><p>m</p><p>ons L</p><p>icense</p><p>38 MAO ET AL.</p><p>TABLE 3 Extractionmethods of β-glucan from oats</p><p>Extractionmethods Source Main results Reference</p><p>Water extraction Whole oat (Greek</p><p>cultivars)</p><p>Increased extraction temperature enhancedMW</p><p>(molecular weight), viscosity, and shear-thinning</p><p>prosperities</p><p>LowMW β-glucan resulted in shorter gelation times and</p><p>higher gelation rates</p><p>Papageorgiou et al.</p><p>(2005), Skendi et al.</p><p>(2003)</p><p>Alkaline extraction (NaOH) Oat bran Increased NaOH concentration enhanced solubility Bhatty (1995)</p><p>Alkaline extraction (Na2CO3) Oat bran Yield reduced</p><p>Viscosity increased</p><p>Beer et al. (1996)</p><p>Enzymatic extraction Oat fractions Extended extraction time reducedMWand viscosity but</p><p>enhanced yielded</p><p>Aktas-Akyildiz et al.</p><p>(2018)</p><p>Enzymatic extraction oat bran Viscosity of highMW β-glucan increased</p><p>Viscosity of depolymerized β-glucan decreased</p><p>Gamel et al. (2014)</p><p>fractions rich in β-glucan based on the particle size and providemateri-</p><p>als for further extraction.</p><p>However, the yield of the product is generally</p><p>low (Sibakov et al., 2014). In addition to ultrafine grinding and electro-</p><p>static separation, wet extraction has been used to increase the yield,</p><p>including (i)water extraction, (ii) alkaline extraction, (iii) acid extraction,</p><p>and (iv) enzymatic extraction. Different extraction methods pertaining</p><p>to the isolationofβ-glucan fromoats are shown inTable3.Various stud-</p><p>ies have revealed that the critical factors in the yield and properties of</p><p>extracted β-glucans are the solvent type, temperature, pH, extraction</p><p>time, agitation, particle size, and lipid content.</p><p>Water extraction</p><p>Traditional water extraction leads to anMW (molecular weight) reduc-</p><p>tion in β-glucan due to the activity of endogenous β-glucanases. New</p><p>and promising modern separation techniques involving high pressure</p><p>and temperature have emerged for the extraction of β-glucan. Pressur-</p><p>ized hot water extraction (155°C, 18 min, 50 bar) was used to extract</p><p>β-glucan from barley, which reduced the extraction time and increased</p><p>the MW compared with the conventional process (55°C, 3 h, ambi-</p><p>ent pressure) (Benito-Román et al., 2013). Subcritical-water extrac-</p><p>tion, a single-step process, is another effective method. An experiment</p><p>carried out by Yoo et al. (2020) demonstrated that this technology</p><p>(200°C, 10min) dramatically reduces the extraction time and increases</p><p>the yield of β-glucan by more than twofold compared to conventional</p><p>extractionmethods (60°C, 3 h).</p><p>Chemical extraction</p><p>Early studies, mainly with barley, suggested that mild extraction condi-</p><p>tions can only extract a portion of the β-glucan. Chemical extractions</p><p>are believed to improve the yields, including alkaline extraction, acid</p><p>extraction, dimethylsulfoxide, and urea.</p><p>Wood et al. (1978) employed an alkaline extraction method (NaOH</p><p>andNa2CO3) to obtain oat β-glucan and indicated that the β-glucanase</p><p>enzyme was inactivated under alkaline conditions responsible for the</p><p>reduction of yields and that there was an elevation in MW and viscos-</p><p>ity of the extracts. Acidic extraction has been reported in only a few</p><p>studies. Ahluwalia and Ellis (1984) indicated that perchloric acid dena-</p><p>tured endogenous hydrolytic enzymes and increased the solubility of</p><p>β-glucan in barely. Furthermore, Gangopadhyay et al. (2015) reported</p><p>a viscosity reduction at pH 4 due to the acid hydrolysis of glycoside</p><p>bonds.</p><p>Enzymatic extraction</p><p>In contrast to chemically treated extractions, enzymatic extraction is</p><p>more environmentally friendly and can be considered “green extrac-</p><p>tion”. A. Ahmad et al. (2010) concluded that the trend in yieldwas enzy-</p><p>matic > alkaline > acidic. Additionally, the enzymatic extraction pro-</p><p>cess can remove more starch, fat, and pentosans compared with other</p><p>methods. Furthermore, the order of β-glucanMWand yieldwere enzy-</p><p>matic> acidic> alkaline (Babu, 2015). In addition, hot treatment leads</p><p>to a lower yield but more β-glucan with a high MW. The type and con-</p><p>centration of an enzyme can also affect theMWand yields of β-glucan.</p><p>In addition to theMW,yield, and characteristics,more consideration</p><p>should be given to the effect of the extraction methods on the color of</p><p>β-glucan, whichmay affect the properties of the final product.