Logo Passei Direto
Buscar
Material
páginas com resultados encontrados.
páginas com resultados encontrados.

Prévia do material em texto

1
Dobragem e Enrolamento
2
Quinagem - Dobragem na Quinadora
3
O que é?
4
O que é?
5
Aplicações
� Balcões frigoríficos
� Mobiliário metálico
� Chassis
� Painéis.
6
Aplicações
7
Características do processo
� Permite o fabrico de peças de chapa (ou barra de pequena espessura) com 
superfícies planificáveis
� Campo de aplicação diversificado
� Aplica-se, geralmente, a pequenas séries
� Baixa taxa de produção
� As quinadoras possuem, geralmente, tabelas de quinag em que permitem calcular a 
força de quinagem por metro de chapa a quinar, a aba mínima, o raio mínimo de 
quinagem, a abertura da matriz, etc.
8
Classificação dos processos de quinagem
� Quinagem no ar
� O ângulo entre as abas da chapa é
definido pela penetração do cunho na 
matriz ( profundidade de quinagem ).
� As forças envolvidas são baixas
� Precisão dimensional é limitada devido 
à recuperação elástica
� Quinagem em V
� O ângulo entre as abas da chapa é
definido pela geometria das 
ferramentas
� A folga entre cunho e matriz é igual à
espessura da chapa.
� Tem maior precisão dimensional que a 
quinagem no ar
� Geralmente, utilizada para quinar 
chapas com ângulos de 90º ou 
ligeiramente inferiores, com 
espessuras entre os 0.5 e os 25 mm
9
Classificação dos processos de quinagem
� Quinagem em U
� Existem 2 eixos de dobragem
paralelos
� Normalmente, utiliza-se um encostador 
para evitar defeitos de forma no fundo 
da peça
� A força de quinagem tem um 
acréscimo de cerca de 30 a 40% 
devido ao encostador
� Quinagem a fundo (com quebra do 
nervo)
� A chapa é esmagada entre o cunho e a 
matriz no final da operação e a folga 
entre cunho e matriz é inferior à
espessura da chapa.
� Geralmente, utilizada para chapas 
finas (espessura inferior a 3 mm)
� Permite reduzir ou até mesmo eliminar 
a recuperação elástica
� A força necessária é consideravel-
mente superior à da quinagem no ar; 3 
a 5 vezes maior
10
Classificação dos processos de quinagem
� Quinagem de flange com cunho de 
arraste
� Uma das abas é fixada por um 
encostador, enquanto que a outra é
dobrada a 90º pela acção do cunho
� Com a variação do curso, é possível 
alterar com facilidade o ângulo de 
dobragem
� Quinagem rotativa
� Recorre-se a uma matriz rotativa para 
enformar a chapa
� Não é necessário utilizar encostador
� As forças requeridas são baixas
� O efeito de mola pode ser compensado 
diminuindo o ângulo de dobragem
11
Classificação dos processos de quinagem
� Vantagens da quinagem no ar relativamente à quinagem a fundo
� A quinagem pode ser efectuada em máquinas-ferramenta de menor 
capacidade, pois a força e energia necessárias são menores
� O desgaste e o perigo de inutilização das ferrament as é menor
� O mesmo conjunto cunho/matriz pode ser utilizado pa ra efectuar dobragens de 
diferentes ângulos, reduzindo-se os custos de prepa ração e montagem das 
ferramentas
� Vantagens da quinagem a fundo relativamente à quinage m no ar
� Peças mais precisas, podendo ser enformadas com rai os de quinagem
inferiores à espessura da chapa
� Redução ou mesmo eliminação do fenómeno de recuperaç ão elástica
12
Quinagem no ar
13
Cálculo da dimensão da estampa plana
� Noção de fibra neutra
� Por acção do cunho a zona em deformação fica solicit ada por um momento flector M e 
uma força axial F de tracção.
� Para chapas finas, pode admitir-se que as secções re ctas se mantém planas durante a 
deformação e que convergem no centro de curvatura. Considera-se que as direcções
principais das tensões e das extensões coincidem co m as direcções radial, tangencial e 
segundo a largura.
