Prévia do material em texto
<p>Neuropeptides 43 (2009) 341–353</p><p>Contents lists available at ScienceDirect</p><p>Neuropeptides</p><p>journal homepage: www.elsevier .com/locate /npep</p><p>The role of b-endorphin in the pathophysiology of major depression</p><p>K.M. Hegadoren a,*, T. O’Donnell b, R. Lanius d, N.J. Coupland b, N. Lacaze-Masmonteil c</p><p>a Faculty of Nursing, University of Alberta, Edmonton, AB, Canada T6G 2G3</p><p>b Department of Psychiatry, University of Alberta, Edmonton, AB, Canada T6G 2G3</p><p>c Campus Saint Jean, University of Alberta, Edmonton, AB, Canada T6G 2G3</p><p>d Department of Psychiatry, University of Western Ontario, Canada T6G 2G3</p><p>a r t i c l e i n f o</p><p>Article history:</p><p>Received 14 March 2009</p><p>Accepted 25 June 2009</p><p>Available online 3 August 2009</p><p>Keywords:</p><p>Depression</p><p>b-Endorphin</p><p>Stress response systems</p><p>HPA axis</p><p>Methodology</p><p>Review</p><p>0143-4179/$ - see front matter � 2009 Elsevier Ltd. A</p><p>doi:10.1016/j.npep.2009.06.004</p><p>* Corresponding author. Tel.: +1 780 492 4591; fax</p><p>E-mail address: kathy.hegadoren@ualberta.ca (K.M</p><p>a b s t r a c t</p><p>A role for b-endorphin (b-END) in the pathophysiology of major depressive disorder (MDD) is suggested by</p><p>both animal research and studies examining clinical populations. The major etiological theories of depression</p><p>include brain regions and neural systems that interact with opioid systems and b-END. Recent preclinical</p><p>data have demonstrated multiple roles for b-END in the regulation of complex homeostatic and behavioural</p><p>processes that are affected during a depressive episode. Additionally, b-END inputs to regulatory pathways</p><p>involving feeding behaviours, motivation, and specific types of motor activity have important implications</p><p>in defining the biological foundations for specific depressive symptoms. Early research linking b-END to</p><p>MDD did so in the context of the hypothalamic–pituitary–adrenal (HPA) axis activity, where it was suggested</p><p>that HPA axis dysregulation may account for depressive symptoms in some individuals. The primary aims of</p><p>this paper are to use both preclinical and clinical research (a) to critically review data that explores potential</p><p>roles for b-END in the pathophysiology of MDD and (b) to highlight gaps in the literature that limit further</p><p>development of etiological theories of depression and testable hypotheses. In addition to examining meth-</p><p>odological and theoretical challenges of past clinical studies, we summarize studies that have investigated</p><p>basal b-END levels in MDD and that have used challenge tests to examine b-END responses to a variety of</p><p>experimental paradigms. A brief description of the synthesis, location in the CNS and behavioural pharma-</p><p>cology of this neuropeptide is also provided to frame this discussion. Given the lack of clinical improvement</p><p>observed with currently available antidepressants in a significant proportion of depressed individuals, it is</p><p>imperative that novel mechanisms be investigated for antidepressant potential. We conclude that the</p><p>renewed interest in elucidating the role of b-END in the pathophysiology of MDD must be paralleled by con-</p><p>sensus building within the research community around the heterogeneity inherent in mood disorders, stan-</p><p>dardization of experimental protocols, improved discrimination of POMC products in analytical techniques</p><p>and consistent attention paid to important confounds like age and gender.</p><p>� 2009 Elsevier Ltd. All rights reserved.</p><p>Contents</p><p>1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342</p><p>2. Synthesis, location and pharmacology of b-endorphin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343</p><p>3. b-Endorphin and behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344</p><p>4. Methodological considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345</p><p>5. Serotonin, depression and b-END . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346</p><p>6. The HPA axis, depression and b-END . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346</p><p>7. Studies examining baseline levels of b-endorphin in depression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346</p><p>8. Challenge studies of b-endorphin in depression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347</p><p>9. Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349</p><p>10. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350</p><p>References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350</p><p>ll rights reserved.</p><p>: +1 780 492 2551.</p><p>. Hegadoren).</p><p>http://dx.doi.org/10.1016/j.npep.2009.06.004</p><p>mailto:kathy.hegadoren@ualberta.ca</p><p>http://www.sciencedirect.com/science/journal/01434179</p><p>http://www.elsevier.com/locate/npep</p><p>342 K.M. Hegadoren et al. / Neuropeptides 43 (2009) 341–353</p><p>1. Introduction</p><p>Animal and human research support involvement of central</p><p>opioid systems in the pathophysiology of major depressive</p><p>disorder (MDD). However, the complexity of interdependent inter-</p><p>actions between opioid-releasing neurons and other neurotrans-</p><p>mitter and neuromodulatory systems has made it difficult to</p><p>delineate specific contributions that endogenous opioids make to</p><p>the development and persistence of depressive symptoms. Of the</p><p>endogenous opioids that have been identified as contributing to</p><p>the etiology of MDD, b-endorphin (b-END) has been the most</p><p>studied.</p><p>Initial studies regarding b-END focused on peripheral and cen-</p><p>tral transmission of pain stimuli and b-END’s role on attenuation</p><p>of nocioception signalling. Increasingly, pain has become recog-</p><p>nized as a very complex behaviour, encompassing sensory, affec-</p><p>tive and cognitive components (Zubieta et al., 2001). This led to</p><p>investigations of such phenomena as stress-induced analgesia, as</p><p>well as attempts to examine putative roles for endogenous opioids</p><p>in stress-related psychiatric disorders, such as MDD and posttrau-</p><p>matic stress disorder (PTSD), and physical health problems. For</p><p>example, increased production of b-END has been detected in</p><p>those with arthritis, viral and parasitic infections and atopic ecze-</p><p>ma (Slominski et al., 2000). Acute alcohol intake in animals in-</p><p>creases brain b-END levels (Olive et al., 2001), while habitual</p><p>alcohol consumption leads to lowered plasma b-END levels in hu-</p><p>mans (Vescovi et al., 1992). Thus, although the research interest in</p><p>b-END covers broad areas of health, this review will be limited to</p><p>summarizing data that directly or indirectly link opioid systems</p><p>with depressive symptoms and MDD.</p><p>According to the DSM IV, MDD is defined by the presence of de-</p><p>pressed mood or marked loss of interest or pleasure for at least</p><p>2 weeks, together with a number of associated symptoms: distur-</p><p>bances in sleep, appetite and/or sexual desire, suicidal ideation,</p><p>loss of energy, decreased</p><p>of psychotropics: focus on women. Psychopharmacol.</p><p>Bull. 27, 417–426.</p><p>Desiderio, D.M., Zhu, X., 1998. Quantitative analysis of methionine enkephalin and</p><p>b-endorphin in the pituitary by liquid secondary ion mass spectrometry and</p><p>tandem mass spectroscopy. J. Chromatogr. 794, 85–96.</p><p>Desjardins, G.C., Beaudet, A., Meaney, M.J., Brawer, J.R., 1995. Estrogen-induced</p><p>hypothalamic beta-endorphin neuron loss: a possible model of hypothalamic</p><p>aging. Exp. Gerontol. 30, 253–267.</p><p>Ding, Y.Q., Kaneko, T., Nomura, S., Mizuno, N., 1996. Immunohistochemical</p><p>localization of mu-opioid receptors in the central nervous system of the rat. J.</p><p>Comp. Neurol. 367, 375–402.</p><p>Djurovic, D., Milic-Askrabic, J., Majkic-Singh, N., 1999. Serum beta-endorphin level</p><p>in patients with depression on fluvoxamine. Farmaco 54, 130–133.</p><p>Drake, C.T., Milner, T.A., 2002. Mu opioid receptors are in discrete hippocampal</p><p>interneuron subpopulations. Hippocampus 12, 119–136.</p><p>D’Souza, D.N., Harlan, R.E., Garcia, M.M., 2002. Sexually dimorphic effects of</p><p>morphine and MK-801: sex steroid-dependent and -independent mechanisms.</p><p>J. Appl. Physiol. 92, 493–503.</p><p>Ebert, D., Kaschka, W.P., Loew, T., Beck, G., 1994. Cortisol and beta-endorphin</p><p>responses to sleep deprivation in major depression–the hyperarousal theories</p><p>of sleep deprivation. Neuropsychobiology 29, 64–68.</p><p>Eberwine, J.H., Jonassen, J.A., Evinger, M.J., Roberts, J.L., 1987. Complex</p><p>transcriptional regulation by glucocorticoids and corticotropin-releasing</p><p>hormone of proopiomelanocortin gene expression in rat pituitary cultures.</p><p>DNA 6, 483–492.</p><p>Eckersell, C.B., Popper, P., Micevych, P.E., 1998. Estrogen-induced alteration of mu-</p><p>opioid receptor immunoreactivity in the medial preoptic nucleus and medial</p><p>amygdala. J. Neurosci. 18, 3967–3976.</p><p>Emeson, R.B., Eipper, B.A., 1986. Characterization of pro-ACTH/endorphin-derived</p><p>peptides in rat hypothalamus. J. Neurosci. 6, 837–849.</p><p>Engin, E., Stellbrink, J., Treit, D., Dickson, C.T., 2008. Anxiolytic and antidepressant</p><p>effects of intracerebroventricularly administered somatostatin: behavioral and</p><p>neurophysiological evidence. Neuroscience 157, 666–676.</p><p>Eriksson, E., Westberg, P., Thuresson, K., Modigh, K., Ekman, R., Widerlov, E., 1989.</p><p>Increased cerebrospinal fluid levels of endorphin immunoreactivity in panic</p><p>disorder. Neuropsychopharmacology 2, 225–228.</p><p>Evans, C.J., Erdelyi, E., Weber, E., Barchas, J.D., 1983. Identification of pro-</p><p>opiomelanocortin-derived peptides in the human adrenal medulla. Science</p><p>221, 957–960.</p><p>Facchinetti, F., Petraglia, F., Sances, G., Garuti, C., Tosca, P., Nappi, G., Genazzani, A.R.,</p><p>1986. Dissociation between CSF and plasma B-endorphin in major depressive</p><p>disorders: evidence for a different regulation. J. Endocrinol. Invest. 9, 11–14.</p><p>Fanselow, M.S., 1986. Conditioned fear-induced opiate analgesia: a competing</p><p>motivational state theory of stress analgesia. Ann. N. Y. Acad. Sci. 467, 40–54.</p><p>Fichna, J., Gach, K., Perlikowska, R., Poels, J., Vanden Broeck, J., Szemraj, J., Janecka,</p><p>A., 2008. Identification of endomorphin-1 and endomorphin-2 binding sites in</p><p>human mu-opioid receptor by antisense oligonucleotide strategy. Chem. Biol.</p><p>Drug Des. 72 (6), 507–512.</p><p>Frank, E., Anderson, B., Reynolds III, C.F., Ritenour, A., Kupfer, D.J., 1994. Life events</p><p>and the research diagnostic criteria endogenous subtype. A confirmation of the</p><p>distinction using the Bedford College methods. Arch. Gen. Psychiat. 51, 519–</p><p>524.</p><p>Gabilondo, A.M., Meana, J.J., Garcia-Sevilla, J.A., 1995. Increased density of mu-</p><p>opioid receptors in the postmortem brain of suicide victims. Brain Res. 682,</p><p>245–250.</p><p>Galard, R., Gallart, J., Arguello, J.M., Schwartz, S., Castellanos, J.M., Catalan, R., 1988.</p><p>Plasma levels of beta-endorphin, cortisol, prolactin and growth hormone in</p><p>depressed patients. Acta Psychiat. Scand. 78, 230–233.</p><p>Galard, R., Catalan, R., Castellanos, J.M., Gallart, J.M., 2002. Plasma corticotropin-</p><p>releasing factor in depressed patients before and after the dexamethasone</p><p>suppression test. Biol. Psychiat. 51, 463–468.</p><p>Genazzani, A.R., Petraglia, F., Sinforiani, E., Brambilla, F., Facchinetti, F., Nappi, G.,</p><p>1986. Dysregulation of plasma pro-opiomelanocortin-related peptides in</p><p>neurotic depression. Acta Endocrinol. (Copenh.) 112, 1–6.</p><p>Gerner, R.H., Sharp, B., Catlin, D.H., 1982. Peripherally administered beta-endorphin</p><p>increases cerebrospinal fluid endorphin immunoreactivity. J. Clin. Endocrinol.</p><p>Metab. 55, 358–360.</p><p>Ghadirian, A.M., Gianoulakis, C., Nair, N.P., 1988. The effect of electroconvulsive</p><p>therapy on endorphins in depression. Biol. Psychiat. 23, 459–464.</p><p>Gispen-de-Wied, C.C., Westenberg, H.G., Thijssen, J.H., van Ree, J.M., 1987. The</p><p>dexamethasone and cortisol suppression test in depression: beta-endorphin as</p><p>a useful marker. Psychoneuroendocrinology 12, 355–366.</p><p>Gold, P.W., Goodwin, F.K., Chrousos, G.P., 1988. Clinical and biochemical</p><p>manifestations of depression. Relation to the neurobiology of stress (2). N.</p><p>Engl. J. Med. 319, 413–420.</p><p>Goodwin, G.M., Muir, W.J., Seckl, J.R., Bennie, J., Carroll, S., Dick, H., Fink, G., 1992.</p><p>The effects of cortisol infusion upon hormone secretion from the anterior</p><p>pituitary and subjective mood in depressive illness and in controls. J. Affect.</p><p>Disord. 26, 73–83.