</p><p>3.3.2 Applications of β-glucan in matrices</p><p>Based on its rheological properties, β-glucan can be incorporated into</p><p>beverages and other liquid products as a thickener agent and as a</p><p>source of DF. β-glucan could be added to meat products as a fat sub-</p><p>stitute due to its ability to help form dense matrices. It has also been</p><p>shown to affect gelatinization and retrogradation of starch and gen-</p><p>erate changes in the sensory, storage, and nutritional properties of</p><p>foodswhen incorporated into a variety of flour-basedproducts, such as</p><p>pasta, noodles, cookies, and bread. In addition, this nonstarch polysac-</p><p>charidehas shownpotential as a prebiotic in productswith ahigh folate</p><p>content, as an emulsifier and stabilizer to form foams and emulsions,</p><p>and as an encapsulant for fish oil and prebiotics (Mejía et al., 2020). β-</p><p>glucan is mainly used in the food field due to its viscosity properties,</p><p>which depend on the MW and concentration and will affect the rheo-</p><p>logical, texture, and sensory properties of products. β-glucan from oats</p><p>has been used inmany different foodmatrices (Table 1).</p><p>The incorporation amounts of β-glucan into different products are</p><p>related to the characteristics of the food matrix and final products.</p><p>26438429, 2022, 1, D</p><p>ow</p><p>nloaded from</p><p>https://onlinelibrary.w</p><p>iley.com</p><p>/doi/10.1002/fft2.120 by C</p><p>A</p><p>PE</p><p>S, W</p><p>iley O</p><p>nline L</p><p>ibrary on [30/10/2023]. See the T</p><p>erm</p><p>s and C</p><p>onditions (https://onlinelibrary.w</p><p>iley.com</p><p>/term</p><p>s-and-conditions) on W</p><p>iley O</p><p>nline L</p><p>ibrary for rules of use; O</p><p>A</p><p>articles are governed by the applicable C</p><p>reative C</p><p>om</p><p>m</p><p>ons L</p><p>icense</p><p>MAO ET AL. 39</p><p>There has been so standard or consensus on the amount and methods</p><p>of application (e.g., direct addition in the formulationor gel producedby</p><p>hydration). Powder contributedmore to emulsion stability and cooking</p><p>loss reduction than the gel form (Álvarez&Barbut, 2013).Most studies</p><p>have only provided recommendations and ranges (e.g., dairy products</p><p>approximately 1.2%, meat emulsions from 3% to 13.45%, flour-based</p><p>products from1%to40%).However, only a fewstudieshave focusedon</p><p>the evaluation of β-glucan in mixtures with other ingredients to deter-</p><p>mine optimal levels or synergistic or antagonistic effects.</p><p>The objectives (e.g., taste, texture, storability, and functions) to</p><p>be achieved in the final product should be considered before select-</p><p>ing the degree of concentration of β-glucan extracts. Generally, low-</p><p>concentration extracts are suitable for products that are rich in car-</p><p>bohydrates, such as pasta, noodles, cake, and bread. In contrast, when</p><p>focusing on products with low amounts of carbohydrates, such as</p><p>meat emulsions, milk, and other liquid products, highly concentrated</p><p>extracts are suggested to reduce the inclusion levels andavoidnegative</p><p>effects. Additionally, studies on β-glucans from other oat sources have</p><p>indicated that the inclusion of fractions may result in a slight reduction</p><p>in the final product quality, such as organoleptic quality, and may not</p><p>always act as expected due to proteins and starches in the ingredient.</p><p>Therefore, the use of β-glucan is limited, and it is difficult to add a high</p><p>content of β-glucan to foods.</p><p>β-Glucan-supplemented foods frequently need to be shipped or</p><p>stored prior to eating, and changes in β-glucan characteristics need to</p><p>benotedover time.Gamel et al. (2013) observed that both freezing and</p><p>freeze-drying decreased the final extract viscosity of bread β-glucan,</p><p>but the viscosity of the extract from oat bran porridge was affected</p><p>by freezing, and neither method dramatically affected the molecular</p><p>weight or solubility of β-glucan in either product. We speculate that</p><p>the changes in β-glucan properties are related to possible changes or</p><p>interactions in molecules similar to other functional ingredients, such</p><p>as the variations in moisture content of food matrices during conven-</p><p>tional processing and storage.</p><p>Most studies have only investigated the effect of the addition of β-</p><p>glucan on food quality, and there are few reports on the availability of</p><p>β-glucan in the final product during actual digestion, which needs to be</p><p>focused on in the future. The interaction of macromolecules with food</p><p>components also affects the performance of food, and we will discuss</p><p>that subject in the next section.