� Fibra neutra é a linha cujo comprimento não varia ap ós a deformação da peça e cuja 
posição depende fundamentalmente da espessura da ch apa e do tipo de solicitação 
introduzida pelas ferramentas.
14
Cálculo da dimensão da estampa plana
� Para se determinar as dimensões da estampa plana é n ecessário conhecer o comprimento da 
fibra neutra, l.
� Segundo a norma DIN 6935, o comprimento da estampa plana será dado por:
a, b - comprimentos das abas
∆∆∆∆l – factor de compensação 
(pode ser positivo ou 
negativo)
β - ângulo de abertura das abas
h - espessura da chapa
r i - raio interior de dobragem
k - factor de correcção para a 
linha/fibra neutra
15
Cálculo da dimensão da estampa plana
� Abertura das abas entre 0º e 90º
� Abertura das abas entre 90º e 165º
� Abertura das abas entre 165º e 180º ( ∆∆∆∆l pequeno e desprezável)
K=1 ���� linha neutra coincide com a linha média
16
Raio mínimo de quinagem
� Raio mínimo de quinagem, r min , é o raio para o qual surgem fissuras na superfície 
exterior da chapa (cunho com raio muito pequeno ���� extensões tangenciais muito 
elevadas que podem originar fissuras ou fractura)
� Pode ser determinado por dois tipos de métodos:
� Método baseado nas propriedades mecânicas do materi al
� Métodos de natureza empírica
17
Raio mínimo de quinagem
� Método baseado nas propriedades mecânicas do materi al 
� A extensão tangencial, e θθθθ, para uma fibra à distância y da linha média com um raio de 
curvatura r m e um ângulo de dobragem αααα é dada por:
Em que l 0 é o comprimento inicial da fibra.
� Sendo o ângulo de dobragem, α α α α = l0/rm, então a extensão tangencial para a fibra exterior é
dada por:
� Considerando que na flexão em domínio plástico a ex tensão verdadeira na fibra exterior 
para a qual a fractura ocorre é igual à extensão verda deira na fractura no ensaio de tracção
uniaxial vem:
� Relação entre o raio mínimo de quinagem, r min , a espessura da chapa, h, e o coeficiente de 
estricção ou coeficiente de redução de área após fra ctura, q:
18
Raio mínimo de quinagem
� Método baseado nas propriedades mecânicas do materi al
� Verificou-se experimentalmente que a determinação d o rmin através da expressão anterior 
era precisa para valores de q inferiores a 0,2, mas não para valores de q superiores a 0,2.
19
Raio mínimo de quinagem
� Métodos de natureza empírica
� Outra forma de determinar o raio mínimo de quinagem pode ser a partir de ábacos ou
tabelas construídos com base em ensaios experimentais.
20
Raio mínimo de quinagem
� Métodos de natureza empírica
� Norma DIN 6935
21
Raio mínimo de quinagem
� Métodos de natureza empírica
� Por vezes o raio mínimo de quinagem é definido em fun ção da abertura da matriz, v, 
utilizada na operação (adoptado por muitos fabricant es para a construção das tabelas de 
quinagem fixas à quinadora)
22
Raio mínimo de quinagem
� A implantação das peças na chapa deve fazer-se, sem pre que possível, de modo a 
que a direcção de quinagem se desenvolva perpendicula rmente à direcção de 
laminagem. Quando não for possível, deve-se aumenta r os raios de dobragem para 
evitar a fractura.
23
Abertura da matriz
� Do valor da abertura da matriz dependem a força de quinagem, o raio mínimo de 
quinagem e a dimensão mínima da aba.
� A deformação da chapa para se atingir o mesmo ângulo de ab ertura entre abas, 
depende significativamente da abertura da matriz, sendo s uperior no caso de 
matrizes de menor abertura.