</p><p>Goodwin, G.M., Austin, M.P., Curran, S.M., Ross, M., Murray, C., Prentice, N., Ebmeier,</p><p>K.P., Bennie, J., Carroll, S., Dick, H., 1993. The elevation of plasma beta-</p><p>endorphin levels in major depression. J. Affect. Disord. 29, 281–289.</p><p>Gotlib, I.H., Hamilton, J.P., 2008. Neuroimaging and depression: current status and</p><p>unresolved issues. Curr. Dir. Psychol. Sci. 17, 159–163.</p><p>Gross-Isseroff, R., Biegon, A., Voet, H., Weizman, A., 1998. The suicide brain: a</p><p>review of postmortem receptor/transporter binding studies. Neurosci.</p><p>Biobehav. Rev. 22, 653–661.</p><p>Gutman, D.A., Nemeroff, C.B., 2003. Persistent central nervous system effects of an</p><p>adverse early environment: clinical and preclinical studies. Physiol. Behav. 79,</p><p>471–478.</p><p>Haas, B.W., Canli, T., 2008. Emotional memory function, personality structure and</p><p>psychopathology: a neural system approach to the identification of</p><p>vulnerability markers. Brain Res. Rev. 58, 71–84.</p><p>Hamner, M.B., Hitri, A., 1992. Plasma beta-endorphin levels in post-traumatic stress</p><p>disorder: a preliminary report on response to exercise-induced stress. J.</p><p>Neuropsychiat. Clin. Neurosci. 4, 59–63.</p><p>Harris, R.E., Clauw, D.J., Scott, D.J., McLean, S.A., Gracely, R.H., Zubieta, JK., 2007.</p><p>Decreased central l-opioid receptor availability in fibromyalgia. J. Neurosci. 27</p><p>(37), 10000–10006.</p><p>Hartwig, A.C., 1991. Peripheral beta-endorphin and pain modulation. Anesth. Prog.</p><p>38, 75–78.</p><p>Hassan, A.H., Ableitner, A., Stein, C., Herz, A., 1993. Inflammation of the rat paw</p><p>enhances axonal transport of opioid receptors in the sciatic nerve and increases</p><p>their density in the inflamed tissue. Neuroscience 55, 185–195.</p><p>Health Canada, 2002. A Report on Mental Illnesses in Canada, Health Canada</p><p>Editorial Board Mental Illnesses in Canada, Ottawa, Canada, pp. 1–108.</p><p>Heim, C., Newport, D.J., Mletzko, T., Miller, A.H., Nemeroff, C.B., 2008. The link</p><p>between childhood trauma and depression: insights from HPA axis studies in</p><p>humans. Psychoneuroendocrinology 33, 693–710.</p><p>Hemingway, R.B., Reigle, T.G., 1987. The involvement of endogenous opiate systems</p><p>in learned helplessness and stress-induced analgesia. Psychopharmacology</p><p>(Berl.) 93 (35), 3–357.</p><p>Herz, A., 1988. Bidirectional effects of opioids in motivational processes and the</p><p>involvement of D1 dopamine receptors. NIDA Res. Monogr. 90, 17–26.</p><p>Herz, A., 1997. Endogenous opioid systems and alcohol addiction.</p><p>Psychopharmacology (Berl.) 129 (9), 9–111.</p><p>Heuser, I., Yassouridis, A., Holsboer, F., 1994. The combined dexamethasone/CRH</p><p>test: a refined laboratory test for psychiatric disorders. J. Psychiat. Res. 28, 341–</p><p>356.</p><p>352 K.M. Hegadoren et al. / Neuropeptides 43 (2009) 341–353</p><p>Hill, C., Lapanowski, K., Dunbar, J.C., 2002. The effects of [beta]-endorphin ([beta]-</p><p>END) on cardiovascular</p><p>and behavioral dynamics in conscious rats. Brain Res.</p><p>Bull. 59, 29–34.</p><p>Hoffman, L., Burges, W.P., Wilson, G., Montgomery, J., 1989. Low plasma beta-</p><p>endorphin in post-traumatic stress disorder. Aust. N. Z. J. Psychiat. 23, 269–273.</p><p>Holsboer, F., Barden, N., 1996. Antidepressants and hypothalamic–pituitary–</p><p>adrenocortical regulation. Endocr. Rev. 17, 187–205.</p><p>Holsboer, F., Lauer, C.J., Schreiber, W., Krieg, J.C., 1995. Altered hypothalamic–</p><p>pituitary–adrenocortical regulation in healthy subjects at high familial risk for</p><p>affective disorders. Neuroendocrinology 62, 340–347.</p><p>Jadric, R., Hasic, S., Kiseljakovic, E., Radovanovic, J., Icindic-Nakas, E., Winterhalter-</p><p>Jadric, M., 2006. Effects of amitryptiline administration on rat sera and brain</p><p>beta-endorphins. Bosn. J. Basic Med. Sci. 6, 64–66.</p><p>Karkkainen, J., Laatikainen, T., Naukkarinen, H., Salminen, K., Spoov, J., Stenman,</p><p>U.H., Rimon, R., 1987. Plasma endogenous opioids and dexamethasone</p><p>suppression test in depression. Psychiat. Res. 21, 151–159.</p><p>Kato, T., Okada, M., Nagatsu, T., 1980. Distribution of post-proline cleaving enzyme</p><p>in human brain and the peripheral tissues. Mol. Cell Biochem. 32, 117–</p><p>121.</p><p>Kelley, A.E., Bakshi, V.P., Haber, S.N., Steininger, T.L., Will, M.J., Zhang, M., 2002.</p><p>Opioid modulation of taste hedonics within the ventral striatum. Physiol.</p><p>Behav. 76, 365–377.</p><p>Kendler, K.S., Kessler, R.C., Neale, M.C., Heath, A.C., Eaves, L.J., 1993. The prediction</p><p>of major depression in women: toward an integrated etiologic model. Am. J.</p><p>Psychiat. 150, 1139–1148.</p><p>Kendler, K.S., Gardner, C.O., Prescott, C.A., 2002. Toward a comprehensive</p><p>developmental model for major depression in women. Am. J. Psychiat. 159,</p><p>1133–1145.</p><p>Kennedy, S.E., Koeppe, R.A., Young, E.A., Zubieta, JK., 2006. Dysregulation of</p><p>endogenous opioid emotion regulation circuitry in major depression in</p><p>women. Arch. Gen. Psychiat. 63, 1199–1208.</p><p>Kessler, R.C., McGonagle, K.A., Nelson, C.B., Hughes, M., Swartz, M., Blazer, D.G.,</p><p>1994. Sex and depression in the National Comorbidity Survey. II: Cohort effects.</p><p>J. Affect. Disord. 30, 15–26.</p><p>Khairova, R.A., Machado-Vieira, R., Du, J., Manji, H.K., 2009. A potential role for pro-</p><p>inflammatory cytokines in regulating synaptic plasticity in major depressive</p><p>disorder. Int. J. Neuropsychopharmacol. 19, 1–18.</p><p>King, M., Su, W., Chang, A., Zuckerman, A., Pasternak, G.W., 2001. Transport of</p><p>opioids from the brain to the periphery by P-glycoprotein: peripheral actions of</p><p>central drugs. Nat. Neurosci. 4, 268–274.</p><p>Knepel, W., Reimann, W., 1982. Inhibition by morphine and beta-endorphin of</p><p>vasopressin release evoked by electrical stimulation of the rat medial basal</p><p>hypothalamus in vitro. Brain Res. 238, 484–488.</p><p>Knepel, W., Przewlocki, R., Nutto, D., Herz, A., 1985. Foot shock stress-induced</p><p>release of vasopressin in adenohypophysectomized and hypophysectomized</p><p>rats. Endocrinology 117, 292–299.</p><p>Koehl, M., Meerlo, P., Gonzales, D., Rontal, A., Turek, F.W., Abrous, D.N., 2008.</p><p>Exercise-induced promotion of hippocampal cell proliferation requires beta-</p><p>endorphin. FASEB J. 22, 2253–2262.</p><p>Laatikainen, T., Raisanen, I., Tulenheimo, A., Salminen, K., 1985. Plasma beta-</p><p>endorphin and the menstrual cycle. Fertil. Steril. 44, 206–209.</p><p>Leonard, B.E., Song, C., 1999. Stress, depression, and the role of cytokines. Adv. Exp.</p><p>Med. Biol. 461, 251–265.</p><p>Lewis, J.W., 1986. Multiple neurochemical and hormonal mechanisms of stress-</p><p>induced analgesia. Ann. N. Y. Acad. Sci. 467, 194–204.</p><p>Liberzon, I., Zubieta, J.K., Fig, L.M., Phan, K.L., Koeppe, R.A., Taylor, S.F., 2002. Mu-</p><p>opioid receptors and limbic responses to aversive emotional stimuli. Proc. Natl.</p><p>Acad. Sci. USA 99, 7084–7089.</p><p>Liberzon, I., Taylor, S.F., Phan, K.L., Britton, J.C., Fig, L.M., Bueller, Z.A., Zubieta, J.K.,</p><p>2007. Altered central mu-opioid receptor binding after psychological trauma.</p><p>Biol. Psychiat. 61, 1030–1038.</p><p>Lin, S.C., Maruta, T., Newman, D.C., Kao, P.C., 1986. Plasma levels of cortisol,</p><p>corticotropin, and beta-endorphin in patients with major depression. J. Clin.</p><p>Psychiat. 47, 413–414.</p><p>Lisansky, J., Hauger, R., Strassman, R., Dorin, R., Meikle, A.W., Brazis, M., Qualls, C.,</p><p>Turkin, A., 1992. B-endorphin response to a low dosage of human corticotropin</p><p>releasing hormone during metyrapone administration in depression. Endocr.</p><p>Res. 18, 241–260.</p><p>Liu, Q.S., Han, S., Jia, Y.S., Ju, G., 1999. Selective modulation of excitatory</p><p>transmission by mu-opioid receptor activation in rat supraoptic neurons. J.</p><p>Neurophysiol. 82, 3000–3005.</p><p>Machelska, H., 2007. Targeting of opioid-producing leukocytes for pain control.</p><p>Neuropeptides 41 (6), 355–363.</p><p>Maes, M., Jacobs, M.P., Suy, E., Leclercq, C., Christiaens, F., Raus, J., 1990. An</p><p>augmented escape of beta-endorphins to suppression by dexamethasone in</p><p>severely depressed patients. J. Affect. Disord. 18, 149–156.</p><p>Maes, M., Meltzer, H., Cosyns, P., Calabrese, J., D’Hondt, P., Blockx, P., 1994.</p><p>Adrenocorticotropic hormone, beta-endorphin and cortisol responses to oCRH</p><p>in unipolar depressed patients pretreated with dexamethasone. Prog.</p><p>Neuropsychopharmacol. Biol. Psychiat. 18, 1273–1292.</p><p>Maes, M., Van, G.A., Ranjan, R., Blockx, P., Cosyns, P., Meltzer, H.Y., Desnyder, R.,</p><p>1996. Stimulatory effects of L-5-hydroxytryptophan on postdexamethasone</p><p>beta-endorphin levels in major depression. Neuropsychopharmacology 15,</p><p>340–348.</p><p>Maes, M., Yirmyia, R., Noraberg, J., Brene, S., Hibbeln, J., Perini, G., Kubera, M., Bob, P.,</p><p>Lerer, B., Maj, M., 2009. The inflammatory and neurodegenerative (I&ND)</p><p>hypothesis of depression: leads for future research and new drug developments</p><p>in depression. Metab. Brain Dis. 24, 27–53.</p><p>Makino, S., Hashimoto, K., Gold, P.W., 2002. Multiple feedback mechanisms</p><p>activating corticotropin-releasing hormone system in the brain during stress</p><p>3. Pharmacol. Biochem. Behav. 73, 147–158.</p><p>Matthews, J., Akil, H., Greden, J., Charney, D., Weinberg, V., Rosenbaum, A., Watson,</p><p>S.J., 1986. Beta-endorphin/beta-lipotropin immunoreactivity in endogenous</p><p>depression Effect of dexamethasone. Arch. Gen. Psychiat. 43, 374–381.</p><p>McGaugh, J.L., 2000. Memory – a century of consolidation. Science 287, 248–251.</p><p>McQuiston, A.R., Saggau, P., 2003. Mu-opioid receptors facilitate the propagation of</p><p>excitatory activity in rat hippocampal area CA1 by disinhibition of all</p><p>anatomical layers. J. Neurophysiol. 90, 1936–1948.</p><p>Meador-Woodruff, J.H., Haskett, R.F., Grunhaus, L., Akil, H., Watson, S.J., Greden, J.F.,</p><p>1987. Postdexamethasone plasma cortisol and beta-endorphin levels in</p><p>depression: relationship to severity of illness. Biol. Psychiat. 22, 1137–1150.</p><p>Meaney, M.J., 2001. Maternal care, gene expression, and the transmission of</p><p>individual differences in stress reactivity across generations. Annu. Rev.</p><p>Neurosci. 24, 1161–1192.</p><p>Mills, R.H., Sohn, R.K., Micevych, P.E., 2004. Estrogen-induced mu-opioid receptor</p><p>internalization in the medial preoptic nucleus is mediated via neuropeptide Y-</p><p>Y1 receptor activation in the arcuate nucleus of female rats. J. Neurosci. 24,</p><p>947–955.</p><p>Modell, S., Lauer, C.J., Schreiber, W., Huber, J., Krieg, J.C., Holsboer, F., 1998.</p><p>Hormonal response pattern in the combined DEX-CRH test is stable over time in</p><p>subjects at high familial risk for affective disorders. Neuropsychopharmacology</p><p>18, 253–262.</p><p>Mormede, P., Vincent, J.D., Kerdelhue, B., 1986. Vasopressin and oxytocin reduce</p><p>plasma prolactin levels of conscious rats in basal and stress conditions. Study of</p><p>the characteristics of the receptor involved. Life Sci. 39, 1737–1743.</p><p>Morphy, M.A., Fava, G.A., Pedersen, R.C., Zielezny, M., Sonino, N., Brownie, A.C.,</p><p>1992. Beta-endorphin responses to metyrapone and dexamethasone in</p><p>depressed patients. Eur. Neuropsychopharmacol. 2, 421–424.</p><p>Mousa, S.A., Bopaiah, C.P., Stein, C., Schafer, M., 2003. Involvement of corticotropin-</p><p>releasing hormone receptor subtypes 1 and 2 in peripheral opioid-mediated</p><p>inhibition of inflammatory pain. Pain 106, 297–307.</p><p>Nappi, G., Facchinetti, F., Martignoni, E., Petraglia, F., Bono, G., Genazzani,</p><p>A.R., 1985.</p><p>CSF beta-EP in headache and depression. Cephalalgia 5, 99–101.</p><p>Nemeroff, C.B., 1996. The corticotropin-releasing factor (CRF) hypothesis of</p><p>depression: new findings and new directions. Mol. Psychiat. 1, 336–342.</p><p>Nikolarakis, K.E., Almeida, O.F., Herz, A., 1986. Stimulation of hypothalamic beta-</p><p>endorphin and dynorphin release by corticotropin-releasing factor (in vitro).</p><p>Brain Res. 399, 152–155.</p><p>Nomura, S., Ding, Y.Q., Kaneko, T., Li, J.L., Mizuno, N., 1996. Localization of mu-</p><p>opioid receptor-like immunoreactivity in the central components of the vagus</p><p>nerve: a light and electron microscope study in the rat. Neuroscience 7 (3), 277–</p><p>286.</p><p>O’Brien, S.M., Scott, L.V., Dinan, T.G., 2006. Antidepressant therapy and C-reactive</p><p>protein levels. Br. J. Psychiat. 188, 449–452.</p><p>Ohayon, M.M., Schatzberg, A.F., 2003. Using chronic pain to predict depressive</p><p>morbidity in the general population. Arch. Gen. Psychiat. 60, 39–47.</p><p>Olive, M.F., Koenig, H.N., Nannini, M.A., Hodge, C.W., 2001. Stimulation of endorphin</p><p>neurotransmission in the nucleus accumbens by ethanol, cocaine and</p><p>amphetamine. J. Neurosci. 