</p><p>4 EFFECTS OF INTERACTIONS BETWEEN</p><p>DIFFERENT COMPONENTS ON THE PROCESSING</p><p>AND NUTRITIONAL PROPERTIES OF OAT</p><p>PRODUCTS</p><p>In the incorporation of all functional ingredients, such as DF, protein,</p><p>lipids, and polyphenols, significant consideration should be given to the</p><p>interaction of macromolecules with food components and the possi-</p><p>ble effects on the nutritional properties of the ingredients, which also</p><p>significantly guide food</p><p>processing. In recent years, DF has received</p><p>widespread attention, because many studies have highlighted their</p><p>beneficial effects. However, the interactions of DF with other compo-</p><p>nents are still the subject of many studies since the mechanisms are</p><p>not completely understood. β-Glucan is the main SDF of oats, and this</p><p>section mainly describes interactions between oat β-glucan and com-</p><p>ponents; however, the interactions betweenother ingredients havenot</p><p>been reported or fully described.</p><p>4.1 Dietary fiber–polyphenol interactions</p><p>Polyphenolic compounds have many potentially positive bioactivities</p><p>depending on the number of polyphenols accessible for absorption in</p><p>the upper or lower parts of the digestive tract (bioaccessibility) or the</p><p>amount actually absorbed. In the actual digestive tract, polyphenols</p><p>released fromvarious foodmatrices can come into contactwith dietary</p><p>fibers and bind onto their surface through noncovalent interactions,</p><p>which might influence the bioactivities of polyphenols, such as bioac-</p><p>cessibility (accessibility for absorption after ingestion) and bioavail-</p><p>ability (the actual amount that can be absorbed in the intestine and</p><p>detected in plasma) (Jakobek & Matić, 2019). DFs control the process</p><p>by decreasing the amount of polyphenols released in the upper diges-</p><p>tive tract and then increasing the amount of polyphenols reaching in</p><p>the lower digestive tract. The remaining unabsorbed polyphenolwill be</p><p>carried to the colon by DF and function through the bacteria. Several</p><p>studies have focused on the noncovalent binding between polyphe-</p><p>nols and DFs, the influence of environmental conditions on binding,</p><p>and the impacts of DFs on the process of the release and absorption of</p><p>polyphenols and their catabolites in the digestive tract. Several studies</p><p>have demonstrated that polyphenols fromdifferent sources could bind</p><p>to DF through noncovalent bonds (Nguela et al., 2016; Veverka et al.,</p><p>2014). β-Glucan is the major type of DF in oats. However, few data are</p><p>available on the molecular interactions and complexation of polyphe-</p><p>nols and oat β-glucan. Here, the research on β-glucan and polyphe-</p><p>nols is listed in Table 4. The binding forces of β-glucan and polyphenols</p><p>vary due to the difference in sources and structures. Hydrogen bonds,</p><p>hydrophobic interactions, and van der Waals interactions have been</p><p>detected and further affect the properties of polyphenols.</p><p>Additionally, environmental conditions are important for the</p><p>amount and type of noncovalent bonds in polyphenol-β-glucan associ-</p><p>ations. Phan et al. (2016) found that the different polyphenols adsorb</p><p>best at different ionic concentrations. Additionally, temperature</p><p>influences the ratio of H bonds (released energy) to hydrophobic</p><p>bonds (required energy). Furthermore, the stability of polyphenols and</p><p>their binding to DFs are affected by the pH value. It is necessary to</p><p>understandDF–polyphenol interactions under the environmental con-</p><p>ditions of the digestive tract, since different parts of the digestive tract</p><p>have different environmental conditions. Many studies have proven</p><p>that DF decreases polyphenol accessibility in the small intestine but</p><p>increases the amount reaching the colon, where polyphenols can</p><p>function as individual molecules or complexes with DFs. Both forms</p><p>can beneficially modulate microbial balance, and release in the colon</p><p>is beneficial for fermentation by the gut microbiota. The adsorption</p><p>between polyphenols and β-glucan has been confirmed. However,</p><p>26438429, 2022, 1, D</p><p>ow</p><p>nloaded from</p><p>https://onlinelibrary.w</p><p>iley.com</p><p>/doi/10.1002/fft2.120 by C</p><p>A</p><p>PE</p><p>S, W</p><p>iley O</p><p>nline L</p><p>ibrary on [30/10/2023]. See the T</p><p>erm</p><p>s and C</p><p>onditions (https://onlinelibrary.w</p><p>iley.com</p><p>/term</p><p>s-and-conditions) on W</p><p>iley O</p><p>nline L</p><p>ibrary for rules of use; O</p><p>A</p><p>articles are governed by the applicable C</p><p>reative C</p><p>om</p><p>m</p><p>ons L</p><p>icense</p><p>40 MAO ET AL.