� Com base em resultados experimentais temos:
24
Dimensão mínima da aba
25
Recuperação elástica
� O fenómeno de recuperação elástica ou efeito de mola, ac ontece sempre que a 
solicitação exterior que originou a flexão é retirada. A ssim, tanto o ângulo de 
dobragem, como o raio de curvatura aumentam, modifican do-se a geometria da
peça.
� Uma das principais dificuldades da quinagem no ar re side no controlo deste 
fenómeno.
26
Recuperação elástica
� A estimativa do ângulo de recuperação elástica é nec essária para que as 
ferramentas ou o processo possam ser corrigidas na fase de projecto ou 
de operação, respectivamente, e a flexão possa ser compensada.
� O valor aumenta nos materiais com maior tensão limi te de elasticidade ou com 
maior propensão ao encruamento.
� O valor aumenta com o trabalho a frio
� Também as características geométricas da operação i nfluenciam a 
recuperaçãoelástica, como o raio interior de quina gem, a abertura da matriz e 
a espessura da chapa.
27
Recuperação elástica
� Estimativa do ângulo de recuperação elástica
Em que dl e é o comprimento recuperado pela fibra exterior
� Considerando a definição de extensão e notando que a recuperação se dá em domínio 
elástico (lei de Hooke) vem:
28
Recuperação elástica
� Factor de recuperação elástica
� Alternativamente existem tabelas com dados empírico s que permitem quantificar a 
recuperação elástica da operação. É habitual admitir -se que a recuperação elástica se faz 
em torno da linha média, obtendo-se:
29
Recuperação elástica
� Métodos de minimização ou eliminação da recuperação e lástica
� Correcção ou compensação dos ângulos das ferramentas durante o seu 
projecto, para as quinageens em V e a fundo
� Correcção do valor de profundidade de quinagem com o valor correspondente 
ao da recuperação elástica, para quinagem no ar
� Dobragem com forças de tracção. Como o momento neces sário à deformação 
é reduzido, também a recuperação elástica será menor
� Substituição da quinagem no ar pela quinagem a fundo
� Realização das operações a temperaturas elevadas, j á que a recuperação 
elástica vem reduzida com a diminuição da tensão li mite de elasticidade
30
Profundidade de quinagem
� Uma das vantagens da operação de quinagem no ar resi de na possibilidade de se 
poderem efectuar quinagens com ângulos diferentes, ut ilizando o mesmo conjunto 
cunho/matriz. Assim, para a preparação das quinagen s será necessário relacionar 
o ângulo de abertura das abas, ß, com a penetração do cunho na matriz.
Profundidade de quinagem, 
em função do ângulo da zona
de dobragem, α:
Profundidade de quinagem, em
função do ângulo de abertura
das abas, β:
31
Posicionamento dos esbarros da quinadora
32
Posicionamento dos esbarros da quinadora
� Na preparação de trabalho de peças com quinagens múl tiplas o 
projectista deve definir a sequência de quinagens proc urando cumprir 
dois requisitos fundamentais:
� que o tempo de operação seja o mínimo
� que a peça seja exequível na quinadora, ou seja, que não existam 
interferências com os elementos da quinadora
� Os esbarros (posicionadores da chapa) podem ser ante riores ou 
posteriores, consoante se situam na frente ou na tr aseira da quinadora.
� Nas quinadoras sem comando numérico, dependendo do n úmero de 
peças a quinar, os esbarros são posicionados manual mente de modo a 
tornar a operação mais cómoda, mais precisa e mais económica.
� As quinadoras com comando numérico permitem definir a sequência de 
quinagem, posicionando automaticamente os esbarros em cada 
quinagem, rentabilizando o tempo de operação.
33
Defeitos de quinagem
� Esbeiçamento (deformação lateral) e efeito de sela
� O esbeiçamento deve-se à deformação segundo a largura da chapa, b, das 
fibras exteriores que sofrem contracções e das inter iores que sofrem 
distenções
� O efeito de sela é provocado pela variação da extens ão radial ao longo das 
superfícies exterior e interior
� A zona dos bordos está sujeita a um estado de tensão plano, em oposição ao 
que se verifica na zona central da chapa, onde o es tado de deformação pode 
ser considerado plano.