21, RC184.</p><p>Panerai, A.E., Vecchiet, J., Panzeri, P., Meroni, P., Scarone, S., Pizzigallo, E.,</p><p>Giamberardino, M.A., Sacerdote, P., 2002. Peripheral blood mononuclear cell</p><p>beta-endorphin concentration is decreased in chronic fatigue syndrome and</p><p>fibromyalgia but not in depression: preliminary report. Clin. J. Pain 18, 270–</p><p>273.</p><p>Pariante, C.M., Lightman, S.L., 2008. The HPA axis in major depression: classical</p><p>theories and new developments. Trends Neurosci. 31, 464–468.</p><p>Petraglia, F., Facchinetti, F., Martignoni, E., Nappi, G., Volpe, A., Genazzani, A.R.,</p><p>1984. Serotoninergic agonists increase plasma levels of beta-endorphin and</p><p>beta-lipotropin in humans. J. Clin. Endocrinol. Metab. 59, 1138–1142.</p><p>Petraglia, F., Di Meo, G., De Leo, V., Nappi, V., Facchinetti, C., Genazzani, A.R., 1986.</p><p>Plasma beta-endorphin levels in anovulatory states: changes after treatments</p><p>for the induction of ovulation. Fertil. Steril. 45, 185–190.</p><p>Pickar, D., Davis, G.C., Schulz, S.C., Extein, I., Wagner, R., Naber, D., Gold, P.W., van</p><p>Kammen, D.P., Goodwin, F.K., Wyatt, R.J., Li, C.H., Bunney Jr., W.E., 1981.</p><p>Behavioral and biological effects of acute beta-endorphin injection in</p><p>schizophrenic and depressed patients. Am. J. Psychiat. 138, 160–166.</p><p>Pitkanen, A., Lepola, U., Ylinen, A., Riekkinen, P.J., 1989. Somatostatin and beta-</p><p>endorphin levels in cerebrospinal fluid of nonmedicated and medicated</p><p>patients with epileptic seizures. Neuropeptides 13, 9–15.</p><p>Plotsky, P.M., 1986. Opioid inhibition of immunoreactive corticotropin-releasing</p><p>factor secretion into the hypophysial-portal circulation of rats. Regul. Pept. 16,</p><p>235–242.</p><p>Przewlocki, R., 2002. Stress, opioid peptides, and their receptors. In: Pfaff, D.W.,</p><p>Arnold, A.P., Etgen, A.M., Fahrbach, S.E., Rubin, R.T. (Eds.), Hormones, Brain and</p><p>Behavior. Academic Press, San Diego, CA, USA, pp. 691–733.</p><p>Przewlocki, R., Przewlocka, B., 2001. Opioids in chronic pain. Eur. J. Pharmacol. 429,</p><p>79–91.</p><p>Raison, C.L., Capuron, L., Miller, A.H., 2006. Cytokines sing the blues: inflammation</p><p>and the pathogenesis of depression. Trends Immunol. 27, 24–31.</p><p>Rashid, M.H., Inoue, M., Toda, K., Ueda, H., 2004. Loss of peripheral morphine</p><p>analgesia contributes to the reduced effectiveness of systemic morphine in</p><p>neuropathic pain. J. Pharmacol. Exp. Ther. 309, 380–387.</p><p>K.M. Hegadoren et al. / Neuropeptides 43 (2009) 341–353 353</p><p>Raynor, K., Kong, H., Chen, Y., Yasuda, K., Yu, L., Bell, G.I., Reisine, T., 1994.</p><p>Pharmacological characterization of the cloned kappa-, delta- and mu-opioid</p><p>receptors. Mol. Pharmacol. 45, 330–334.</p><p>Reul, J.M., Holsboer, F., 2002. Corticotropin-releasing factor receptors 1 and 2 in</p><p>anxiety and depression. Curr. Opin. Pharmacol. 2, 23–33.</p><p>Reyes, B.A.S., Glaser, J.D., Van Bockstaele, E.J., 2007. Ultrastructural evidence for co-</p><p>localization of corticotropin-releasing factor receptor and [mu]-opioid receptor</p><p>in the rat nucleus locus coeruleus. Neurosci. Lett. 413, 216–221.</p><p>Rupprecht, R., Barocka, A., Beck, G., Schrell, U., Pichl, J., 1988. Pre- and</p><p>postdexamethasone plasma ACTH and beta-endorphin levels in endogenous</p><p>and nonendogenous depression. Biol. Psychiat. 23, 531–535.</p><p>Rupprecht, R., Lesch, K.P., Muller, U., Beck, G., Beckmann, H., Schulte, H.M., 1989.</p><p>Blunted adrenocorticotropin but normal beta-endorphin release after human</p><p>corticotropin-releasing hormone administration in depression. J. Clin.</p><p>Endocrinol. Metab. 69, 600–603.</p><p>Sacerdote, P., Rubboli, F., Locatelli, L., Ciciliato, I., Mantegazza, P., Panerai, A.E., 1991.</p><p>Pharmacological modulation of neuropeptides in peripheral mononuclear cells.</p><p>J. Neuroimmunol. 32, 35–41.</p><p>Saland, L.C., Gutierrez, L., Kraner, J., Samora, A., 1988. Corticotropin-releasing factor</p><p>(CRF) and neurotransmitters modulate melanotropic peptide release from rat</p><p>neurointermediate pituitary in vitro. Neuropeptides 12, 59–66.</p><p>Saland, L.C., Carr, J.A., Samora, A., Benavidez, S., Tejeda, D., 1991. Interaction of</p><p>corticotropin-releasing factor (CRF) and alpha-helical CRF on rat</p><p>neurointermediate lobes: in vitro studies. Neuropeptides 19, 213–221.</p><p>Schmauss, C., Emrich, H.M., 1985. Dopamine and the action of opiates: a</p><p>reevaluation of the dopamine hypothesis of schizophrenia. With special</p><p>consideration of the role of endogenous opioids in the pathogenesis of</p><p>schizophrenia. Biol. Psychiat. 20, 1211–1231.</p><p>Scott, D.J., Domino, E.F., Heitzeg, M.M., Koeppe, R.A., Ni, L., Guthrie, S., Zubieta, JK.,</p><p>2007. Smoking modulation of l-opioid and dopamine D2 receptor-mediated</p><p>neurotransmission in humans. Neuropsychopharmacology 32, 450–457.</p><p>Silberstein, S., Vogl, A.M., Bonfiglio, J.J., Wurst, W., Holsboer, F., Arzt, E., Deussing,</p><p>J.M., Refojo, D., 2009. Immunology, signal transduction, and behavior in</p><p>hypothalamic–pituitary–adrenal axis-related genetic mouse models. Ann. N.</p><p>Y. Acad. Sci. 1153, 120–130.</p><p>Simon, G.E., VonKorff, M., Piccinelli, M., Fullerton, C., Ormel, J., 1999. An</p><p>international study of the relation between somatic symptoms and</p><p>depression. N. Engl. J. Med. 341, 1329–1335.</p><p>Slominski, A., Wortman, J., Luger, T., Paus, R., Solomon, S., 2000. Corticotropin</p><p>releasing hormone and propiomelanocortin involvement in the cutaneous</p><p>response to stress. Physiol. Rev. 80 (3), 979–1020.</p><p>Smith, E.M., 2008. Neuropeptides as signal molecules in common with leukocytes</p><p>and the hypothalamic–pituitary–adrenal axis. Brain Behav. Immun. 22, 3–14.</p><p>Smith, A.I., Cheng, M.C., Funder, J.W., 1985. The identification and characterization</p><p>of alpha-N-acetylated beta-endorphin in the human pituitary gland. FEBS Lett.</p><p>185, 109–111.</p><p>Smith, Y.R., Stohler, C.S., Nichols, T.E., Bueller, J.A., Koeppe, R.A., Jubieta, JK., 2006.</p><p>Pronocicepive and antinociceptive effects of estradiol through endogenous</p><p>opioid neurotransmission in women. J. Neurosci. 26 (2), 5777–5785.</p><p>Southwick, S.M., Vythilingam, M., Charney, D.S., 2005. The psychobiology of</p><p>depression and resilience to stress: implications for prevention and</p><p>treatment. Annu. Rev. Clin. Psychol. 1, 255–291.</p><p>Stengaard-Pedersen, K., Larsson, L.I., 1981. Comparative immunocytochemical</p><p>localization of putative opioid ligands in the central nervous system.</p><p>Histochemistry 73, 89–114.</p><p>Strickland, P.L., Deakin, J.F., Percival, C., Dixon, J., Gater, R.A., Goldberg, D.P., 2002.</p><p>Bio-social origins of depression in the community. Interactions between social</p><p>adversity, cortisol and serotonin neurotransmission. Br. J. Psychiat. 180, 168–</p><p>173.</p><p>Strohle, A., Holsboer, F., 2003. Stress responsive neurohormones in depression and</p><p>anxiety. Pharmacopsychiatry 36 (Suppl. 3), S207–S214.</p><p>Su, C.F., Chang, Y.Y., Pai, H.H., Liu, I.M., Lo, C.Y., Cheng, J.T., 2005. Mediation of beta-</p><p>endorphin in exercise-induced improvement in insulin resistance in obese</p><p>Zucker rats. Diabetes Metab. Res. Rev. 21, 175–182.</p><p>Suda, T., Sato, Y., Sumitomo, T., Nakano, Y., Tozawa, F., Iwai, I., Yamada, M., Demura,</p><p>H., 1992. Beta-endorphin inhibits hypoglycemia-induced</p><p>gene expression of</p><p>corticotropin-releasing factor in the rat hypothalamus. Endocrinology 130,</p><p>1325–1330.</p><p>Svoboda, K.R., Adams, C.E., Lupica, C.R., 1999. Opioid receptor subtype expression</p><p>defines morphologically distinct classes of hippocampal interneurons. J.</p><p>Neurosci. 19, 85–95.</p><p>Tsagarakis, S., Rees, L.H., Besser, M., Grossman, A., 1990. Opiate receptor subtype</p><p>regulation of CRF-41 release from rat hypothalamus in vitro.</p><p>Neuroendocrinology 51, 599–605.</p><p>Tseng, L.F., 2001. Evidence for epsilon-opioid receptor-mediated beta-endorphin-</p><p>induced analgesia. Trends Pharmacol. Sci. 22, 623–630.</p><p>Tsou, K., Khachaturian, H., Akil, H., Watson, S.J., 1986. Immunocytochemical</p><p>localization of pro-opiomelanocortin-derived peptides in the adult rat spinal</p><p>cord. Brain Res. 378, 28–35.</p><p>Turnbull, A.V., Rivier, C.L., 1999. Regulation of the hypothalamic–pituitary–adrenal</p><p>axis by cytokines: actions and mechanisms of action. Physiol. Rev. 79, 1–71.</p><p>Vale, W., Rivier, C., Yang, L., Minick, S., Guillemin, R., 1978. Effects of purified</p><p>hypothalamic corticotropin-releasing factor and other substances on the</p><p>secretion of adrenocorticotropin and beta-endorphin-like immunoactivities</p><p>in vitro. Endocrinology 103, 1910–1915.</p><p>van der Kolk, B.A., Greenberg, M.S., Orr, S.P., Pitman, R.K., 1989. Endogenous opioids,</p><p>stress induced analgesia, and posttraumatic stress disorder. Psychopharmacol.</p><p>Bull. 25, 417–421.</p><p>Vescovi, P.P., Coiro, V., Volpi, R., Giannini, A., Passeri, M., 1992. Plasma beta-</p><p>endorphin, but not met-enkephalin levels are abnormal in chronic alcoholics.</p><p>Alcohol Alcohol. 27, 471–475.</p><p>Wang, X.Q., Imaki, T., Shibasaki, T., Yamauchi, N., Demura, H., 1996.</p><p>Intracerebroventricular administration of beta-endorphin increases the</p><p>expression of c-fos and of corticotropin-releasing factor messenger</p><p>ribonucleic acid in the paraventricular nucleus of the rat. Brain Res. 707, 189–</p><p>195.</p><p>Watson, S.J., Akil, H., Sullivan, S., Barchas, J.D., 1977. Immunocytochemical</p><p>localization of methionine enkephalin: preliminary observations. Life Sci. 21,</p><p>733–738.</p><p>Weiss, S.R., Post, R.M., 1998. Kindling: separate vs. shared mechanisms in affective</p><p>disorders and epilepsy.. Neuropsychobiology 38, 167–180.</p><p>Weizman, A., Gil-Ad, I., Grupper, D., Tyano, S., Laron, Z., 1987. The effect of acute and</p><p>repeated electroconvulsive treatment on plasma beta-endorphin, growth</p><p>hormone, prolactin and cortisol secretion in depressed patients.</p><p>Psychopharmacology (Berl.) 93 (12), 2–126.</p><p>Weizman, A., Mark, M., Gil-Ad, I., Tyano, S., Laron, Z., 1988. Plasma cortisol,</p><p>prolactin, growth hormone, and immunoreactive beta-endorphin response to</p><p>fenfluramine challenge in depressed patients. Clin. Neuropharmacol. 11, 250–</p><p>256.</p><p>Weizman, R., Gil-Ad, I., Hermesh, H., Munitz, H., Laron, Z., 1990. Immunoreactive</p><p>beta-endorphin, cortisol, and growth hormone plasma levels in obsessive–</p><p>compulsive disorder 1. Clin. Neuropharmacol. 13, 297–302.</p><p>Weller, A., Feldman, R., 2003. Emotion regulation and touch in infants: the role of</p><p>cholecystokinin and opioids.. Peptides 24, 779–788.</p><p>Yen, S.S., Quigley, M.E., Reid, R.L., Ropert, J.F., Cetel, N.S., 1985. Neuroendocrinology</p><p>of opioid peptides and their role in the control of gonadotropin and prolactin</p><p>secretion. Am. J. Obstet. Gynecol. 152, 485–493.</p><p>Young, E.A., 1989. Adrenalectomy increases beta-lipotropin secretion over beta-</p><p>endorphin secretion from anterior pituitary corticotrophs 50. Life Sci. 45, 2233–</p><p>2237.</p><p>Young, E.A., Watson, S.J., Kotun, J., Haskett, R.F., Grunhaus, L., Murphy-Weinberg, V.,</p><p>Vale, W., Rivier, J., Akil, H., 1990. Beta-lipotropin-beta-endorphin response to</p><p>low-dose ovine corticotropin releasing factor in endogenous depression</p><p>Preliminary studies. Arch. Gen. Psychiat. 47, 449–457.</p><p>Young, E.A., Haskett, R.F., Murphy-Weinberg, V., Watson, S.J., Akil, H., 1991. Loss of</p><p>glucocorticoid fast feedback in depression. Arch. Gen. Psychiat. 48, 693–</p><p>699.</p><p>Young, E.A., Kotun, J., Haskett, R.F., Grunhaus, L., Greden, J.F., Watson, S.J., Akil, H.,</p><p>1993. Dissociation between pituitary and adrenal suppression to</p><p>dexamethasone in depression. Arch. Gen. Psychiat. 50, 395–403.</p><p>Young, E.A., Lopez, J.F., Murphy-Weinberg, V., Watson, S.J., Akil, H., 1997. Normal</p><p>pituitary response to metyrapone in the morning in depressed patients:</p><p>implications for circadian regulation of corticotropin-releasing hormone</p><p>secretion. Biol. Psychiat. 41, 1149–1155.</p><p>Young, E.A., Lopez, J.F., Murphy-Weinberg, V., Watson, S.J., Akil, H., 2000. Hormonal</p><p>evidence for altered responsiveness to social stress in major depression.</p><p>Neuropsychopharmacology 23, 411–418.</p><p>Young, E.A., Carlson, N.E., Brown, M.B., 2001. Twenty-four-hour ACTH and cortisol</p><p>pulsatility in depressed women. Neuropsychopharmacology 25, 267–276.</p><p>Zalewska-Kaszubska, J., Gorska, D., Dyr, W., Czarnecka, E., 2008. Lack of changes in</p><p>beta-endorphin plasma levels after repeated treatment with fluoxetine:</p><p>possible implications for the treatment of alcoholism – a pilot study.</p><p>Pharmazie 63, 308–311.