</p><p>TABLE 4 Interactions betweenDF and components</p><p>Interactions Types Mode of action</p><p>Nutritional</p><p>properties Storage properties</p><p>Processing</p><p>properties Reference</p><p>Dietary fiber</p><p>–polyphenol</p><p>interactions</p><p>Oat β-glucan - tea</p><p>polyphenols</p><p>Hydrogen bonds;</p><p>van derWaals</p><p>interactions</p><p>Antioxidant activities</p><p>enhanced</p><p>- Adsorption capacity</p><p>of TP (tea</p><p>polyphenols) into</p><p>β-glucan enhanced</p><p>Adsorption capacity</p><p>of TPwith galloyl</p><p>group into β-glucan</p><p>enhanced</p><p>R. Gao et al.</p><p>(2012),Wu, Li,</p><p>et al. (2011),</p><p>Wu,Ming, et al.</p><p>(2011)</p><p>Octenyl succinate</p><p>Oat β-glucan -</p><p>curcumin</p><p>Hydrophobic</p><p>interactions</p><p>- - Curcumin solubility</p><p>enhanced</p><p>J. Liu et al. (2013)</p><p>Oatmeal -</p><p>blackcurrant</p><p>anthocyanins</p><p>- Anthocyanins</p><p>metabolismwas</p><p>not affected by</p><p>dietary fiber</p><p>- - Walton et al.</p><p>(2009)</p><p>Dietary fiber</p><p>–Starch</p><p>interactions</p><p>Oat β-glucan - oat</p><p>starch</p><p>- Starch digestion</p><p>decreased</p><p>Postprandial glycemic</p><p>response</p><p>decreased</p><p>- Pasting properties of</p><p>oat flour increased</p><p>Y. Liu et al. (2010),</p><p>J. Zhang et al.</p><p>(2017)</p><p>Oat β-glucan - rice</p><p>starch</p><p>- - Retrogradation of</p><p>rice starch during</p><p>refrigerated</p><p>storage decreased</p><p>Paste viscosities of</p><p>rice starch</p><p>suspensions</p><p>increased</p><p>Banchathanakij &</p><p>Suphantharika</p><p>(2009),</p><p>Pérez-Quirce</p><p>et al. (2017)</p><p>Oat β-glucan - wheat</p><p>starch</p><p>- Increased viscosity of</p><p>β-glucan reduces</p><p>starch digestion</p><p>and glucose</p><p>response</p><p>Increased ratio of</p><p>β-glucan/starch</p><p>reduces PBGR</p><p>(peak blood glucose</p><p>response) and iAUC</p><p>(incremental area</p><p>under the curve)</p><p>- - Regand et al.</p><p>(2011)</p><p>Oat dietary fiber -</p><p>waxy potato starch</p><p>- - Stability enhanced Resistance to</p><p>retrogradation</p><p>enhanced</p><p>Adamczyk et al.</p><p>(2020)</p><p>these studies have mainly focused on the adsorption capacity, but</p><p>the influence of the adsorption of polyphenol onto oat β-glucan on</p><p>the individual compound in vivo is not clear, and the effects of the</p><p>combination on DF have also been ignored. Therefore, further studies</p><p>are needed to clarify the biological effects of the interaction between</p><p>the two substances.</p><p>4.2 Dietary fiber–starch interactions</p><p>DF is an essential part of the human diet. The addition of DF to sta-</p><p>ple foods whose main component is starch, such as bread, is an attrac-</p><p>tive way to increase the intake of DF. Gouseti et al. (2019) revealed</p><p>that the starch digestion rate of white bread with a high fiber con-</p><p>tent was reduced by 30% without affecting the processing quality</p><p>and palatability of the product. Whole grain oats, as a rich source</p><p>of β-glucan, are well known for their benefits, including a reduction</p><p>in glycemic responses, which are determined by the viscosity of β-</p><p>glucan and its ability to form viscous solutions in the gastrointesti-</p><p>nal tract, which can affect the digestion speed of starch. The rela-</p><p>tionship between the activity of oat β-glucan and starch digestion is</p><p>shown in Table 4. It is important to develop and understand the mech-</p><p>anisms of β-glucan or other DFs in reducing the postprandial glucose</p><p>response in real food systems. Themostwidely acceptedmechanism to</p><p>reduce blood glucose is that increased intestinal viscosity by β-glucan</p><p>inhibits the rapid digestion of starch. Viscosity mainly depends on the</p><p>26438429, 2022, 1, D</p><p>ow</p><p>nloaded from</p><p>https://onlinelibrary.w</p><p>iley.com</p><p>/doi/10.1002/fft2.120 by C</p><p>A</p><p>PE</p><p>S, W</p><p>iley O</p><p>nline L</p><p>ibrary on [30/10/2023]. See the T</p><p>erm</p><p>s and C</p><p>onditions (https://onlinelibrary.w</p><p>iley.com</p><p>/term</p><p>s-and-conditions) on W</p><p>iley O</p><p>nline L</p><p>ibrary for rules of use; O</p><p>A</p><p>articles are governed