34
Defeitos de quinagem
35
Defeitos de quinagem
36
� Força de quinagem no ar (DIN 6935):
em que K é um factor de correcção dado por:
Força e trabalho de quinagem
37
Força e trabalho de quinagem
� O trabalho de quinagem é dado pela área delimitada pela cu rva da força de 
quinagem num gráfico F versus deslocamento do cunho.
em que Qw é um coeficiente que depende do tipo de evolução q ue a força de 
quinagem tem com o curso do cunho, variando geralmente entre 0,5 e 0,8.
38
Quinagem a fundo ou quinagem com quebra 
do nervo
39
Quinagem a fundo
� Principais inconvenientes são a redução local de es pessura e a necessidade de 
forças elevadas
� Deve ser utilizada, apenas, quando a precisão reque rida for elevada ou para a 
obtenção de cantos muito vivos (pequenos raios de q uinagem)
40
Quinagem a fundo
41
Quinagem em U
42
Quinagem em U
rcm = (2 a 6)h rm = rc + (1,2 a 1,25)h Fe = (0,25 a 0,3) FU
FU = (kU σσσσR b h 2) / (rcm + j + r c)
em que k U é um factor correctivo variando entre 0,4 e 1
43
Quinagem de flanges com cunho de arraste
44
Quinagem de flanges com cunho de arraste
Faba = (ka σσσσR b h 2) / 4(rcm + j + r c)
em que k a é um factor correctivo variando entre 1,5 e 2
45
Quinagem com borracha
46
Flexão de chapas planas
47
Diagrama de quinagem
48
Calandragem – Enrolamento na Calandra
49
O que é?
50
O que é?
51
Aplicações
� Reservatórios, caldeiras, bidões
� Contentores e camiões cisterna
� Tubagens de grande secção e 
transições entre secções
� Silos, tanques, tremonhas de 
moinhos e ciclones
� Estruturas e perfis curvos para 
edifícios, veículos e equipamentos
52
Aplicações
53
Aplicações
54
Aplicações
55
Formas típicas
56
Calandras
57
Calandras de três rolos sem dispositivo para enform ação das abas
� Rolos inferiores, fixos, com igual diâmetro, mas me nores (10 a 50%) que o superior
� Calandras de maior capacidade ���� Rolos de maior diâmetro e maior entre-eixo nos 
rolos inferiores ���� Menor força de flexão
� Utilização de rolos inferiores de suporte para redu zir a deformação em calandras 
de comprimento elevado (geralmente > 3m)
� O ajuste do rolo superior, livre, define o diâmetro da calandragem
� Força de calandragem suficiente para arrastar por a trito o rolo superior. Difícil para 
chapa fina de grande diâmetro ���� Rolo superior motorizado
� Os extremos da chapa (abas) permanecem direitos
58
Calandras de três rolos com dispositivo para enform ação das abas
� A dobragem das abas nunca é total (zona direita = (0, 5 a 2)h; h - espessura da 
chapa)
� Existem diferentes tipos de concepção (no essencial , diferentes movimentos dos 
rolos)
59
Calandras de quatro rolos
� Rolos centrais motores
� Os rolos laterais, livres, controlam o raio da cala ndragem e a dobragem das abas
60
Calandras de quatro rolos
� Vantagens das calandras de 4 rolos:
� O posicionamento apertado da chapa entre os rolos m otores facilita bastante a 
operação, designadamente o manuseamento da chapa qu e, em muitos casos,
pode ser feito por um único operador.
� A dobragem das abas efectua-se sem necessidade de vol tar a chapa.
� A calandragem das superfícies cónicas pode efectuar- se continuamente.
� A calibragem das virolas, por exemplo após soldadur a das extremidades, é
facilitada pela existência dos dois rolos livres, o s quais devem estar ambos 
actuados neste tipo de operações.