</p><p>Zangen, A., Nakash, R., Yadid, G., 1999. Serotonin-mediated increases in the</p><p>extracellular levels of beta-endorphin in the arcuate nucleus and nucleus</p><p>accumbens: a microdialysis study. J. Neurochem. 73, 2569–2574.</p><p>Zangen, A., Nakash, R., Roth-Deri, I., Overstreet, D.H., Yadid, G., 2002. Impaired</p><p>release of beta-endorphin in response to serotonin in a rat model of depression.</p><p>Neuroscience 110, 389–393.</p><p>Zobel, A.W., Nickel, T., Sonntag, A., Uhr, M., Holsboer, F., Ising, M., 2001. Cortisol</p><p>response in the combined dexamethasone/CRH test as predictor of relapse in</p><p>patients with remitted depression. A prospective study. J. Psychiat. Res. 35, 83–</p><p>94.</p><p>Zubieta, J.K., Dannals, R.F., Frost, J.J., 1999. Gender and age influences on human</p><p>brain mu-opioid receptor binding measured by PET. Am. J. Psychiat. 156, 842–</p><p>848.</p><p>Zubieta, J.K., Smith, Y.R., Bueller, J.A., Xu, Y., Kilbourn, M.R., Jewett, D.M., Meyer, C.R.,</p><p>Koeppe, R.A., Stohler, C.S., 2001. Regional mu opioid receptor regulation of</p><p>sensory and affective dimensions of pain. Science 293, 311–315.</p><p>Zubieta, J.K., Smith, Y.R., Bueller, J.A., Xu, Y., Kilbourn, M.R., Jewett, D.M., Meyer, C.R.,</p><p>Koeppe, R.A., Stohler, C.S., 2002. Mu-opioid receptor-mediated antinociceptive</p><p>responses differ in men and women. J. Neurosci. 22, 5100–5107.</p><p>The role of β-endorphin in the pathophysiology o</p><p>Introduction</p><p>Synthesis, location and pharmacology of β-endorp</p><p>β-Endorphin and behaviour</p><p>Methodological considerations</p><p>Serotonin, depression and β-END</p><p>The HPA axis, depression and β-END</p><p>Studies examining baseline levels of β-endorphin</p><p>Challenge studies of β-endorphin in depression</p><p>Discussion</p><p>Conclusion</p><p>References</p><p>energy and concentration, feeling of</p><p>worthlessness and guilt and impairment of occupational, social</p><p>and personal functioning (American Psychiatric Association,</p><p>1994). Several hypotheses have been explored to explain the onset</p><p>and persistence of MDD symptoms (for review see Belmaker and</p><p>Agam (2008)). One of the earliest hypotheses postulates a deficit</p><p>in serotonin (5-HT) and norepinephrine (NE) transmission in the</p><p>brain. Although this monamine hypothesis is supported by the</p><p>clinical efficacy of many antidepressants, the time lag between</p><p>the acute pharmacological effects and clinical improvement sug-</p><p>gest that a cascade of molecular events and changes in key neural</p><p>pathways within the CNS occurs in the presence of antidepressant</p><p>drugs.</p><p>In addition to the time lag for drug efficacy in terms of mono-</p><p>amine theory development, up to 1/3 of patients responding poorly</p><p>to 5-HT or NE reuptake inhibitors. This has led some researchers to</p><p>propose alternative hypotheses. Using both animal models and</p><p>clinical populations, multiple investigators have shown that envi-</p><p>ronmental stressors or stressful life events play an etiological role</p><p>in the development of MDD (Frank et al., 1994; Kendler et al., 1993,</p><p>2002; Meaney, 2001; Weiss and Post, 1998), especially in women</p><p>(Kendler et al., 2002). These strong relationships between stress</p><p>and depressive symptoms led researchers to investigate hormones</p><p>and neuropeptides involved in biological stress response systems</p><p>(Charmandari et al., 2005). A major focus of investigation has been</p><p>the hypothalamic–pituitary–adrenal (HPA) axis, which plays a</p><p>pivotal role in the mobilization of central and peripheral responses</p><p>to a stressor. Increases in levels of corticotropin releasing hormone</p><p>(CRH), adrenocorticotropic hormone (ACTH) and cortisol have been</p><p>observed in the majority (but not all) of those with MDD (Gutman</p><p>and Nemeroff, 2003; Heim et al., 2008; Pariante and Lightman,</p><p>2008; Reul and Holsboer, 2002; Strohle and Holsboer, 2003). HPA</p><p>axis challenge tests suggest dysregulation of control mechanisms</p><p>within the axis. Other avenues of exploration supported a role</p><p>for the hypersecretion of extra-hypothalamic CRH and led to the</p><p>CRH hypothesis of MDD (Makino et al., 2002; Nemeroff, 1996).</p><p>The multiplicity of regulatory inputs to the HPA axis and the iden-</p><p>tification of extra-hypothalamic CRH pathways led to investiga-</p><p>tions of other endogenous peptides including b-END that might</p><p>be involved in the regulation of the HPA as it relates to MDD</p><p>and/or to the overall behavioural responses to stress.</p><p>Another area of exploration related to MDD is within the field of</p><p>neuropsychoimmunology. Similarities between cytokine-induced</p><p>sickness and depression symptoms have led researchers to postu-</p><p>late that interactions between the brain and immune systems may</p><p>underlay the development of depression symptoms (for reviews</p><p>see Dantzer et al. (2008) and Khairova et al. (2009)). Indeed,</p><p>MDD may reflect exaggerated cytokine-mediated behaviour</p><p>(termed ‘‘sickness behaviour”) in response to prolonged inflamma-</p><p>tion and/or psychological stress. Evidence to support this neuro-</p><p>psychoimmunological model of MDD comes from data</p><p>associating MDD with increases in pro-inflammatory cytokines</p><p>such as interleukin-1 (IL-1), interleukin-6 (IL-6), and tumour</p><p>necrosis factor alpha (TNF-a) (Maes et al., 2009). More recently,</p><p>levels of C-reactive protein (CRP), a peripheral marker of immune</p><p>activation, have also been shown to be increased in MDD (Raison</p><p>et al., 2006) and to normalize with antidepressant drug treatment</p><p>(O’Brien et al., 2006). Conversely, patients with chronic inflamma-</p><p>tory or neurodegenerative diseases often experience symptoms of</p><p>depression (Dantzer et al., 2008; Caballero et al., 2008). Pro-inflam-</p><p>matory cytokines are known to stimulate immune cells such as</p><p>lymphocytes, and natural killer (NK) cells, as well as acting as po-</p><p>tent stimulators of hypothalamic CRH release (Turnbull and Rivier,</p><p>1999). In turn, CRH is a known stimulator of peripheral b-END</p><p>release from many types of immune cells under inflammatory con-</p><p>ditions and thus, pro-inflammatory cytokines likely play an impor-</p><p>tant role in contributing to circulating levels of b-END. Animal data</p><p>that show anti-inflammatory and immunosuppressive properties</p><p>of b-END (Silberstein et al., 2009) may explain the positive benefits</p><p>of CRH-mediated increases in b-END levels under inflammatory</p><p>conditions are suggestive of a clinical role for anti-cytokine thera-</p><p>pies for MDD (Khairova et al., 2009).</p><p>Interest in b-END and MDD seemed to peak in the mid-1980s</p><p>and then waned, due in part to the equivocal results obtained</p><p>across studies and methodological challenges in quantification of</p><p>multiple neuropeptides arising from large precursor molecules.</p><p>Early reports suggested that b-END infusions had a temporary</p><p>mood elevating effect in very small numbers of depressed patients,</p><p>but results varied across the small studies that were completed</p><p>(Berger and Barchas, 1983). Much of the early research examining</p><p>basal b-END levels in depressed populations has been contradic-</p><p>tory, making hypotheses development and testing difficult. More</p><p>recent work, using neuroimaging paradigms (Gotlib and Hamilton,</p><p>2008) suggests a decrease in b-END neurotransmission during neg-</p><p>ative affect. These data together with post-mortem evidence for in-</p><p>creased density of mu (l)-opioid receptors in the brain of</p><p>depressed suicide victims (Gross-Isseroff et al., 1998; Gabilondo</p><p>et al., 1995), supports the hypothesis of b-END deficiency with a</p><p>compensatory up-regulation of l-opioid receptors in MDD (Pickar</p><p>et al., 1981). Recent advances in analytical methods and our under-</p><p>standing of the neural circuitry related to stress responses have</p><p>rekindled interest in investigating putative roles for b-END in</p><p>stress responses and mood disorders.</p><p>This review will summarize available data pertaining to the role</p><p>of b-END in MDD, provide some potential explanations for the dis-</p><p>crepancies across published studies and suggest new areas of re-</p><p>search that may lend insight to this field. The review will be</p><p>K.M. Hegadoren et al. / Neuropeptides 43 (2009) 341–353 343</p><p>framed by a brief description of the synthesis, CNS location and</p><p>behavioural pharmacology of b-END.</p><p>2. Synthesis, location and pharmacology of b-endorphin</p><p>b-END, a 31-amino acid C-terminal fragment (molecular</p><p>weight = 3464.98), is produced by posttranslational processing of</p><p>the large precursor, proopiomelanocortin (POMC). Differential pro-</p><p>cessing of POMC may generate several peptides: ACTH, pro-ACTH,</p><p>a- and b-melanocyte stimulating hormone (MSH), b-lipotropin, as</p><p>well as the endorphins (Akil et al., 1988). POMC neuropeptides</p><p>such as b-END and ACTH are produced in both the anterior and</p><p>intermediate lobes of the pituitary, as well as in a cluster of neu-</p><p>rons in the hypothalamic arcuate nucleus (Stengaard-Pedersen</p><p>and Larsson, 1981). Major b-END pathways in the CNS, as extrapo-</p><p>lated from both animal and human data, are illustrated in Fig. 1.</p><p>b-END-containing cell bodies of the arcuate nucleus project exten-</p><p>sively to multiple regions within the hypothalamus [medial preop-</p><p>tic area, periventricular nuclei (PVN), nucleus accumbens, bed</p><p>nucleus of the stria terminalis (BNST), periaqueductal gray (PAG),</p><p>amygdala, pontine nuclei, raphe nuclei, and locus coeruleus (LC)]</p><p>(Bugnon et al., 1979; Tsou et al., 1986; Watson et al., 1977). An-</p><p>other brain region with b-endorphin- and related POMC-releasing</p><p>cell bodies is the nucleus of the tractus solitarius (NTS) of the cau-</p><p>dal medulla, which innervates the brain stem and spinal cord</p><p>(Bronstein et al., 1992; Tsou et al., 1986). Peripherally, high con-</p><p>centrations of immunoreactivity for active b-END and a-melano-</p><p>tropin have been found in human adrenal medulla, but not in</p><p>other mammalian species (Evans et al., 1983). In response to</p><p>RN</p><p>A</p><p>Arc</p><p>Cortisol</p><p>CRH</p><p>MPOA</p><p>BNST</p><p>Acc</p><p>ACTH</p><p>+</p><p>-</p><p>PVN</p><p>pB-END</p><p>+</p><p>-</p><p>RN</p><p>A</p><p>Arc</p><p>Cortisol</p><p>CRH</p><p>MPOA</p><p>BNST</p><p>Acc</p><p>ACTH</p><p>+</p><p>-</p><p>PVN</p><p>pB-END</p><p>+</p><p>-</p><p>Fig. 1. Major b-END pathways in the</p><p>central nervous system. Solid black: location of POM</p><p>A: amygdala; ARC: arcuate nucleus; Acc: nucleus accumbens; BNST: bed nucleus of stria t</p><p>solitarius; PAG: periaqueductal grey matter; PVN: paraventricular nucleus; RN: raphe n</p><p>peripheral inflammation, leukocytes are the major source of</p><p>peripheral b-END (Machelska, 2007). There is evidence that periph-</p><p>erally administered b-END does enter the CNS; however, it is not</p><p>clear whether it can pass across the blood brain barrier or if the</p><p>transport occurs at the level of the spinal cord (Gerner et al., 1982).</p><p>In rats, much of the b-END within hypothalamic areas is in the</p><p>biologically active form (Emeson and Eipper, 1986). For this re-</p><p>view, ‘‘active” b-END interacts with opioid receptors both centrally</p><p>and peripherally. Proportions of active and inactive b-END vary</p><p>among projection regions (Castro and Morrison, 1997). In the hu-</p><p>man anterior pituitary, b-END is primarily in the active non-acety-</p><p>lated form (Smith et al., 1985). However, in the human</p><p>intermediate lobe of the pituitary, inactive N-acetylated b-endor-</p><p>phin is the predominant form (Chretien et al., 1979; Smith et al.,</p><p>1985). Although ACTH and AVP stimulate the intermediate lobe</p><p>of the pituitary to release inactive b-END, the physiological rele-</p><p>vance remains unclear (Eberwine et al., 1987; Saland et al., 1988,</p><p>1991; Chretien et al., 1979; Smith et al., 1985). While ‘‘inactive”</p><p>b-END does not interact with opioid receptors, it may be incorrect</p><p>to assume that it has no biological function.</p><p>CRH and AVP, from the PVN of the hypothalamus act as triggers</p><p>to initiate posttranslational processing of POMC in anterior pitui-</p><p>tary corticotrophs (Bao et al., 2008; Kato et al., 1980; Young,</p><p>1989), yielding ACTH, b-END, and various other peptides (Mor-</p><p>mede et al., 1986; Nikolarakis et al., 1986; Vale et al., 1978). In a</p><p>reciprocal fashion, the administration of low to moderate doses</p><p>of b-END or the intracerebroventricular injection of b-END in rats</p><p>appears to increase hypothalamic CRH synthesis and release</p><p>(Buckingham, 1986; Wang et al., 1996); whereas decreased</p><p>LC</p><p>PA</p><p>G</p><p>NTS</p><p>LC</p><p>PA</p><p>G</p><p>NTS</p><p>C-containing cells and projections. Dashed lines: HPA axis and regulatory pathways.