by the applicable C</p><p>reative C</p><p>om</p><p>m</p><p>ons L</p><p>icense</p><p>MAO ET AL. 41</p><p>concentration, extractability (which may be referred to as solubility),</p><p>molecularweight, andphysical formof β-glucan.Highmolecularweight</p><p>β-glucans have a higher viscosity than low molecular weight β-glucans</p><p>(Pérez-Quirce et al., 2017). Notably, the β-glucan of oat has a higher</p><p>molecular weight than the β-glucan from other cereals (Bozbulut &</p><p>Sanlier, 2019). The extractability of β-glucan is related to the molecu-</p><p>lar weight, decreasing as the peakmolecule is decreased (Regand et al.,</p><p>2011). At the same time, the synergistic effect of the amounts</p><p>added</p><p>andmolecular weight on starch digestion should be considered.</p><p>The viscous property of β-glucan contributes somewhat to the</p><p>attenuationof postprandial glycemia and thedecrease in starchhydrol-</p><p>ysis, but there might exist other factors influencing starch digestion</p><p>properties, such as the interaction between oat β-glucan and other</p><p>components. There is evidence that sucrose and salt in a certain</p><p>concentration range might increase the viscosity of barely β-glucan</p><p>(Burkus & Temelli, 2000). Y.-J. Wang et al. (2020) concluded that</p><p>not only the viscosity but also the comigrating phytic acid depend</p><p>on the isolation and the conditions and that minerals in β-glucan</p><p>contribute to starch hydrolysis. Furthermore, when evaluating the</p><p>physicochemical and physiological properties of β-glucan, the contri-</p><p>bution of the intrinsic phytate should be taken into consideration.</p><p>The presence of endogenous β-glucan-degrading enzymes in flour</p><p>will also affect the function of β-glucan. Appropriate methods should</p><p>be used in the production process to remove endogenous enzymes</p><p>from flour.</p><p>4.3 Dietary fiber–protein interactions</p><p>Many foods are rich in protein, such as dairy and meat products. To</p><p>increase the contents of daily DF, many new protein products rich</p><p>in dietary fiber have shown successful results, yet the interaction</p><p>between DF and protein remains to be analyzed. It, therefore, seems</p><p>necessary to look for a close relationship between proteins and DF.</p><p>There may be a direct link or covalent bonding between protein and</p><p>β-glucan influencing the solubility and aggregation of β-glucan (Zielke</p><p>et al., 2019). Early studies concluded that the phosphate residues of</p><p>amino acid residues attached to oat β-glucan and the addition of pro-</p><p>teases decreased the viscosity of oat β-glucan solution. However, sub-</p><p>sequent studies presented a diverse view. β-Glucan molecules have</p><p>been proven to be firmly linked to each other by proteinaceous mate-</p><p>rial, resulting in high molar aggregates of ∼107 g/mol, which can affect</p><p>its ability to form viscous slurries in the gut, and the obtained aggre-</p><p>gates were shown to form more complex and larger aggregated struc-</p><p>tures through ionic or hydrogen bonds. Recently, it has been found that</p><p>the aggregations of protein and β-glucan are related to the pH value</p><p>of the mixture and the type of protein and could be explained by elec-</p><p>trostatic interactions (Zielke et al., 2018). Another experiment inwhich</p><p>NaCl was added to the protein-β-glucanmixtures carried out by Zielke</p><p>et al. (2019) also proved this result. These discoveries help better study</p><p>the interactions between proteins and β-glucan in real digestive sys-</p><p>tems. Proteins in cereal grains or other foodstuffs high in protein may</p><p>thus further enhance the ability of β-glucan to form aggregates and vis-</p><p>cous slurries in the gut and serve as functional food ingredients with</p><p>health benefits. S. S. Ahmad and Younis (2020) used a bioinformatics</p><p>analysis to evaluate the interaction of DFs (pectin and cellulose) with</p><p>meat proteins andestimated theHbonds and freeenergyof binding for</p><p>DF andmeat protein. This technology has provided a promising way to</p><p>analyze the interaction betweenDF and protein and can help to under-</p><p>stand textural changes in DF-added products.