Prévia do material em texto
MATEMÁTICA BÁSICA, FINANCEIRA & RACIOCÍNIO LÓGICO PROFESSOR: PAULO DELGADO 168 e) nenhuma menina alegre é loira. Resolução: Sejam: L = o conjunto das meninas loiras. Am = o conjunto das meninas altas e magras. Oa = o conjunto das meninas de olhos azuis. A = o conjunto das meninas alegres. C = o conjunto das meninas de cabelos crespos. De acordo com o enunciado, L está totalmente dentro de Am que por sua vez é disjunto de Oa, pois “Todas as meninas loiras são, também, altas e magras, mas nenhuma menina alta e magra tem olhos azuis”. O enunciado diz, também que A está totalmente dentro de C que por sua vez se intercede com Oa, mas não se intercede com A, pois “Todas as meninas alegres possuem cabelos crespos, e algumas meninas de cabelos crespos tem também, olhos azuis, mas neste grupo de amigas não existe nenhuma menina que tenha cabelos crespos, olhos azuis e seja alegre”. Sabe-se também que C é disjunto de Am , pois “nenhuma menina de cabelos crespos é alta e magra” , então a conclusão é que “nenhuma menina alegra é loira” (E) 25. (TRT 2006 FCC) As afirmações seguintes são resultados de uma pesquisa feita entre funcionários de certa empresa. - Todo indivíduo que fuma tem bronquite. - Todo indivíduo que tem bronquite costuma faltar no trabalho. Relativamente a esses resultados, é correto concluir que: a) existem funcionários fumantes que não faltam ao trabalho. b) todo funcionário que tem bronquite é fumante. c) todo funcionário fumante costuma faltar ao trabalho. d) é possível que exista algum funcionário que tenha bronquite e não falte habitualmente ao trabalho. e) é possível que exista algum funcionário que seja fumante e não tenha bronquite. Resolução: Sejam: F = o conjunto dos indivíduos fumantes. B = o conjunto dos indivíduos que tem bronquite. T = o conjunto dos que costumam faltar ao trabalho. De acordo com o enunciado, F está totalmente dentro de B que por sua está totalmente dentro de T, pois “todo indivíduo que fuma tem bronquite” e “todo indivíduo que tem bronquite costuma faltar no trabalho”. Pelo diagrama, podemos concluir que “todo funcionário fumante costuma faltar ao trabalho”. (C) 26. (FCC 2006) Considere verdadeiras todas as três afirmações: I. Todas as pessoas que estão no grupo de Alice são também as que estão no grupo de Benedito. II. Benedito não está no grupo de Celina. III. Dirceu está no grupo de Emília. Se Emília está no grupo de Celina, então: a) Alice está no grupo de Celina. b) Dirceu não está no grupo de Celina. c) Benedito está no grupo de Emília. d) Dirceu não está no grupo de Alice. e) Alice está no grupo de Emília. Resolução: Sejam: A = o grupo de Alice. B = o grupo de Benedito. C = o grupo de Celina. d = o elemento Dirceu. E = o grupo de Emília. De acordo com as afirmações I e II, A está totalmente dentro de B que por sua vez é disjunto de C, pois “Todas as pessoas que estão no grupo de Alice são também as que estão no grupo de Benedito, mas Benedito não está no grupo de Celina”. A afirmação III diz, que d pertence a E que por sua está dentro de C, pois “Dirceu está no grupo de Emília, e se Emília está no grupo de Celina”, então: a conclusão é que “Dirceu não está no grupo de Alice” (D) 27. (ESAF 2002) Todas as amigas de Beto são, também, amigas de Berenice, mas nenhuma amiga de Berenice é amiga de Bruna. Todas as amigas de Bia são também amigas de Bela, e algumas amigas de Bela são, também, amigas de Bruna. Como nenhuma amiga de Bela é amiga de Berenice, e como Bela, Bia e Bruna não têm nenhuma amiga em comum, então: a) pelo menos uma amiga de Bia é amiga de Bruna. b) pelo menos uma amiga de Beto é amiga de Bruna. c) todas as meninas de Bela são amigas de Beto. d) todas as meninas de Bela são amigas de Bia. e) nenhuma amiga de Bia é amiga de Beto. Resolução: De acordo com o enunciado, o conjunto das amigas de Beto está contido no conjunto das amigas de Berenice que por sua vez é disjunto do conjunto das amigas de Bruna, pois “Todas as amigas de Beto são, também, amigas de Berenice, mas nenhuma amiga de Berenice é amiga de Bruna.” O enunciado diz, também que o conjunto das amigas de Bia está contido no conjunto das amigas de Bela que por sua vez se intercede com o conjunto das amigas de Bruna mas não se intercede com as amigas de Bia, pois “Todas as amigas de Bia são também amigas de Bela, e algumas amigas de Bela são, também, amigas de Bruna, e Bela, Bia e Bruna não tem nenhuma amiga em comum ”. Sabe-se também que o conjunto das amigas de Bela é disjunto do conjunto das amigas de Berenice, pois “nenhuma amiga de Bela é amiga de Berenice”, então a conclusão é que “nenhuma amiga de Bia é amiga de Beto” (E) 28. (FUNASA 2009) Qual é a negação da proposição “Alguma lâmpada está acesa e todas as portas estão fechadas”? a) Todas as lâmpadas estão apagadas e alguma porta está aberta. b) Todas as lâmpadas estão apagadas ou alguma porta está aberta. c) Alguma lâmpada está apagada e nenhuma porta está aberta. d) Alguma lâmpada está apagada ou nenhuma porta está aberta. e) Alguma lâmpada está apagada e todas as portas estão abertas. Resolução: O enunciado menciona sobre as lâmpadas estarem “acesas” e as portas estarem “fechadas”. Todas as alternativas mencionam sobre as lâmpadas estarem “apagadas” e as portas estarem “abertas”. Essas palavras são antônimas (acesa ≠ apagada, fechada ≠ aberta). 1º. Vamos escrever a frase usando as palavras antônimas: “Alguma lâmpada não está apagada e nenhuma porta esta aberta”. 2º. A frase equivalente ficou no formato: “Algum A não é B e Nenhum A é B”. A negação de Algum A não é B = Todo A é B, e a negação de Nenhum A é B = Algum A é B, além disso, entre as duas há um conectivo e, para se negar T B F L Am Oa A C Berenice Beto Bruna Bela Bia