</p><p>erminalis; LC: locus coeruleus; MPOA: medial preoptic area; NTS: nucleus of tractus</p><p>uclei; CRH: corticotrophin releasing hormone; p b-TND: plasma b-endorphin.</p><p>344 K.M. Hegadoren et al. / Neuropeptides 43 (2009) 341–353</p><p>synthesis and release of CRH is observed in response to high doses</p><p>of b-END (Buckingham, 1986; Plotsky, 1986; Suda et al., 1992;</p><p>Tsagarakis et al., 1990). Przewlocki (2002) suggests that this bimo-</p><p>dal response pattern may arise from both direct and indirect mech-</p><p>anisms. Indirect mechanisms include interactions between b-END</p><p>and 5-HT and NE systems. For example, in a rat model of depres-</p><p>sion, 5-HT–mediated b-END release in the nucleus accumbens</p><p>was impaired and re-established with chronic antidepressant</p><p>treatment (Zangen et al., 2002). b-END also has direct inhibitory ef-</p><p>fects on AVP (another HPA axis secretagogue) release from hypo-</p><p>thalamic and posterior pituitary neurons (Knepel et al., 1985;</p><p>Knepel and Reimann, 1982; Liu et al., 1999). Interpretation of study</p><p>results are hampered by reported variations in b-END levels across</p><p>the day (Genazzani et al., 1986; Matthews et al., 1986).</p><p>b-END is an endogenous opioid receptor agonist, with equipo-</p><p>tent affinities for l-and d-opioid receptors and low to moderate</p><p>affinity for other opioid receptors (Raynor et al., 1994; Tseng,</p><p>2001). The majority of behavioural and clinical studies on have fo-</p><p>cused on b-END in relation to l-opioid receptor interactions and</p><p>thus will be the main focus of this review. Studies in rats have</p><p>mapped out areas of intense l-opioid receptor immunoreactivity</p><p>in the CNS, including cell bodies and dendrites of the striatum,</p><p>medial habenular nuclei, interpeduncular nuclei, the NTS and brain</p><p>stem connections with the vagus nerve, the medial raphe, LC and</p><p>specific regions of the medullary and spinal dorsal horns (Ding</p><p>et al., 1996; Nomura et al., 1996). Similar binding characteristics</p><p>between central and peripheral opioid receptors have been noted</p><p>(Hassan et al., 1993).</p><p>Peripheral and central co-localizations of l-opioid receptors</p><p>with other receptors or neuropeptides highlight multiple potential</p><p>mechanisms by which b-END and other endogenous opioids influ-</p><p>ence neural processes and behaviours related to stress responses</p><p>and MDD. For example, in the CA1 region of rat hippocampus,</p><p>l-opioid receptors are expressed selectively on inhibitory GABAer-</p><p>gic interneurons and activation of these receptors decreases GABA</p><p>release, thus increasing hippocampal pyramidal cell excitability</p><p>(McQuiston and Saggau, 2003; Svoboda et al., 1999). In addition,</p><p>those hippocampal interneurons that express l-opioid receptors</p><p>commonly co-express somatostatin and neuropeptide Y (Drake</p><p>and Milner, 2002), both of which have been implicated in the neu-</p><p>robiology of MDD (Engin et al., 2008; Southwick et al., 2005). Other</p><p>examples of co-localization of l-opioid receptors include bradyki-</p><p>nin B2 receptors in the dorsal root ganglion (Rashid et al., 2004),</p><p>a2-adrenoceptors and A1 adenosine receptors on primary afferent</p><p>neurons (Aley and Levine, 1997) and CRF receptors on the somato-</p><p>dendritic processes of LC neurons (Reyes et al., 2007). While many</p><p>of these potential interactions have been examined more in rela-</p><p>tion to nocioception, it is likely that work with animal models of</p><p>depression and clinical populations would yield evidence that</p><p>these multiple interactions have implications for the affective</p><p>and cognitive elements of stress disorders. For example, co-locali-</p><p>zation of l-opioid receptors with adrenergic receptors may reflect</p><p>interactions within the sympathetic–adrenal–medullary axis, a key</p><p>stress response system.</p><p>3. b-Endorphin and behaviour</p><p>b-END is involved in the regulation of homeostatic and behav-</p><p>ioural processes, including anti-nocioception (Tseng, 2001; Cannon</p><p>et al., 1982), autonomic regulation (Hill et al., 2002.), HPA axis</p><p>activity (Makino et al., 2002), cellular effects of exercise (through</p><p>mitochondrial adaptation, promotion of cell proliferation, HPA axis</p><p>activation and decreased insulin resistance) (Boveris and Navarro,</p><p>2008; Koehl et al., 2008; Makino et al., 2002; Su et al., 2005), hypo-</p><p>thalamic–pituitary–gonadal axis activity (Przewlocki and Przewlo-</p><p>cka, 2001; Yen et al., 1985), stress-induced analgesia (Akil et al.,</p><p>1986; Bodnar, 1986) and attachment (review by Weller and Feld-</p><p>man (2003)), as well as possessing mood-enhancing and anxiolytic</p><p>effects (Przewlocki (2002)). Many of these processes are altered in</p><p>MDD, suggesting that b-END is involved in the pathophysiology of</p><p>this mood disorder (Kelley et al., 2002). More consistent preclinical</p><p>evidence exists for relationships between specific depression</p><p>symptoms and opioid systems.</p><p>Neural circuits that include the amygdala, nucleus accumbens,</p><p>hypothalamus, BNST and the LC are implicated in positive and neg-</p><p>ative affective states, autonomic arousal and fear conditioning. The</p><p>LC, subgenual anterior cingulated cortex and amygdala also regu-</p><p>late processes involved in emotionally mediated attention, the for-</p><p>mation of memories and the attachment of emotional significance</p><p>to such memories (Haas and Canli, 2008). It is well recognized that</p><p>those with MDD selectively attend to more negative stimuli have</p><p>problems with focussed attention. Multiple opioids, including b-</p><p>END, acting within specific brain regions can modulate these pro-</p><p>cesses and influence the formation of memories and the regulation</p><p>of emotional states (McGaugh, 2000).</p><p>PET methodology has been used to elucidate the contribution</p><p>of l-receptors to affect, using a sustained sad mood induction</p><p>paradigm in healthy subjects. The study demonstrated reductions</p><p>in l-opioid binding in the rostral anterior cingulate, ventral pal-</p><p>lidum, amygdala and inferior temporal cortex, which correlated</p><p>with increases in negative affect ratings (Zubieta et al.,</p><p>2001).</p><p>Higher baseline l-opioid receptor binding potential has also been</p><p>associated with lower regional cerebral blood flow in the left</p><p>inferior temporal pole during the presentation of aversive emo-</p><p>tional stimuli (Liberzon et al., 2002). However, this reduction in</p><p>l-opioid receptor binding is not limited to mood disorders. Har-</p><p>ris et al. (2007) used PET to show reduced l-opioid receptor</p><p>binding potential (in particular in the nucleus acumbens, amyg-</p><p>dala and dorsal cingulate) in those with fibromyalgia, a chronic</p><p>pain syndrome often associated with risk for mood disorder.</p><p>Compared to healthy males, men with combat-related PTSD also</p><p>displayed reduced l-opioid receptor binding potential in the</p><p>same regions as seen in other studies, but increased binding po-</p><p>tential in the orbitofrontal cortex (Liberzon et al., 2007). Thus,</p><p>the various neuroimaging paradigms do suggest a deficiency in</p><p>l-opioid neurotransmission in depressed individuals. However,</p><p>it is challenging to connect neuroimaging data with previous</p><p>neurochemical data.</p><p>Almost half of MDD patients experience symptoms of chronic</p><p>pain (Ohayon and Schatzberg, 2003; Simon et al., 1999). Not sur-</p><p>prisingly, there is substantial overlap in the cited physiological cor-</p><p>relates of chronic stress, MDD and chronic pain. Nocioception and</p><p>endogenous anti-nocioceptive processes serve to support an</p><p>organism’s survival during threat and recuperation after injury</p><p>(Fanselow, 1986). Stress-induced analgesia in animals serves to</p><p>prevent potentially disruptive effects of nocioception on coordi-</p><p>nated defensive behaviours in response to a predator (Fanselow,</p><p>1986). Stress-induced analgesia has been more associated with</p><p>PTSD (van der Kolk et al., 1989). However, inescapable chronic</p><p>footshock is associated with learned helplessness, a well-accepted</p><p>animal model of depression (Hemingway and Reigle, 1987).</p><p>Another common health problem that is often comorbid with</p><p>MDD is substance abuse disorder. Evidence supports b-END influ-</p><p>ences on processes related to reward and motivation, likely medi-</p><p>ated through mesolimbic dopamine pathways (Herz, 1988, 1997).</p><p>Positive affect induced by tasty and/or high calorie foods activate</p><p>release of ventral striatal opioids and selective l-receptor agonists</p><p>increase food intake (Kelley et al., 2002). The rewarding effects of</p><p>alcohol are at least partially accounted for by b-END-mediated</p><p>activation of l receptors in the ventral tegmental area and the nu-</p><p>cleus accumbens (Herz, 1997).</p><p>K.M. Hegadoren et al. / Neuropeptides 43 (2009) 341–353 345</p><p>One salient feature of MDD is the female bias in prevalence</p><p>rates for MDD (Kessler et al., 1994). Animal studies have shown</p><p>estrogen-induced changes in l-receptor activity and density with-</p><p>in limbic and hypothalamic nuclei (Eckersell et al., 1998; Mills</p><p>et al., 2004). Chronic exposure to estrogen in rats was neurotoxic</p><p>to b-END-containing neurons in the arcuate nucleus, while sparing</p><p>other neuronal populations (Desjardins et al., 1995). These effects</p><p>were accompanied by up-regulation of l-opioid receptors and</p><p>attenuated by treatment with antioxidants.</p><p>Human studies have examined l-opioid binding and in both</p><p>healthy and clinically depressed populations. Anti-nocioceptive re-</p><p>sponses to tonic pain have reported sex differences, attributed in</p><p>part to female sex hormones (Cicero et al., 2002; D’Souza et al.,</p><p>2002). PET imaging has shown larger magnitudes of l-opioid sys-</p><p>tem activation in healthy men than women in the anterior thala-</p><p>mus, ventral basal ganglia, and amygdala; while women</p><p>demonstrated reductions in the basal state of activation of the l-</p><p>opioid system in the nucleus accumbens during pain stimulation</p><p>(Zubieta et al., 2002). Further PET studies examined the impact</p><p>of menstrual and reproductive status on the observed differences</p><p>in l-opioid system activation. Under a sustained pain condition</p><p>with PET in healthy men and women, Smith et al. (2006) showed</p><p>that under high estrogens (around ovulation), women had in-</p><p>creased l-opioid receptor binding potential at baseline and the</p><p>pain stressor increased activation of opioid receptors (similar re-</p><p>sponse as seen in the males). However, under low estrogen status</p><p>(luteal phase), women had lower l-opioid receptor binding poten-</p><p>tial and an exaggerated response to the pain stimulus compared to</p><p>the other two groups. Another PET study in healthy individuals</p><p>showed an increasing density of l-opioid receptors with age and</p><p>influences of sex and reproductive status on l-opioid binding (pre-</p><p>menopausal females > males > postmenopausal females) (Zubieta</p><p>et al., 1999). PET studies using a sustained sadness paradigm in</p><p>women with MDD revealed a number of regions with increased</p><p>l-opioid system activation compared with controls (Kennedy</p><p>et al., 2006).</p><p>4. Methodological considerations</p><p>Prior to summarizing the neurochemical data supporting a role</p><p>for b-END in the pathophysiology of depressive symptoms and</p><p>MDD, it is important to examine methodological issues that have</p><p>challenged the interpretation of experimental data. There are a</p><p>number of endogenous analogs and precursors of b-END that differ</p><p>in biological activity and interfere with commercial biological as-</p><p>says used to examine levels of b-END in humans. Of these, b-lipo-</p><p>tropin (b-LPH; a 91-amino acid precursor to b-END), a-endorphin</p><p>(b-LPH61–76), and c-endorphin (b-LPH61–77) have proven to be</p><p>the most troublesome in isolating biologically active b-END</p><p>(b-LPH61–91). The reactions within a radioimmunoassay (RIA) are</p><p>determined by antigenic structure, not biological function; thus,</p><p>many of the commercial RIA kits have high sensitivity but low</p><p>selectivity, reacting with a number of POMC-derived fragments</p><p>and peptides. Many ELISA kits for b-END also have low specificity,</p><p>with high levels of cross-reactivity listed for a number of undesir-</p><p>able analogs and precursors, in particular b-lipotropin, which has</p><p>up to 100% cross-reactivity with b-END (Peninsula Laboratories). In</p><p>additional to low specificity, ELISA kits for b-END also suffer from</p><p>low sensitivity, thus making them impractical for repeated plasma</p><p>measurements of b-END (MD Biosciences, Phoenix Pharmaceuticals).