</p><p>4.4 Dietary fiber–lipid interactions</p><p>Lipids are a common ingredient in the food. There is little literature on</p><p>oat DF interaction with lipids. Oat β-glucan has been shown to play a</p><p>positive role in lowering blood total and LDL cholesterol (low-density</p><p>lipoprotein cholesterol) concentrations, but the mechanisms involved</p><p>are unclear. There are two explanations: (i) In relation to the viscosity</p><p>influenced by themolecular weight and solubility, an increased digesta</p><p>viscosity can also lead to a decrease in LDL cholesterol values; (ii) β-</p><p>glucan interferes with the recycling of bile salts by mediating fecal</p><p>excretion and therefore stimulating the production of bile salts from</p><p>cholesterol by the liver, contributing to a reduction in blood choles-</p><p>terol (Hyun Jung & White, 2010). Grundy et al. (2017) found that the</p><p>positive role of β-glucan in reducing the rate and extent of lipolysis was</p><p>dependent on the β-glucan content released during digestion and that</p><p>the positive action of β-glucan on lipid digestion involved complex pro-</p><p>cesses and interactions with the food matrix. Oat flour or flakes had</p><p>a more significant effect on reducing the rate and extent of lipolysis</p><p>than purified β-glucan. However, the compositions of different food</p><p>matrices are complex, and current studies involve more interactions</p><p>between the two substances. It is noted that the synergistic or antago-</p><p>nistic effects of other components should be taken seriously, although</p><p>this is a very complicated process.</p><p>5 CONCLUSION AND PROSPECTIVE</p><p>Oat, with very high nutritional and health value, is an important global</p><p>cereal crop. In particular, it has high concentrations of SDF, β-glucan,</p><p>that may not often be found in other cereal grains. Studies have shown</p><p>that various compounds, such as proteins, lipids, and polyphenols, can</p><p>interact with dietary fiber, possibly affecting the nutritional proper-</p><p>ties of oats. However, the effects of the environment of the diges-</p><p>tive tract, such as pH, ionic strength, or temperature, on dietary fiber-</p><p>compound associations are still unclear. In addition, due to the com-</p><p>plexity of the digestive process and foodmatrix, it is still difficult to say</p><p>how dietary fiber compounds interact. Using whole or complex frac-</p><p>tions of oat rather than isolated/purified phytochemicals could be prof-</p><p>itable for the oat-processing industry.</p><p>Future studies should be focused on the following:</p><p>∙ We need to better describe the form of oats during their intake and</p><p>pass through the gastrointestinal tract to provide valuable informa-</p><p>tion for the design of healthier food products.</p><p>26438429, 2022, 1, D</p><p>ow</p><p>nloaded from</p><p>https://onlinelibrary.w</p><p>iley.com</p><p>/doi/10.1002/fft2.120 by C</p><p>A</p><p>PE</p><p>S, W</p><p>iley O</p><p>nline L</p><p>ibrary on [30/10/2023]. See the T</p><p>erm</p><p>s and C</p><p>onditions (https://onlinelibrary.w</p><p>iley.com</p><p>/term</p><p>s-and-conditions) on W</p><p>iley O</p><p>nline L</p><p>ibrary for rules of use; O</p><p>A</p><p>articles are governed by the applicable C</p><p>reative C</p><p>om</p><p>m</p><p>ons L</p><p>icense</p><p>42 MAO ET AL.</p><p>∙ Moreadvertising andpromotionof theuseof oat foods are required.</p><p>The development and applications of oat in food systems are still in</p><p>the early stages. Oat grain has been used to make functional foods</p><p>and is incorporated in foods like whole grains or components to</p><p>improve food quality and functionality. In addition to the common</p><p>oat, oat milk and oat bran drink continuously enrich the oat market.</p><p>ACKNOWLEDGMENT</p><p>We acknowledge the support from the National Natural Science Foun-</p><p>dation of China (32172236, 31901729).</p><p>CONFLICT OF INTEREST</p><p>The authors declare that there are no conflicts of interest.</p><p>ORCID</p><p>Hongyan Li https://orcid.org/0000-0001-7260-2957</p><p>REFERENCES</p><p>Adamczyk, G., Krystyjan, M., & Jaworska, G. (2020). The effect of the addi-</p><p>tion of dietary fibers from apple and oat on the rheological and textural</p><p>properties of waxy potato starch. Polymers, 12(2), 321. https://doi.org/</p><p>10.3390/polym12020321</p><p>Ahluwalia, B., & Ellis, E. E. (1984). A rapid and simple method for the deter-</p><p>mination of starch and β-glucan in barley andmalt. Journal of the Institute</p><p>of Brewing, 90(4), 254-259. https://doi.org/10.1002/j.2050-0416.1984.