61
Calandragem cilíndrica
62
Descrição do processo
� O rolo superior, geralmente, com um diâmetro (d s) maior que o diâmetro dos rolos 
inferiores (d i), é convenientemente posicionado para se obter o ra io de curvatura 
exterior (R e) requerido para a virola
� Admitindo que as reacções nos rolos inferiores são v erticais (aproximação), pode 
considerar-se que a distribuição de momento flector é triangular, com o valor 
máximo na zona média do entre-eixo
63
Descrição do processo
� Os rolos inferiores transmitem a energia necessária à deformação da chapa através 
das forças de atrito entre a chapa e os rolos
� A capacidade de enformação é limitada pelo trabalho que é possível realizar com 
as forças de atrito
� Para aumentar a capacidade de enformação ���� 3 rolos motores ���� velocidade de 
rotação do rolo superior diferente da dos rolos inf eriores ���� para a chapa não 
escorregar ���� calandras com sistemas de regulação da velocidade s ofisticados e 
dispendiosos ���� 2 rolos (inferiores) motores
64
Geometria, dimensões e preparação do planificado
� As formas obtidas são planificáveis e tanto os raio s de curvatura, como o 
comprimento de calandragem são, geralmente, muito s uperiores à espessura da 
chapa
� As dimensões do planificado de uma virola cilíndrica serão obtidas 
considerando que a largura decalandragem não varia (deformação plana) e 
que a largura do planificado é igual ao perímetro da circunferência que passa 
na linha média da chapa (raio de curvatura >> espes sura ���� linha neutra 
coincide com a linha média).
� Outras formas ���� Métodos de planificação de superfícies
� Chanfrar os bordos das chapas para evitar a formaçã o de fissuras (especialmente 
para espessuras acima dos 25 mm)
65
Entre-eixo e profundidade de calandragem
� Relação entre a distância de contacto, 
v, e o entre-eixo, a
� Profundidade de calandragem
66
Deformação máxima em cada passagem
Em que R 0 é o raio de curvatura inicial e R e é o raio de curvatura final
67
Força e potência de calandragem
� Força de calandragem para R e > 100h
� Solicitação do tipo elasto-plástica emax ≤ 0,005
68
Força e potência de calandragem
� Força de calandragem para R e 5% para aços de baixa liga
� emax > 3% para aços ferríticos temperados e revenidos
� A capacidade de calandragem da máquina for ultrapas sada em resultado do 
encruamento do material
� A calandragem a quente deverá ser usada quando:
� A capacidade de calandragem for insuficiente para r ealizar o trabalho a frio
� Não se conseguir produzir peças com o diâmetro dese jado sem que ocorra 
fissuração
� Os tratamentos térmicos necessários à calandragem a frio tornam a 
calandragem a quente mais económica.
73
Calandragem de superfícies cónicas
74
Procedimentos e operação
75
Procedimentos e operação
76
Determinação da geometria e das dimensões da estamp a plana
77
Cálculo do ângulo de inclinação dos rolos
78
Dobragem das abas
79
Dobragem das abas
� Um dos problemas principais da calandragem é o da en formação das abas do 
planificado com o raio de curvatura desejado para a virola
� O valor do momento flector decresce linearmente, des de um valor máximo na secção B, 
até se anular na secção A
� A deformação vai evoluindo de totalmente plástica p ara elástica, com zonas elasto-
plásticas intermédias ���� Raio de curvatura cada vez maior ���� Deixa de existir curvatura a 
partir da secção em que a deformação é totalmente rec uperada pelo efeito de mola
80
Dobragem das abas
� Soluções para o problema da dobragem das abas:
1. Numa calandra sem capacidade para enformar abas a dobragem das abas poderá ser 
executada prévia ou posteriormente à calandragem por quinagem ou por martelagem.
2. Calandrar uma virola com um comprimento superior a o pretendido e cortar as abas 
direitas.
3. Dobrar as abas na calandra com o auxílio de um ga bari, também conhecido por “berço”, 
fabricado previamente em chapa espessa.
4. Utilizar calandras preparadas para a dobragem das abas, as quais permitem deslocamento 
dos rolos inferiores ou do superior.
