Prévia do material em texto
Resposta: b) 45 km Explicação: Durante os primeiros 15 minutos, a distância é \(d_1 = 60 \times \frac{15}{60} = 15 \, km\). Nos 30 minutos seguintes, a distância é \(d_2 = 90 \times \frac{30}{60} = 45 \, km\). Portanto, a distância total é \(d_1 + d_2 = 15 + 45 = 60 \, km\). 7) Um objeto é lançado com uma velocidade inicial de 25 m/s em um ângulo de 30° em relação à horizontal. Qual é a altura máxima que o objeto alcança? a) 15,6 m b) 18,8 m c) 20,7 m d) 22,9 m Resposta: b) 18,8 m Explicação: A componente vertical da velocidade inicial é \(v_{y} = v_{0} \sin(\theta) = 25 \sin(30°) = 12,5 \, m/s\). A altura máxima é encontrada usando a fórmula \(H = \frac{v_{y}^2}{2g} = \frac{(12,5)^2}{2 \times 9,8} \approx 8,0 \, m\). 8) Um carro acelera uniformemente de 0 a 100 km/h em 10 segundos. Qual é a distância percorrida pelo carro durante esse tempo? a) 100 m b) 150 m c) 200 m d) 250 m Resposta: b) 150 m Explicação: Convertendo 100 km/h para m/s, temos \(100 \, km/h = \frac{100 \times 1000}{3600} \approx 27,78 \, m/s\). A aceleração é \(a = \frac{27,78}{10} = 2,78 \, m/s²\). A distância percorrida é \(d = \frac{1}{2} a t^2 = \frac{1}{2} \times 2,78 \times 10^2 = 139 \, m\). 9) Um foguete é lançado verticalmente com uma velocidade inicial de 50 m/s. Considerando a aceleração da gravidade como -9,8 m/s², quanto tempo levará para o foguete atingir sua altura máxima? a) 3,5 s b) 5,0 s c) 7,0 s d) 10,0 s Resposta: a) 5,0 s Explicação: O tempo para atingir a altura máxima é dado por \(v = v_0 + at\). Quando o foguete atinge a altura máxima, \(v = 0\), então \(0 = 50 - 9,8t\), resultando em \(t \approx 5,1 \, s\). 10) Um atleta corre 100 metros em 12 segundos, e em seguida, descansa por 5 segundos. Depois, ele corre novamente 100 metros em 10 segundos. Qual é a velocidade média do atleta durante todo o percurso? a) 6,25 m/s b) 8,33 m/s c) 10 m/s d) 12,5 m/s Resposta: b) 8,33 m/s Explicação: A distância total é \(200 \, m\) e o tempo total é \(12 + 5 + 10 = 27 \, s\). A velocidade média é \(v_{média} = \frac{200}{27} \approx 7,41 \, m/s\). 11) Um carro que viajava a 80 km/h freia e reduz sua velocidade para 40 km/h em 5 segundos. Qual é a distância percorrida durante a frenagem? a) 50 m b) 60 m c) 70 m d) 80 m Resposta: b) 60 m Explicação: A desaceleração é dada por \(a = \frac{\Delta v}{\Delta t} = \frac{40 - 80}{5} = -8 \, m/s²\). A distância percorrida durante a frenagem é dada por \(d = v_0 t + \frac{1}{2} a t^2 = 80 \times \frac{5}{3600} + \frac{1}{2} \times (-8) \times 5^2 \approx 60 \, m\). 12) Um objeto é lançado para cima com uma velocidade inicial de 15 m/s. Qual é o tempo total que o objeto leva para retornar ao solo, considerando a aceleração da gravidade de - 9,8 m/s²? a) 2,5 s b) 3,0 s c) 3,5 s d) 4,0 s Resposta: b) 3,0 s