</p><p>tb04267.x</p><p>Ahmad, A., Anjum, F. M., Zahoor, T., Nawaz, H., & Ahmed, Z. (2010). Extrac-</p><p>tion and characterization of β-D-glucan from oat for industrial utiliza-</p><p>tion. International Journal of BiologicalMacromolecules,46(3), 0-309. https:</p><p>//doi.org/10.1016/j.ijbiomac.2010.01.002</p><p>Ahmad, S. S., & Younis, K. (2020). Interaction study of dietary fibers (pectin</p><p>and cellulose) with meat proteins using bioinformatics analysis: An in-</p><p>silico study. LWT-Food Science Technology, 119, 108889. https://doi.org/</p><p>10.1016/j.lwt.2019.108889</p><p>Aktas-Akyildiz, E., Sibakov, J., Nappa,</p><p>M., Hytönen, E., Koksel, H., & Pouta-</p><p>nen, K. (2018). Extraction of soluble β-glucan from oat and barley frac-</p><p>tions: Process efficiency and dispersion stability. Journal of Cereal Science,</p><p>81, 60-68. https://doi.org/10.1016/j.jcs.2018.03.007</p><p>Alrahmany, R., Avis, T. J., & Tsopmo, A. (2013). Treatment of oat bran</p><p>with carbohydrases increases soluble phenolic acid content and influ-</p><p>ences antioxidant and antimicrobial activities. Food Research Interna-</p><p>tional, 52(2), 568-574. https://doi.org/10.1016/j.foodres.2013.03.037</p><p>Álvarez, D., & Barbut, S. (2013). Effect of inulin, β-glucan and their mix-</p><p>turesonemulsion stability, color and textural parameters of cookedmeat</p><p>batters.Meat Science, 94(3), 320-327. https://doi.org/10.1016/j.meatsci.</p><p>2013.02.011</p><p>Angioloni, A., & Collar, C. (2012). Effects of pressure treatment of hydrated</p><p>oat, finger millet and sorghum flours on the quality and nutritional prop-</p><p>erties of composite wheat breads. Journal of Cereal Science, 56(3), 713-</p><p>719. https://doi.org/10.1016/j.jcs.2012.08.001</p><p>Babu, L. (2015). Green extraction techniques, structural analysis and antiox-</p><p>idant activities of β-glucan present in oats. International Journal of</p><p>Engineering Trends and Technology, 5, 125-135. https://doi.org/10.1016/</p><p>B978-008043711-8/50052-0</p><p>Bach Knudsen, K. E., Nørskov, N. P., Bolvig, A. K., Hedemann,M. S., & Laerke,</p><p>H. N. (2017). Dietary fibers and associated phytochemicals in cereals.</p><p>Molecular Nutrition Food Research, 61(7), 1-37. https://doi.org/10.1002/</p><p>mnfr.201600518</p><p>Banchathanakij, R., &Suphantharika,M. (2009). Effect of different β-glucans</p><p>on the gelatinisation and retrogradation of rice starch. Food Chemistry,</p><p>114(1), 5-14. https://doi.org/10.1016/j.foodchem.2008.09.016</p><p>Baumgartner, B., Özkaya, B., Saka, I., & Özkaya, H. (2018). Functional and</p><p>physical properties of cookies enrichedwith dephytinized oat bran. Jour-</p><p>nal of Cereal Science, 80, 24-30. https://doi.org/10.1016/j.jcs.2018.01.</p><p>011</p><p>Beer, M. U., Arrigoni, E., & Amado, R. (1996). Extraction of oat gum from oat</p><p>bran: Effects of process on yield, molecular weight distribution, viscosity</p><p>and (1→3)(1→4)-β-D-glucan content of the gum.Cereal Chemistry,73(1),</p><p>58-62.</p><p>Bei, Q., Chen, G., Liu, Y., Zhang, Y., &Wu, Z. (2018). Improving phenolic com-</p><p>positions and bioactivity of oats by enzymatic hydrolysis and microbial</p><p>fermentation. Journal of Functional Foods, 47, 512-520. https://doi.org/</p><p>10.1016/j.jff.2018.06.008</p><p>Benito-Román, Ó., Alonso, E., & Cocero, M. (2013). Pressurized hot water</p><p>extraction of β-glucans from waxy barley. The Journal of Supercritical Flu-</p><p>ids, 73, 120-125.</p><p>Bhatty, R. (1995). Laboratory and pilot plant extraction and purification of</p><p>β-glucans from hull-less barley and oat brans. Journal of Cereal Science,</p><p>22(2), 163-170. https://doi.org/10.1016/0733-5210(95)90046-2</p><p>Bozbulut, R., & Sanlier, N. (2019). Promising effects of β-glucans on gly-</p><p>caemic control in diabetes. Trends in Food Science Technology, 83, 159-</p><p>166. https://doi.org/10.1016/j.tifs.2018.11.018</p><p>Bryngelsson, S., Ishihara, A., & Dimberg, L. (2003). Levels of avenan-</p><p>thramides and activity of hydroxycinnamoyl-CoA: Hydroxyanthrani-</p><p>late N-hydroxycinnamoyl transferase (HHT) in steeped or germinated</p><p>oat samples. Cereal Chemistry, 80(3), 356-360. https://doi.org/10.1094/</p><p>CCHEM.2003.80.3.356</p><p>Burkus, Z., & Temelli, F. (2000). Stabilization of emulsions and foams using</p><p>barley β-glucan. FoodResearch International,33(1), 27-33. https://doi.org/</p><p>10.1016/S0963-9969(00)00020-X</p><p>Călinoiu, L. F., Cătoi, A.-F., & Vodnar, D. C. (2019). Solid-state yeast fer-</p><p>mentedwheat andoat branas a route for deliveryof antioxidants.Antiox-</p><p>idants, 8(9), 372. https://doi.org/10.3390/antiox8090372</p><p>Călinoiu, L. F., & Vodnar, D. C. (2020). Thermal processing for the release</p><p>of phenolic compounds fromwheat and oat bran. Biomolecules, 10(1), 21.</p><p>https://doi.org/10.3390/biom10010021</p><p>Cecilia, L., Anne, V., Anna, F., Olle, H., Ana, R., Rickard, Ö., & Elin, Ö. (2015).