5. Efectuar a operação numa calandra de 4 rolos
81
Dobragem das abas
� O deslocamento relativo entre os rolos inferiores e o rolo superior permite 
aproximar o máximo do momento flector do rolo sobre o qual se pretende enformar 
a aba
82
Dobragem das abas
83
Dobragem de Tubos e Perfis
84
O que é?
� A dobragem de tubos e perfis é um processo de deforma ção plástica que permite 
fabricar peças com geometrias complexas a partir de tubos e perfis estruturais 
mantendo a sua secção original
85
O que é?
86
O que é?
87
O que é?
88
Aplicações
� Tubos de escape, tubos para 
transporte de fluidos e peças 
estruturais de veículos
� Tubagens para caldeiras, 
permutadores de calor e diversas 
instalações industriais das indústrias 
de processo
� Mobiliário, e peças decorativas
� Peças arquitectónicas e 
equipamentos para a construção civil
89
Aplicações
90
Máquinas-ferramenta e ferramentas para 
dobragem de tubos e perfis
91
Tipos de processos para dobragem de tubos e perfis
� Dobragem por movimento axial de um 
cunho móvel
� A geometria do cunho móvel e dos 
apoios apenas permite a dobragem de 
um determinado raio de curvatura para 
uma gama limitada de diâmetros 
exteriores.
� É muito utilizado na dobragem de tubos 
com areia.
� Poderá dispensar-se o enchimento dos 
tubos quando o guiamento efectuado
pelas abas do cunho móvel conseguir 
evitar a deformação da secção
92
Tipos de processos para dobragem de tubos e perfis
� É muitas vezes utilizada para calibrar a geometria f inal das peças que tenham sido 
dobradas através de outros processos tecnológicos.
� Baixa cadência de produção ���� Utilizado, essencialmente, em trabalhos de 
manutenção e reparação de serralharia civil e mecân ica.
� Variantes deste processo
� Dobragem com aplicação de força axial de tracção nas extremidades da peça ( σσσσaxial ≅≅≅≅1,1 σσσσe)
� Dobragem realizada com a peça fixa nas extremidades
93
Tipos de processos para dobragem de tubos e perfis
� Dobragem por intermédio de rolos (calandragem)
� As máquinas-ferramenta são constituídas por três ro los montados em pirâmide e dois 
rolos deflectores que asseguram o guiamento durante a dobragem de perfis de secção
assimétrica de modo a evitarem torções e outros mod os indesejáveis de deformação.
� A dobragem é efectuada de forma progressiva à medida qu e aumenta a profundidade de 
calandragem
� É possível realizar diferentes raios de curvatura at ravés da variação da distância entre o 
rolo superior e os rolos inferiores ���� Grande flexibilidade do processo
� A variação da geometria dos rolos permite processar a generalidade dos perfis
94
Tipos de processos para dobragem de tubos e perfis
� Dobragem por compressão 
� A ferramenta móvel (habitualmente designada por cun ho móvel) dobra a peça durante o 
seu movimento de rotação em torno de um molde fixo
� O cunho móvel e o molde fixo apenas permitem a dobr agem de um determinado tipo e 
geometria de perfis
95
Tipos de processos para dobragem de tubos e perfis
� Dobragem por estiramento
� O perfil a dobrar é fixo por intermédio de um dispos itivo de fixação a um molde móvel que 
executa um movimento de rotação em torno de um eixo .
96
Defeitos e formas de os evitar
� Deformação da secção (‘ovalização’ no caso dos tubos) e o engelhamento da zona 
em compressão (junto ao raio interior).
� Este tipo de defeitos pode ser evitado de várias fo rmas:
1. Nos tubos, enchendo o seu interior com um materia l incompressível que não se oponha à
deformação plástica por flexão. Contudo, este proce dimento é ineficaz para os casos em 
que a secção pode deformar-se com aumento do volume interno ���� Material solto no 
interior do perfil ���� Deixa de ser assegurada a transmissão das tensões σσσσr entre as paredes 
em tracção e compressão longitudinal.