</p><p>Desiderio and Zhu (1998) published a liquid secondary ion mass</p><p>spectrometry and tandem mass spectrometry assay for b-END, but</p><p>this method was not used by any of the reviewed papers.</p><p>Since RIA is the primary means of determining levels of b-END</p><p>in human studies, biological concentrations are often expressed as</p><p>‘‘immunoreactive” levels of b-END, a general term encompassing</p><p>all POMC derivatives that react within a specific assay protocol.</p><p>Some investigators have attempted to rectify this issue by employ-</p><p>ing isolation and purification strategies (Desiderio and Zhu, 1998).</p><p>However, many researchers do not, thus resulting in the inclusion</p><p>of a whole spectrum of compounds under the category of ‘‘immu-</p><p>noreactive” b-END levels. Various drugs and endogenous products</p><p>can also affect b-END levels, including chronic neuroleptic use</p><p>(Schmauss and Emrich, 1985), exogenous opiates (Hartwig, 1991)</p><p>and chronic estrogen exposure (Desjardins et al., 1995). PET data</p><p>suggest that smoking also affects l-opioid receptor binding poten-</p><p>tial (Scott et al., 2007).</p><p>The degree to which peripheral measures reflect central pro-</p><p>cesses is an ever-present challenge to clinical researchers. b-END</p><p>is no exception, with multiple pools contributing to circulating</p><p>concentrations. b-END, whether from central neurons, the adrenal</p><p>medulla or immune-derived tissues is released in response to di-</p><p>verse stimuli and thus changes in peripheral measures of b-END</p><p>may reflect the organism’s overall response to the stimuli.</p><p>However, plasma levels alone do not answer questions whether</p><p>b-END release is a simple by-product of HPA activation or has</p><p>specific targets with behavioural and physiological correlates.</p><p>While there are strong beliefs regarding the superiority of tech-</p><p>niques that assess central levels of neuropeptides in psychiatric</p><p>disorders, b-END and other opioids may be an exception.</p><p>Evidence</p><p>supports bidirectional movement of b-END in (Gerner et al., 1982)</p><p>and out (King et al., 2001) of the CNS. These data provide a compel-</p><p>ling argument for the routine use of plasma measures of b-END.</p><p>However, further research is required to determine whether, and</p><p>under what circumstances, peripheral measures of b-END directly</p><p>reflect central activity, especially in the absence of inflammation.</p><p>Most human studies linking MDD and b-END have limited their</p><p>scope to examining plasma levels, although other measures have</p><p>been reported. Higher levels of plasma b-END and b-lipotropin,</p><p>but not CSF levels, were found in individuals with MDD compared</p><p>with healthy controls (Facchinetti et al., 1986). Panerai and</p><p>colleagues (2002) used peripheral blood mononuclear cell b-END</p><p>concentrations to compare individuals with MDD versus chronic</p><p>fatigue syndrome. They suggested that mononuclear cells reflect</p><p>central b-END concentrations better than plasma concentrations,</p><p>although this supportive evidence is questionable (Sacerdote</p><p>et al., 1991).</p><p>Stress hormones show distinctive diurnal rhythms and thus</p><p>differences in the timing of any experimental manipulation may</p><p>also contribute to disparities between studies. Young and</p><p>colleagues (1997) showed that administration of the corticosteroid</p><p>synthesis inhibitor, metyrapone, in the morning produced no</p><p>change in levels of plasma b-END, whereas afternoon administra-</p><p>tion produced a clear increase in b-END levels. Studies focusing</p><p>on changes in the affinity or density of l-receptors may not solely</p><p>be related to b-END, as other endogenous agonists besides b-END</p><p>include dynorphin and its analogs and the more recently identified</p><p>endomorphins can interact with l-receptors (Machelska, 2007;</p><p>Fichna et al., 2008).</p><p>Many other potential confounds exist in the studies that have</p><p>examined the role of b-END in psychiatric disorders. Important is-</p><p>sues that needed to be carefully considered across studies include:</p><p>different definitions of non-suppression in challenge studies; di-</p><p>verse inclusion/exclusion criteria, especially around comorbidity;</p><p>heterogeneity of depression; differing experimental protocols</p><p>across studies and even across sites within the same study with</p><p>no acknowledgment of the implications; small sample sizes;</p><p>pooled data that do not match on key variables and key demo-</p><p>graphic variables that may affect results (e.g. weight or BMI, age,</p><p>menstrual phase, medication use, time of sampling). The synthesis</p><p>and catabolic pathways for b-END involve a number of enzymes, all</p><p>346 K.M. Hegadoren et al. / Neuropeptides 43 (2009) 341–353</p><p>of which exhibit tissue specificity and perhaps inter-individual var-</p><p>iability, which could represent another potential source of varia-</p><p>tion in plasma levels of b-END (Akil et al., 1988). Despite these</p><p>significant challenges to examining opioid system involvement in</p><p>stress responses and MDD, accumulated evidence does suggest</p><p>alterations in central b-END activity and l-opioid receptor binding.</p><p>5. Serotonin, depression and b-END</p><p>As previously mentioned, one of the major etiological theories</p><p>of depression involves monoamine systems, in particular the</p><p>5-HT system. Animal studies support links between b-END and</p><p>5-HT systems, yet few human studies exist that have investigated</p><p>this relationship. Microdialysis studies on rats have demonstrated</p><p>dose-dependent increases in b-END levels in the diasylate from the</p><p>arcuate nuclei in response to 5-HT (Zangen et al., 1999). Increases</p><p>in b-END levels were also seen in the nucleus accumbens, but only</p><p>at the highest doses of 5-HT. Chemical lesioning with 5,7-dihydr-</p><p>oxytryptomine decreased b-END levels and adding fluoxetine to</p><p>the perfusion media increased b-END levels in both regions. Ago-</p><p>nists at 5-HT1 and 5-HT2 receptors also increased plasma b-END</p><p>immunoreactivity in rats (Bagdy et al., 1990). However, plasma</p><p>b-END levels did not change in response to fenfluramine, an indi-</p><p>rect 5-HT agonist in a small sample of depressed subjects (Weiz-</p><p>man et al., 1988). Acute administration of 5-hydroxytryptamine</p><p>attenuated the suppression of b-END in response to dexametha-</p><p>sone (DEX) in subjects with MDD (Maes et al., 1996). Despite the</p><p>paucity of studies, the extensive 5-HT involvement in hypotha-</p><p>lamic function and the concentration of b-END-releasing neurons</p><p>in the hypothalamus would suggest multiple potential interactive</p><p>links between the two.</p><p>6. The HPA axis, depression and b-END</p><p>Most studies that have examined b-END in MDD have done so</p><p>in the context of investigating MDD-mediated changes in HPA axis</p><p>activity. Thus, a brief summary of salient findings of core HPA axis</p><p>abnormalities in MDD is provided (for more extensive reviews of</p><p>the HPA axis and depression see Holsboer and Barden (1996),</p><p>Nemeroff (1996) and Pariante and Lightman (2008)). Elevated ba-</p><p>sal cortisol levels are observed in up to 2/3 of depressed individuals</p><p>(Carroll et al., 1981; Gold et al., 1988; Holsboer and Barden, 1996;</p><p>Zangen et al., 2002), although rates may be lower in community</p><p>samples (Strickland et al., 2002) and depressed women (Young</p><p>et al., 2001).</p><p>Cortisol levels obtained in the context of neuroendocrine chal-</p><p>lenges are often more informative about dysregulation than basal</p><p>measures. The most widely described challenge paradigm in</p><p>MDD studies is the DEX suppression test (DST), where a single dose</p><p>of DEX (ranging from 0.25–1.5 mg) suppresses cortisol release</p><p>from the adrenal cortex for about 12–24hrs. A significant number</p><p>of depressed individuals exhibit DEX non-suppression, defined as</p><p>a cortisol level</p><p>comorbid disorders</p><p>were exclusionary. Changes in levels of b-END have been noted in</p><p>PTSD (Baker et al., 1997; Hamner and Hitri, 1992; Hoffman et al.,</p><p>1989; van der Kolk et al., 1989), and other anxiety disorders (Darko</p><p>et al., 1992; Eriksson et al., 1989; Pitkanen et al., 1989; Weizman</p><p>et al., 1988). Third, medication status and length of any washout</p><p>period at the time b-END levels were collected were not always</p><p>specified. There is some evidence to suggest that amitryptiline</p><p>(Jadric et al., 2006), specific selective serotonin reuptake inhibitors</p><p>(SSRIs) (Zalewska-Kaszubska et al., 2008; Djurovic et al., 1999;</p><p>Petraglia et al., 1984) and electroconvulsive therapy (Alexopoulos</p><p>et al., 1983; Ebert et al., 1994; Ghadirian et al., 1988; Weizman</p><p>et al., 1987, 1990) may alter plasma levels of b-END in depressed</p><p>individuals. Fourth, the reported amount of assay cross-reactivity</p><p>with b-lipotropin varies between 0% and 100%. If b-END levels dif-</p><p>fered between experimental groups, an inherent assumption is</p><p>that b-lipotropin levels are static and do not change with depres-</p><p>sive symptoms, drug administration, or comorbid psychiatric con-</p><p>ditions. Data to evaluate this assumption are not available. Finally,</p><p>most sample populations consisted of both men and women, but</p><p>data on menstrual phase was not included. b-END levels do fluctu-</p><p>ate over the course of the menstrual cycle (Laatikainen et al., 1985;</p><p>Petraglia et al., 1986) and thus these studies are open to gender-</p><p>specific interpretative difficulties.</p><p>Thus, similar to HPA axis studies, findings from studies of basal</p><p>b-END levels in MDD have been equivocal, provided no clear con-</p><p>clusions. Of the 19 studies included in the table, seven reported in-</p><p>creases in b-END levels in MDD compared to controls; seven</p><p>reported no change and five reported decreased b-END levels. Sig-</p><p>nificant variability was seen in how the depressed patients were</p><p>sub-grouped, included comorbidities and medication usage. The</p><p>degree of cross-reactivity with b-lipoprotein did not seem to affect</p><p>the direction of any observed changes in b-END levels.</p><p>Other lines of evidence that supports decreased b-END levels in</p><p>MDD include a small study of suicide victims with known MDD</p><p>Table 1</p><p>Studies reporting basal b-END plasma levels in patients with MDD vs controls.</p><p>Reference Na Depression type Comorbidity Medicated Cross-reactivity</p><p>(100% b-ENDb +)</p><p>Results</p><p>Akil et al. (1993) 21 MDD,c endogenous subtype Unspecified Unmedicated � 14 days 100% b-lipod * vs. controls</p><p>Ball et al. (1987) 8 MDD + M + Me Unspecified Unmedicated � 14 days;</p><p>some benzodiazepines</p><p>100% b-lipo , vs. controls</p><p>Cohen et al. (1984) 25 MDD, minor depression Yes Unmedicated</p><p>levels were collected at 0800 h, DEX was gi-</p><p>ven on the same day at 2300 h but the post-DEX blood sample was</p><p>collected at 1600 h the next day. Diurnal studies with b-END sug-</p><p>gest that blood sampling for comparative studies should be done at</p><p>the same time across the day (Genazzani et al., 1986; Matthews</p><p>et al., 1986). Clinically, there does not appear to be a significant</p><p>advantage in measuring both cortisol and b-END non-suppression</p><p>by DEX in depressed individuals. When measuring cortisol non-</p><p>suppression only, the DST is able to identify about half to two</p><p>thirds of depressed individuals. Measurement of both cortisol</p><p>and b-END non-suppression leads to identification of about two</p><p>thirds to three quarters of depressed individuals.