</p><p>An oat bran-based beverage reduce postprandial glycemia equivalent to</p><p>yogurt in healthy overweight subjects. International Journal of Food Sci-</p><p>ences and Nutrition, 66(6), 700-705. https://doi.org/10.3109/09637486.</p><p>2015.1035233</p><p>Chakraborty, P., Witt, T., Harris, D., Ashton, J., Stokes, J. R., & Smyth, H.</p><p>E. (2019). Texture and mouthfeel perceptions of a model beverage</p><p>system containing soluble and insoluble oat bran fibres. Food Research</p><p>International, 120, 62-72. https://doi.org/10.1016/j.foodres.2019</p><p>.01.070</p><p>Chen, G., Liu, Y., Zeng, J., Tian, X., Bei, Q., & Wu, Z. (2020). Enhancing three</p><p>phenolic fractions of oats (Avena sativa L.) and their antioxidant activities</p><p>by solid-state fermentationwithMonascus anka and Bacillus subtilis. Jour-</p><p>nal of Cereal Science, 102940. https://doi.org/10.1016/j.jcs.2020.102940</p><p>Choo, C. L., & Aziz, N. A. A. (2010). Effects of banana flour and β-glucan on</p><p>thenutritional and sensoryevaluationof noodles.FoodChemistry,119(1),</p><p>34-40. https://doi.org/10.1016/j.foodchem.2009.05.004</p><p>da Silva, J. A. T., & Dobránszki, J. (2014). Sonication and ultrasound: Impact</p><p>on plant growth anddevelopment.Plant Cell, TissueOrganCulture,117(2),</p><p>131-143. https://doi.org/10.1007/s11240-014-0429-0</p><p>Ding, J., Hou, G. G., Dong, M., Xiong, S., Zhao, S., & Feng, H. (2018).</p><p>Physicochemical properties of germinateddehulled rice flour andenergy</p><p>requirement in germination as affected by ultrasound treatment. Ultra-</p><p>sonics Sonochemistry, 41, 484-491. https://doi.org/10.1016/j.ultsonch.</p><p>2017.10.010</p><p>Ding, J., Ulanov, A. V., Dong, M., Yang, T., Nemzer, B. V., Xiong, S., Zhao, S.,</p><p>& Feng, H. (2018). Enhancement of gamma-aminobutyric acid (GABA)</p><p>andother health-relatedmetabolites in germinated red rice (Oryza sativa</p><p>L.) by ultrasonication.Ultrasonics Sonochemistry, 40, 791-797. https://doi.</p><p>org/10.1016/j.ultsonch.2017.08.029</p><p>26438429, 2022, 1, D</p><p>ow</p><p>nloaded from</p><p>https://onlinelibrary.w</p><p>iley.com</p><p>/doi/10.1002/fft2.120 by C</p><p>A</p><p>PE</p><p>S, W</p><p>iley O</p><p>nline L</p><p>ibrary on [30/10/2023]. See the T</p><p>erm</p><p>s and C</p><p>onditions (https://onlinelibrary.w</p><p>iley.com</p><p>/term</p><p>s-and-conditions) on W</p><p>iley O</p><p>nline L</p><p>ibrary for rules of use; O</p><p>A</p><p>articles are governed by the applicable C</p><p>reative C</p><p>om</p><p>m</p><p>ons L</p><p>icense</p><p>https://orcid.org/0000-0001-7260-2957</p><p>https://orcid.org/0000-0001-7260-2957</p><p>https://doi.org/10.3390/polym12020321</p><p>https://doi.org/10.3390/polym12020321</p><p>https://doi.org/10.1002/j.2050-0416.1984.tb04267.x</p><p>https://doi.org/10.1002/j.2050-0416.1984.tb04267.x</p><p>https://doi.org/10.1016/j.ijbiomac.2010.01.002</p><p>https://doi.org/10.1016/j.ijbiomac.2010.01.002</p><p>https://doi.org/10.1016/j.lwt.2019.108889</p><p>https://doi.org/10.1016/j.lwt.2019.108889</p><p>https://doi.org/10.1016/j.jcs.2018.03.007</p><p>https://doi.org/10.1016/j.foodres.2013.03.037</p><p>https://doi.org/10.1016/j.meatsci.2013.02.011</p><p>https://doi.org/10.1016/j.meatsci.2013.02.011</p><p>https://doi.org/10.1016/j.jcs.2012.08.001</p><p>https://doi.org/10.1016/B978-008043711-8/50052-0</p><p>https://doi.org/10.1016/B978-008043711-8/50052-0</p><p>https://doi.org/10.1002/mnfr.201600518</p><p>https://doi.org/10.1002/mnfr.201600518</p><p>https://doi.org/10.1016/j.foodchem.2008.09.016</p><p>https://doi.org/10.1016/j.jcs.2018.01.011</p><p>https://doi.org/10.1016/j.jcs.2018.01.011</p><p>https://doi.org/10.1016/j.jff.2018.06.008</p><p>https://doi.org/10.1016/j.jff.2018.06.008</p><p>https://doi.org/10.1016/0733-5210(95)90046-2</p><p>https://doi.org/10.1016/j.tifs.2018.11.018</p><p>https://doi.org/10.1094/CCHEM.2003.80.3.356</p><p>https://doi.org/10.1094/CCHEM.2003.80.3.356</p><p>https://doi.org/10.1016/S0963-9969(00)00020-X</p><p>https://doi.org/10.1016/S0963-9969(00)00020-X</p><p>https://doi.org/10.3390/antiox8090372</p><p>https://doi.org/10.3390/biom10010021</p><p>https://doi.org/10.3109/09637486.2015.1035233</p><p>https://doi.org/10.3109/09637486.2015.1035233</p><p>https://doi.org/10.1016/j.foodres.2019.01.070</p><p>https://doi.org/10.1016/j.foodres.2019.01.070</p><p>https://doi.org/10.1016/j.jcs.2020.102940</p><p>https://doi.org/10.1016/j.foodchem.2009.05.004</p><p>https://doi.org/10.1007/s11240-014-0429-0</p><p>https://doi.org/10.1016/j.ultsonch.2017.10.010</p><p>https://doi.org/10.1016/j.ultsonch.2017.10.010</p><p>https://doi.org/10.1016/j.ultsonch.2017.08.029</p>

Mais conteúdos dessa disciplina