2. Utilizando mandris que colocados no interior dos tubos, na zona submetida à flexão, 
impeçam a ovalização.
3. Recorrendo a guiamentos exteriores que impeçam o a largamento da secção evitando a 
ovalização (tubos).
97
Defeitos e formas de os evitar
� Material para enchimento de tubos para dobragem
� Areia
� A areia é lavada e bem compactada no interior do tubo, o qual é tapado de modo 
a não permitir qualquer tipo de redução da compactação durante a dobragem.
� Não é aconselhado para tubos que possam vir a ser utilizados em aplicações em 
que a existência de grãos de areia não removidos possa constituir um risco 
muito grave (ex.: tubagens de sistemasde lubrificação ou afins).
� Não é aconselhado para a dobragem de tubos de ligas leves (ex.: ligas de cobre 
e de alumínio) por ser grande o risco de incrustação de grãos de areia nas 
paredes dos tubos. Este problema é tanto mais grave quanto menor for a 
espessura das paredes.
� O enchimento dos tubos pode ainda ser efectuado com materiais que possuam 
um baixo ponto de fusão (ex.: resinas e termoplásti cos).
98
Defeitos e formas de os evitar
� Mandris
99
Defeitos e formas de os evitar
� Mandris rígidos
� Não conseguem acompanhar a totalidade do perímetro de curvatura dos tubos 
���� Não permitem eliminar totalmente o risco de ovaliza ção.
� A regulação da posição dos mandris rígidos é crítica ���� O mau 
posicionamento, ou não evita a ovalização ou pode da nificar o tubo.
� Geralmente, são torneados, rectificados e polidos ���� Excelente acabamento 
superficial. Podem ser fabricados em metal (geralme nte, aço temperado) ou em 
plástico (geralmente, polietileno).
� Os mandris de plástico são fáceis de introduzir e d e remover devido ao baixo 
coeficiente de atrito e podem ser dobrados em simul tâneo com a peça.
� Os mandris de plástico são versáteis mas apresentam algumas desvantagens, 
tais como, a propensão para o desgaste e para a dis torção da secção
resistente. Em termos de utilização industrial pode afirmar-se que este tipo de 
mandris tem um tempo de vida médio da ordem das 200 dobragens.
100
Defeitos e formas de os evitar
� Mandris articulados
� São formados por elementos esféricos (geralmente, u m, dois ou três 
elementos) que se encaixam uns nos outros ou que se encontram ligados entre 
si através de um cabo flexível de aço.
� Geralmente, são fabricadas em aço temperado e possu em um acabamento 
superficial de muito boa qualidade.
� Conseguem acompanhar a curvatura do tubo de uma for ma mais eficaz ����
Permitem a realização de dobragens que originariam a ovalização no caso de 
se utilizarem mandris rígidos.
� Podem não eliminar totalmente os defeitos associado s à dobragem nas zonas 
correspondentes aos espaços compreendidos entre os elementos esféricos. 
Contudo, este tipo de defeitos é frequentemente elimi nado na extracção do 
mandril (operação de calibração).
� São difíceis de fabricar e caros.
101
Defeitos e formas de os evitar
� Mandris flexíveis
� São constituídos por lâminas metálicas ou por camad as de PVC ou nylon.
� Utilizam-se principalmente na dobragem de tubos com secção transversal rectangular.
� As lâminas apenas se deformam elasticamente. 
� As lâminas encontram-se fixas, apenas, numa das ext remidades do mandril ���� Origina 
movimentos relativos entre elas durante as operaçõe s de dobragem.
� Apresentam dificuldade para serem introduzidos e re movidos do interior das peças, sendo 
muitas vezes a sua aplicação incompatível com a uti lização de sistemas de alimentação 
automáticos.
102
Tensões e deformações
103
Tensões e deformações
104
Tensões e deformações
105
Tensões e deformações
106
Projecto
107
Projecto
108
Projecto

Mais conteúdos dessa disciplina