</p><p>Additional factors influencing post-DEX b-END suppression in-</p><p>clude MDD with melancholia (term used to describe a severe form</p><p>of classical depression) or psychotic features (Maes et al., 1990),</p><p>neurotic depression (Genazzani et al., 1986) and symptom severity</p><p>(Maes et al., 1990; Meador-Woodruff et al., 1987). In addition to</p><p>examining the relationship between non-suppression of b-END</p><p>and cortisol, several authors have examined the relationship</p><p>Table 2</p><p>Studies reporting b-END response in patients with MDD vs. controls after dexamethasone</p><p>Reference Na F Depression type Comorbid</p><p>Akil et al. (1993) 21 17/21 MDDc, endogenous subtype Unspecifi</p><p>Ball et al. (1987) 8 7/8 MDD + M Unspecifi</p><p>Galard et al. (2002) 14 10/14 Mixed depression groups Unspecifi</p><p>Genazzani et al. (1986) 9 0/9 Unspecified Unspecifi</p><p>Karkkainen et al. (1987) 35 22/35 Moderate to severe mixed</p><p>depression groups</p><p>Unspecifi</p><p>Lin et al. (1986) 42 Not</p><p>specified</p><p>MDD, endogenous subtype Unspecifi</p><p>Maes et al. (1990) 35 Not</p><p>specified</p><p>MDD ± M Minor depression Unspecifi</p><p>Matthews et al. (1986) 47 24–33/47 Mixed depression groups;</p><p>some remitted</p><p>Other axi</p><p>I disorder</p><p>Meador-Woodruff</p><p>et al. (1987)</p><p>44 Mixed depression groups Unspecifi</p><p>Morphy et al. (1992) 30 0/30 MDD Unspecifi</p><p>Rupprecht et al. (1988) 50 35/50 Mixed depression groups Unspecifi</p><p>Young et al. (1993) 73 50–52/73 MDD, mostly endogenous</p><p>subtype</p><p>Unspecifi</p><p>aSample size.</p><p>bMajor depressive disorder.</p><p>cb-Endorphin.</p><p>db-Lipoprotein.</p><p>between b-END and ACTH under a number of conditions in</p><p>depressed individuals. Gispen-De-Wied and colleagues (1987)</p><p>examined ACTH and b-END levels in depressed cortisol suppressors</p><p>and non-suppressors in response to DEX. In depressed non-</p><p>suppressors ACTH and b-END were unchanged, while levels of both</p><p>decreased in suppressors. Levels of both ACTH and b-END did not</p><p>differ from controls at baseline. Another group found decreased</p><p>ACTH and b-END levels in both cortisol suppressors and non-</p><p>suppressors (Rupprecht et al., 1988).</p><p>Other neuroendocrine challenge tests have been used to inves-</p><p>tigate b-END in MDD and are summarized in Table 3. While CRH</p><p>induces a rise in b-END levels, no differences were found between</p><p>depressed individuals and controls (Lisansky et al., 1992; Ruppr-</p><p>echt et al., 1989; Young et al., 1990), suggesting that even in the</p><p>presence of MDD, CRH can activate b-END release. However, a</p><p>blunted b-END response is observed with those with MDD after</p><p>infusion of cortisol and hydrocortisone infusion have been re-</p><p>ported (Goodwin et al., 1992; Young et al., 1990,1991). Interest-</p><p>ingly, one study used a psychosocial stressor in MDD patients to</p><p>activate stress response systems and they too were able to demon-</p><p>strate a blunted b-END response (Young et al., 2000) Using the</p><p>more sensitive DEX/CRH challenge produced significant increases</p><p>in b-END levels in major depressives with melancholia compared</p><p>to those with dysthymia or MDD without melancholia (Maes</p><p>et al., 1994). These data again highlight the need for researchers</p><p>suppression test.</p><p>ity Medicated Cross-reactivity</p><p>(100% b-ENDb +)</p><p>Results</p><p>ed Unmedicated � 14 days 100% b-lipod * rate of b-endorphin non-</p><p>suppression vs controls</p><p>ed Unmedicated � 14 days;</p><p>some benzodiazepines</p><p>100% b-lipo Correlation between</p><p>suppression of cortisol and</p><p>b-END</p><p>ed Medicated (10/14) Not specified 33% MDD were non-</p><p>suppressors, +ACTH,</p><p>b-endorphin and salivary</p><p>cortisol</p><p>ed Unmedicated � 10 days 100% b-lipo b-END unaffected by DEX in</p><p>patients; % suppression not</p><p>provided</p><p>ed Mixed drug classes 100% b-lipo Post-DEX b-END * in non-</p><p>suppressors than</p><p>suppressors</p><p>ed Unspecified</p><p>in</p><p>n</p><p>on</p><p>-s</p><p>u</p><p>pp</p><p>re</p><p>ss</p><p>or</p><p>s</p><p>of</p><p>co</p><p>rt</p><p>is</p><p>ol</p><p>M</p><p>or</p><p>ph</p><p>y</p><p>et</p><p>al</p><p>.(</p><p>19</p><p>92</p><p>)</p><p>30</p><p>0/</p><p>30</p><p>M</p><p>D</p><p>D</p><p>U</p><p>n</p><p>sp</p><p>ec</p><p>ifi</p><p>ed</p><p>U</p><p>n</p><p>m</p><p>ed</p><p>ic</p><p>at</p><p>ed</p><p>0%</p><p>b</p><p>-l</p><p>ip</p><p>o</p><p>M</p><p>et</p><p>yr</p><p>ap</p><p>on</p><p>e/</p><p>D</p><p>EX</p><p>+</p><p>b</p><p>-E</p><p>N</p><p>D</p><p>in</p><p>M</p><p>D</p><p>D</p><p>vs</p><p>.c</p><p>on</p><p>tr</p><p>ol</p><p>s</p><p>fo</p><p>ll</p><p>ow</p><p>in</p><p>g</p><p>bo</p><p>th</p><p>ch</p><p>al</p><p>le</p><p>n</p><p>ge</p><p>s</p><p>R</p><p>u</p><p>pp</p><p>re</p><p>ch</p><p>t</p><p>et</p><p>al</p><p>.(</p><p>19</p><p>89</p><p>)</p><p>13</p><p>6/</p><p>13</p><p>M</p><p>ix</p><p>ed</p><p>de</p><p>pr</p><p>es</p><p>si</p><p>on</p><p>gr</p><p>ou</p><p>ps</p><p>U</p><p>n</p><p>sp</p><p>ec</p><p>ifi</p><p>ed</p><p>U</p><p>n</p><p>m</p><p>ed</p><p>ic</p><p>at</p><p>ed</p><p>�</p><p>3</p><p>da</p><p>ys</p><p>5%</p><p>b</p><p>-l</p><p>ip</p><p>o</p><p>h</p><p>C</p><p>R</p><p>H</p><p>h</p><p>,</p><p>vs</p><p>.c</p><p>on</p><p>tr</p><p>ol</p><p>s</p><p>Y</p><p>ou</p><p>n</p><p>g</p><p>et</p><p>al</p><p>.(</p><p>19</p><p>90</p><p>)</p><p>11</p><p>1/</p><p>11</p><p>M</p><p>D</p><p>D</p><p>,b</p><p>ip</p><p>ol</p><p>ar</p><p>de</p><p>pr</p><p>es</p><p>si</p><p>on</p><p>U</p><p>n</p><p>sp</p><p>ec</p><p>ifi</p><p>ed</p><p>U</p><p>n</p><p>m</p><p>ed</p><p>ic</p><p>at</p><p>ed</p><p>�</p><p>14</p><p>da</p><p>ys</p><p>10</p><p>0%</p><p>b</p><p>-l</p><p>ip</p><p>o</p><p>oC</p><p>R</p><p>H</p><p>b</p><p>-E</p><p>N</p><p>D</p><p>re</p><p>sp</p><p>on</p><p>se</p><p>,</p><p>in</p><p>pa</p><p>ti</p><p>en</p><p>ts</p><p>,</p><p>vs</p><p>.c</p><p>on</p><p>tr</p><p>ol</p><p>s;</p><p>ea</p><p>rl</p><p>ie</p><p>r</p><p>sh</p><p>u</p><p>t-</p><p>of</p><p>f</p><p>se</p><p>cr</p><p>et</p><p>io</p><p>n</p><p>of</p><p>b</p><p>-E</p><p>N</p><p>D</p><p>in</p><p>pa</p><p>ti</p><p>en</p><p>ts</p><p>Y</p><p>ou</p><p>n</p><p>g</p><p>et</p><p>al</p><p>.(</p><p>19</p><p>91</p><p>)</p><p>16</p><p>8/</p><p>16</p><p>M</p><p>D</p><p>D</p><p>U</p><p>n</p><p>sp</p><p>ec</p><p>ifi</p><p>ed</p><p>U</p><p>n</p><p>m</p><p>ed</p><p>ic</p><p>at</p><p>ed</p><p>�</p><p>14</p><p>da</p><p>ys</p><p>10</p><p>0%</p><p>b</p><p>-l</p><p>ip</p><p>o</p><p>H</p><p>yd</p><p>ro</p><p>co</p><p>rt</p><p>is</p><p>on</p><p>e</p><p>in</p><p>fu</p><p>si</p><p>on</p><p>+</p><p>b</p><p>-e</p><p>n</p><p>do</p><p>rp</p><p>h</p><p>in</p><p>M</p><p>D</p><p>D</p><p>vs</p><p>.c</p><p>on</p><p>tr</p><p>ol</p><p>s</p><p>Y</p><p>ou</p><p>n</p><p>g</p><p>et</p><p>al</p><p>.(</p><p>20</p><p>00</p><p>)</p><p>10</p><p>4/</p><p>10</p><p>M</p><p>D</p><p>D</p><p>A</p><p>n</p><p>xi</p><p>et</p><p>y</p><p>di</p><p>so</p><p>rd</p><p>er</p><p>s,</p><p>n</p><p>o</p><p>PT</p><p>SD</p><p>i</p><p>U</p><p>n</p><p>m</p><p>ed</p><p>ic</p><p>at</p><p>ed</p><p>U</p><p>n</p><p>sp</p><p>ec</p><p>ifi</p><p>ed</p><p>So</p><p>ci</p><p>al</p><p>st</p><p>re</p><p>ss</p><p>or</p><p>+</p><p>re</p><p>sp</p><p>on</p><p>se</p><p>in</p><p>M</p><p>D</p><p>D</p><p>vs</p><p>.c</p><p>on</p><p>tr</p><p>ol</p><p>s</p><p>a</p><p>Sa</p><p>m</p><p>pl</p><p>e</p><p>si</p><p>ze</p><p>.</p><p>b</p><p>R</p><p>at</p><p>io</p><p>fe</p><p>m</p><p>al</p><p>e</p><p>to</p><p>m</p><p>al</p><p>e.</p><p>c</p><p>b</p><p>-E</p><p>n</p><p>do</p><p>rp</p><p>h</p><p>in</p><p>.</p><p>d</p><p>M</p><p>aj</p><p>or</p><p>de</p><p>pr</p><p>es</p><p>si</p><p>ve</p><p>di</p><p>so</p><p>rd</p><p>er</p><p>.</p><p>e</p><p>b</p><p>-L</p><p>ip</p><p>op</p><p>ro</p><p>te</p><p>in</p><p>.</p><p>f</p><p>O</p><p>vi</p><p>n</p><p>e</p><p>co</p><p>rt</p><p>ic</p><p>ot</p><p>ro</p><p>ph</p><p>in</p><p>re</p><p>le</p><p>as</p><p>in</p><p>g</p><p>h</p><p>or</p><p>m</p><p>on</p><p>e.</p><p>g</p><p>D</p><p>ex</p><p>am</p><p>et</p><p>h</p><p>as</p><p>on</p><p>e.</p><p>h</p><p>H</p><p>u</p><p>m</p><p>an</p><p>co</p><p>rt</p><p>ic</p><p>ot</p><p>ro</p><p>ph</p><p>in</p><p>re</p><p>le</p><p>as</p><p>in</p><p>g</p><p>h</p><p>or</p><p>m</p><p>on</p><p>e.</p><p>i</p><p>Po</p><p>st</p><p>tr</p><p>au</p><p>m</p><p>at</p><p>ic</p><p>st</p><p>re</p><p>ss</p><p>di</p><p>so</p><p>rd</p><p>er</p><p>.</p><p>K.M. Hegadoren et al. / Neuropeptides 43 (2009) 341–353 349</p><p>to develop consensus regarding the classification of important sub-</p><p>types of depression.</p><p>9. Discussion</p><p>In recent years, interest in the role of b-END in MDD has been</p><p>rekindled, after being largely abandoned in the 1980s. The poor</p><p>sensitivity of the DST as a relevant paradigm has been replaced</p><p>by neuroimaging methods and improved test paradigms and as-</p><p>says. Examining the data presented in this review,</p><p>it is readily</p><p>apparent that despite multiple studies using various experimental</p><p>designs, the role of b-END in MDD remains unclear. Evidence sup-</p><p>porting some type of dysregulation in b-END and opioid-related</p><p>neural networks exists, but is subject to significant methodological</p><p>problems. Supportive evidence includes DEX challenge studies that</p><p>show high rates of b-END non-suppression in individuals with</p><p>MDD. Additionally, challenge with cortisol, hydrocortisone, and</p><p>CRH demonstrated altered b-END release in depressed individuals</p><p>compared to controls.</p><p>Based on the pharmacological challenge data, we can infer that</p><p>changes in of glucocorticoid/mineralocorticoid receptor density</p><p>and/or affinity may play a role in the altered release of b-END in</p><p>some depressed individuals. As discussed earlier, dysregulated glu-</p><p>cocorticoid feedback on the HPA axis remains one of the most</p><p>widely studied phenomena in individuals with MDD. However,</p><p>much remains unclear about feedforward and feedback mecha-</p><p>nisms linking glucocorticoids and b-END. For example, one study</p><p>observed glucocorticoid control over all b-END-containing arcuate</p><p>nucleus neurons (Cintra et al., 1991), while a later study suggested</p><p>strong glucocorticoid control over b-END-containing corticotrophs</p><p>in the anterior pituitary but not within b-END-containing melano-</p><p>trophs of the intermediate pituitary lobe (Cintra and Bortolotti,</p><p>1992).</p><p>The interaction between b-END and CRH both in the periphery</p><p>and in the CNS needs to be investigated further with regards to</p><p>stress disorders in which CRH hypersecretion has been observed</p><p>(both MDD and PTSD). In the periphery, CRH and opioid receptor</p><p>interactions have been well documented with regards to pain reg-</p><p>ulation (Smith, 2008). In particular, b-END and CRH receptors are</p><p>co-expressed in macrophage/monocytes, granulocytes, and lym-</p><p>phocytes within blood and inflamed subcutaneous tissues (Mousa</p><p>et al., 2003). CRH interacts with CRH receptors on immune tissues</p><p>to release b-END, resulting in the inhibition of inflammatory pain</p><p>(Smith, 2008). These findings are particularly relevant in stress dis-</p><p>orders such as MDD and PTSD where comorbid somatic symptoms</p><p>are common and high levels of pro-inflammatory cytokines have</p><p>been observed. CRH challenge in individuals with MDD was not</p><p>informative, but may provide more information if relevant sub-</p><p>groups of MDD were examined or if specific depressive symptom</p><p>clusters were analyzed individually. A number of potential dysreg-</p><p>ulatory processes that influence the synthesis, release, and interac-</p><p>tion of b-END with opioid receptors under the influence of CRH</p><p>may contribute to symptoms observed in depressed individuals</p><p>and may be particularly important in those with comorbid chronic</p><p>pain conditions or anxiety.</p><p>Plasma measures of b-END in depressed individuals lend little</p><p>insight into whether any observed changes derive from specific</p><p>pools or pathways within the CNS, endocrine systems of peripheral</p><p>immune cells. While CSF measures are generally considered more</p><p>desirable when examining neuroactive substances originating in</p><p>the CNS, CSF measurements of b-END did not discriminate be-</p><p>tween controls and MDD patients and present ethical and method-</p><p>ological issues in human subjects. However, examination of</p><p>peripheral measures in conjunction with neuroimaging might indi-</p><p>cate whether central and peripheral changes are coordinated.</p><p>350 K.M. Hegadoren et al. / Neuropeptides 43 (2009) 341–353</p><p>Finally, due to synthesis of both inactive and active forms of</p><p>b-END and the inability of some assays to differentiate between</p><p>all the products of POMC, changes in b-END levels may not neces-</p><p>sarily reflect alterations in biological activity at the level of opioid</p><p>receptors. Modification of published analytical methods that do</p><p>not use commercial kits and more detailed information about the</p><p>assay protocol might help resolve sensitivity and cross-reactivity</p><p>issues.</p><p>10. Conclusion</p><p>Human studies aimed at examining the role of b-END in the</p><p>pathophysiology and treatment response in MDD have produced</p><p>many contradictory results. However, some consistencies have</p><p>emerged, including the observation that endogenously depressed</p><p>individuals appear to have lower levels of b-END compared with</p><p>non-endogenously depressed individuals. Unfortunately, this</p><p>method of sub-typing depressed individuals is now outdated and</p><p>it is unclear what the implications of these findings are in the con-</p><p>text of the current DSM-IV categorization of MDD. The review of</p><p>data relating to basal b-END levels in depression highlights the</p><p>need to focus future studies on more clearly delineated groups of</p><p>depressed individuals, paying careful attention to diagnostic crite-</p><p>ria and the presence of specific clusters of symptoms. The inclusion</p><p>of individuals with bipolar disorder as well as certain types of per-</p><p>sonality disorders, among others in ‘‘depressed” samples con-</p><p>founds attempts to develop a theoretical framework relating</p><p>opioid systems to the pathophysiology of MDD. Also, emerging</p><p>data suggests that traumatic life events may alter b-END levels</p><p>(Liberzon et al., 2007) and thus, accurate recording of past and cur-</p><p>rent serious stressors is necessary. Current comorbid psychiatric</p><p>syndromes as well as subthreshold syndromes may further compli-</p><p>cate data interpretation (Baker et al., 1997; Hamner and Hitri,</p><p>1992; Hoffman et al., 1989). The development of international col-</p><p>laborative research networks would allow consensus building</p><p>around definitional issues, lead to standardized experimental pro-</p><p>tocols using similar psychological and biological tools across stud-</p><p>ies and ultimately allow for the integration of both psychological</p><p>and neurobiological data, which is essential for theory</p><p>development.</p><p>Finally, little research exists examining the effects of gender on</p><p>b-END activity in depressed individuals. Increasingly, the impor-</p><p>tance of gender in depression studies is recognized. Government</p><p>publications (Health Canada, 2002) and numerous studies from</p><p>both psychosocial and biological literature call for more gender</p><p>specific research (Blair-West and Mellsop, 2001; Bremner and Ver-</p><p>metten, 2001; Carpenter and Addis, 2000; Cutler and Nolen-Hoek-</p><p>sema, 1991; Davidson et al., 1993; Dawkins and Potter, 1991).</p><p>Future studies must include detailed data on menstrual phase, life</p><p>stage (premenopausal, perimenopausal or postmenopausal) and</p><p>the use of hormone therapies (oral contraceptives as well as hor-</p><p>mone replacement therapies) to allow for accurate interpretation</p><p>of b-END data in depressed women.</p><p>In conclusion, there is still much work to be done to enhance</p><p>our understanding of the role of b-END in MDD. Recent neuroimag-</p><p>ing data highlight that gender and menstrual phase are important</p><p>determinants of l-opioid receptor binding potential. PET data in</p><p>MDD populations are limited to date, are not unequivocal and re-</p><p>quire replication. Further development of a specific and highly sen-</p><p>sitive assay specific for biologically active b-END would allow</p><p>researchers to more accurately interpret data from behavioural</p><p>and neuroendocrine challenges. While studies examining systemic</p><p>circulation of b-END are often more practical to carry out, more fo-</p><p>cus on the CNS using neuroimaging and CSF measures is required</p><p>to more fully understand the functional relationship between cen-</p><p>tral and peripheral measures of b-END. If there is the potential for</p><p>novel antidepressant therapies based on opioid system interac-</p><p>tions with major neurotransmitter and neuroendocrine systems,</p><p>it is imperative that the renewed interest in b-END and MDD spark</p><p>major research discussions around issues of the heterogeneity</p><p>inherent in MDD, standardization definitions and protocols, im-</p><p>proved discrimination of b-END from other POMC products and</p><p>better recognition major factors that have given such mixed results</p><p>in past studies.</p><p>References</p><p>Akil, H., Young, E., Walker, J.M., Watson, S.J., 1986. The many possible roles of</p><p>opioids and related peptides in stress-induced analgesia. Ann. N. Y. Acad.</p><p>Sci.</p><p>467, 140–153.</p><p>Akil, H., Bronstein, D.M., Mansour, A., 1988. Overview of the endogenous opioid</p><p>systems: anatomical, biochemical and functional issues. In: Rodgers, R.J.,</p><p>Coopers, S.J. (Eds.), Endorphins Opiates and Behavioral Processes. Wiley, New</p><p>York.</p><p>Akil, H., Haskett, R.F., Young, E.A., Grunhaus, L., Kotun, J., Weinberg, V., Greden, J.,</p><p>Watson, S.J., 1993. Multiple HPA profiles in endogenous depression: effect of</p><p>age and sex on cortisol and beta-endorphin. Biol. Psychiat. 33, 73–85.</p><p>Alexopoulos, G.S., Inturrisi, C.E., Lipman, R., Frances, R., Haycox, J., Dougherty Jr.,</p><p>J.H., Rossier, J., 1983. Plasma immunoreactive beta-endorphin levels in</p><p>depression. Effect of electroconvulsive therapy. Arch. Gen. Psychiat. 40,</p><p>181–183.</p><p>Aley, K.O., Levine, J.D., 1997. Multiple receptors involved in peripheral alpha 2, mu,</p><p>and A1 antinociception, tolerance, and withdrawal. J. Neurosci. 17,</p><p>735–744.</p><p>Altemus, M., Redwine, L., Leong, Y.M., Yoshikawa, T., Yehuda, R., tera-Wadleigh, S.,</p><p>Murphy, D.L., 1997. Reduced sensitivity to glucocorticoid feedback and reduced</p><p>glucocorticoid receptor mRNA expression in the luteal phase of the menstrual</p><p>cycle. Neuropsychopharmacology 17, 100–109.</p><p>American Psychiatric Association, 1994. Diagnostic and Statistical Manual of Mental</p><p>Disorders: DSM-IV. American Psychiatric Association, Washington, DC.</p><p>Bagdy, G., Calogero, A.E., Szemeredi, K., Gomez, M.T., Murphy, D.L., Chrousos, G.P.,</p><p>Gold, P.W., 1990. Beta-endorphin responses to different serotonin agonists:</p><p>involvement of corticotropin-releasing hormone, vasopressin and direct</p><p>pituitary action. Brain Res. 537, 227–232.</p><p>Baghai, T.C., Schule, C., Zwanzger, P., Minov, C., Holme, C., Padberg, F., Bidlingmaier,</p><p>M., Strasburger, C.J., Rupprecht, R., 2002. Evaluation of a salivary based</p><p>combined dexamethasone/CRH test in patients with major depression.</p><p>Psychoneuroendocrinology 27, 385–399.</p><p>Baker, D.G., West, S.A., Orth, D.N., Hill, K.K., Nicholson, W.E., Ekhator, N.N., Bruce,</p><p>A.B., Wortman, M.D., Keck Jr., P.E., Geracioti Jr., T.D., 1997. Cerebrospinal fluid</p><p>and plasma beta-endorphin in combat veterans with post-traumatic stress</p><p>disorder. Psychoneuroendocrinology 22, 517–529.</p><p>Ball, R., Howlett, T., Silverstone, T., Rees, L., 1987. The interrelationship of beta</p><p>endorphin, ACTH and cortisol in depressive illness: a controlled study. Psychol.</p><p>Med. 17, 31–37.</p><p>Bao, A.M., Meynen, G., Swaab, D.F., 2008. The stress system in depression and</p><p>neurodegeneration: focus on the human hypothalamus. Brain Res. Rev. 57, 531–</p><p>553.</p><p>Belmaker, R.H., Agam, G., 2008. Major depressive disorder. N. Engl. J. Med. 358, 55–</p><p>68.</p><p>Berger, P.A., Barchas, J.D., 1983. Pharmacologic studies of beta-endorphin in</p><p>psychopathology. Psychiat. Clin. North Am. 6, 377–391.</p><p>Bernstein, H.G., Krell, D., Emrich, H.M., Baumann, B., Danos, P., Diekmann, S.,</p><p>Bogerts, B., 2002. Fewer beta-endorphin expressing arcuate nucleus neurons</p><p>and reduced beta-endorphinergic innervation of paraventricular neurons in</p><p>schizophrenics and patients with depression. Cell Mol. Biol. (Noisy.-le-grand)</p><p>Online Pub, OL259–OL265.</p><p>Blair-West, G.W., Mellsop, G.W., 2001. Major depression: does a gender-based</p><p>down-rating of suicide risk challenge its diagnostic validity? Aust. N. Z. J.</p><p>Psychiat. 35, 322–328.</p><p>Bodnar, R.J., 1986. Neuropharmacological and neuroendocrine substrates of stress-</p><p>induced analgesia. Ann. N. Y. Acad. Sci. 467, 345–360.</p><p>Boveris, A., Navarro, A., 2008. Systemic and mitochondrial adaptive responses to</p><p>moderate exercise in rodents. Free Radic. Biol. Med. 44, 224–229.</p><p>Braddock, L., 1986. The dexamethasone suppression test Fact and artefact. Br. J.</p><p>Psychiat. 148, 363–374.</p><p>Bremner, J.D., Vermetten, E., 2001. Stress and development: behavioral and</p><p>biological consequences. Dev. Psychopathol. 13, 473–489.</p><p>Bronstein, D.M., Schafer, M.K., Watson, S.J., Akil, H., 1992. Evidence that beta-</p><p>endorphin is synthesized in cells in the nucleus tractus solitarius: detection of</p><p>POMC mRNA. Brain Res. 587, 269–275.</p><p>Buckingham, J.C., 1986. Stimulation and inhibition of corticotrophin releasing factor</p><p>secretion by beta endorphin. Neuroendocrinology 42, 148–152.</p><p>Bugnon, C., Bloch, B., Lenys, D., Gouget, A., Fellmann, D., 1979. Comparative study of</p><p>the neuronal populations containing beta-endorphin, corticotropin and</p><p>dopamine in the arcuate nucleus of the rat hypothalamus. Neurosci. Lett. 14,</p><p>43–48.</p><p>Caballero, L., Aragones, E., Garcia-Campayo, J., Rodriguez-Artalejo, F., Ayuso-Mateos,</p><p>J.L., Polavieja, P., Gomez-Utrero, E., Romera, I., Gilaberte, I., 2008. Prevalence,</p><p>K.M. Hegadoren et al. / Neuropeptides 43 (2009) 341–353 351</p><p>characteristics, and attribution of somatic symptoms in Spanish patients with</p><p>major depressive disorder seeking primary health care. Psychosomatics 49,</p><p>520–529.</p><p>Cannon, J.T., Prieto, G.J., Lee, A., Liebeskind, J.C., 1982. Evidence for opioid and non-</p><p>opioid forms of stimulation-produced analgesia in the rat. Brain Res. 243, 315–</p><p>321.</p><p>Carpenter, K.M., Addis, M., 2000. Alexithymia, gender, and responses to depressive</p><p>symptoms. Sex Roles 43 (9–10), 629–644.</p><p>Carroll, B.J., Feinberg, M., Greden, J.F., Tarika, J., Albala, A.A., Haskett, R.F., James,</p><p>N.M., Kronfol, Z., Lohr, N., Steiner, M., de Vigne, J.P., Young, E., 1981. A specific</p><p>laboratory test for the diagnosis of melancholia Standardization, validation, and</p><p>clinical utility. Arch. Gen. Psychiat. 38, 15–22.</p><p>Castilla-Cortazar, I., Castilla, A., Gurpegui, M., 1998. Opioid peptides and</p><p>immunodysfunction in patients with major depression and anxiety disorders.</p><p>J. Physiol. Biochem. 54, 203–215.</p><p>Castro, M.G., Morrison, E., 1997. Post-translational processing of</p><p>proopiomelanocortin in the pituitary and in the brain. Crit. Rev. Neurobiol.</p><p>11, 35–57.</p><p>Catlin, D.H., Gorelick, D.A., Gerner, R.H., 1982. Clinical pharmacology of beta-</p><p>endorphin in depression and schizophrenia. Ann. N. Y. Acad. Sci. 398, 434–</p><p>447.</p><p>Charmandari, E., Tsigos, C., Chrousos, G., 2005. Endocrinology of the stress response.</p><p>Annu. Rev. Physiol. 67, 259–284.</p><p>Chretien, M., Benjannet, S., Gossard, F., Gianoulakis, C., Crine, P., Lis, M., Seidah, N.G.,</p><p>1979. From beta-lipotropin to beta-endorphin and ‘pro-opio-melanocortin. Can.</p><p>J. Biochem. 57, 1111–1121.</p><p>Cicero, T.J., Nock, B., O’Connor, L., Meyer, E.R., 2002. Role of steroids in sex</p><p>differences in morphine-induced analgesia: activational and organizational</p><p>effects. J. Pharmacol. Exp. Ther. 300, 695–701.</p><p>Cintra, A., Bortolotti, F., 1992. Presence of strong glucocorticoid receptor</p><p>immunoreactivity within hypothalamic and hypophyseal cells containing pro-</p><p>opiomelanocortic peptides. Brain Res. 577, 127–133.</p><p>Cintra, A., Fuxe, K., Solfrini, V., Agnati, L.F., Tinner, B., Wikstrom, A.C., Staines, W.,</p><p>Okret, S., Gustafsson, J.A., 1991. Central peptidergic neurons as targets for</p><p>glucocorticoid action Evidence for the presence of glucocorticoid receptor</p><p>immunoreactivity in various types of classes of peptidergic neurons. J. Steroid</p><p>Biochem. Mol. Biol. 40, 93–103.</p><p>Cohen, M.R., Pickar, D., Extein, I., Gold, M.S., Sweeney, D.R., 1984. Plasma cortisol</p><p>and beta-endorphin immunoreactivity in nonmajor and major depression. Am.</p><p>J. Psychiat. 141, 628–632.</p><p>Cutler, S.E., Nolen-Hoeksema, S., 1991. Accounting for sex differences in depression</p><p>through female victimization: childhood sexual abuse. Sex Roles 24, 425–</p><p>438.</p><p>Dantzer, R., O’Connor, J.C., Freund, G.G., Johnson, R.W., Kelley, K.W., 2008. From</p><p>inflammation to sickness and depression: when the immune system subjugates</p><p>the brain. Nat. Rev. Neurosci. 9, 46–56.</p><p>Darko, D.F., Risch, S.C., Gillin, J.C., Golshan, S., 1992. Association of beta-endorphin</p><p>with specific clinical symptoms of depression. Am. J. Psychiat. 149, 1162–1167.</p><p>Davidson, J.R., Kudler, H.S., Saunders, W.B., Erickson, L., Smith, R.D., Stein, R.M.,</p><p>Lipper, S., Hammett, E.B., Mahorney, S.L., Cavenar Jr., J.O., 1993. Predicting</p><p>response to amitriptyline in posttraumatic stress disorder. Am. J. Psychiat. 150,</p><p>1024–1029.</p><p>Dawkins, K., Potter, W.Z., 1991. Gender differences in pharmacokinetics and</p><p>pharmacodynamics</p>