Buscar

Apostila 4 Analise Combinatoria

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 23 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 23 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 23 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Professor Carlos Henrique
ANÁLISE COMBINATÓRIA
PRINCÍPIO MULTIPLICATIVO OU PRINCÍPIO DA CONTAGEM
Seja um acontecimento que pode ocorrer segundo duas etapas.
Se na primeira etapa ele pode ocorrer de a maneiras distintas e na segunda etapa, de b maneiras distintas, o acontecimento pode ocorrer no total de a x b maneiras distintas.
Permutações: É o tipo de agrupamento sem repetição em que entram todos elementos em cada grupo. Um agrupamento será diferente do outro em função da ordem dos seus elementos.
A B C
A C B
B C A
B A C
C A B
C B A
Pn = n!
. Fatorial: n! = n . (n - 1) . (n - 2) ..... . 2 . 1
Arranjo simples: É o tipo de agrupamento sem repetição em que um grupo é diferente do outro pela ordem ou pela natureza dos elementos componentes.
 Arranjo simples de n elementos tomados p a p.
Combinação simples: : É o tipo de agrupamento sem repetição em que um grupo é diferente de outro apenas pela natureza dos elementos componentes.
 Combinação de n elementos tomados p a p. 
RESUMINDO: No arranjo a ordem é importante, na combinação a ordem não é importante.
ATENÇÃO: No nosso trabalho não utilizaremos nenhuma das duas fórmulas. 
Arranjos simples são resolvidos pelo princípio multiplicativo.
E combinações simples utilizamos um macete simples. Por exemplo:
Seja 
 , faremos “3 em cima e 3 embaixo”. Assim 
 = 
SE o número de baixo for muito grande, tornaria o macete inviável. Então “transformaremos” a combinação na sua combinação complementar.
�� EMBED Equation.3 =
 Seguindo a “filosofia” do “2 em cima e 2 embaixo”.
Tais combinações são chamadas de complementares.
Genericamente:
P1) 
 se a + b = n.
P2) 
P3) 
PRINCÍPIO MULTIPLICATIVO OU DA CONTAGEM
- PERMUTAÇÕES
(TFC – CGU – ESAF - 2008) Ágata é decoradora e precisa atender o pedido de um excêntrico cliente. Ele ─ o cliente ─ exige que uma das paredes do quarto de sua fi lha seja dividida em uma seqüência de 5 listras horizontais pintadas de cores diferentes, ou seja, uma de cada cor. Sabendo-se que Ágata possui apenas 8 cores disponíveis, então o número de diferentes maneiras que a parede pode ser pintada é igual a:
a) 56
b) 5760
c) 6720
d) 3600
e) 4320
Como as listras devem ter cores distintas, para a primeira listra temos 8 possibilidades, para a segunda listra temos 7 possibilidades, para a terceira, 6, para a quarta, 5 e, finalmente, para a última temos 4 possibilidades.
Assim:
 
GABARITO: C
(MPU – ESAF) Paulo possui três quadros de Gotuzo e três de Portinari e quer expô-los em uma mesma parede, lado a lado. Todos os seis quadros são assinados e datados. Para Paulo, os quadros podem ser dispostos em qualquer ordem, desde que os de Gotuzo apareçam ordenados entre si em ordem cronológica, da esquerda para direita. O número de diferentes maneiras que os seis quadros podem ser expostos é igual a:
a) 20		b) 30		c) 24		d) 120		e) 360
Os quadros de Gotuzo devem aparecer em ordem cronológica (não necessariamente juntos), ou seja, G1 deve vir antes do G2 e este por sua vez antes do G3.
__ G1 __ G2 __ G3 __
Para colocarmos o primeiro Portinari (P1) temos 4 espaços.
P1 → 4 possibilidades
__ G1 __ P1 __ G2 __ G3 __
Podemos observar agora que P2 tem 5 possibilidades
P2 → 5 possibilidades
__ P2 __G1 __ P1 __ G2 __ G3 _
E, finalmente, P3 tem 6 possibilidades.
Logo, o total de possibilidades é
4 x 5 x 6 = 120
GABARITO: D
	
(AFRE-MG-2005/ESAF) Sete modelos, entre elas Ana, Beatriz, Carla e Denise, vão participar de um desfile de modas. A promotora do desfile determinou que as modelos não desfilarão sozinhas, mas sempre em filas formadas por exatamente quatro das modelos. Além disso, a última de cada fila só poderá ser ou Ana, ou Beatriz, ou Carla ou Denise. Finalmente, Denise não poderá ser a primeira da fila. Assim, o número de diferentes filas que podem ser formadas é igual a:
a) 420		
b) 480		
c) 360		
d) 240		
e) 60
Como a Denise é a “problemática”, iremos isolá-la:
 �
 ↓								↓
 1ª. Parte						 2ª. Parte
Façamos a 1ª. Parte:
__?_ x __? x __?_ x _3_
 A,B ou C
A 1ª. pessoa da fila não pode ser a Denise, nem a 4ª. Pessoa que foi colocada atrás. Portanto, sobram 5 possibilidades.
__5_ x __? x __?_ x _3_
 A,B ou C
A 2ª. pessoa da fila deve ser diferente da 1ª. e da última (porém agora, pode ser a Denise), logo sobram 5 possibilidades de novo.
__5_ x __5 x __?_ x _3_
E, finalmente, a terceira pessoa não pode ser igual às outras 3. Temos, portanto, 4 possibilidades.
__5_ x __5 x __4_ x _3_ = 300
Na 2ª. parte, a última pessoa tem que ser a Denise. 
	 D
Para a primeira sobram 6 possibilidades, para a segunda, 5 e para a terceira, 4.
 D
Logo o total de possibilidades é 300 + 120 = 420
GABARITO: A
(ANEEL – ESAF) Roberto e Alice vão sentar-se à mesma fila em um cinema. A fila tem 8 cadeiras, todas vazias. Como não querem sentar-se em cadeiras vizinhas, de quantas maneiras poderão sentar-se?
a) 40		
b) 42		
c) 48		
d) 56		
e) 64
A Alice possui 8 possibilidades para sentar.
ALICE → 8
___ ___ _A_ ___ ___ ___ ___ ___
A partir do momento que a Alice sentar, Roberto terá 5 possibilidades:
A = 8
R = 5
8 x 5 = 40
Agora entraremos com um “macete”.
Para podermos utilizar esta solução simples, precisamos ao final da mesma somarmos 2.
8 x 5 + 2 = 42
Por que somar 2?
Porque se Alice sentar em uma das “pontas”, Roberto terá 6 possibilidades e não 5. Logo há 2 soluções que não haviam sido contempladas anteriormente.
GABARITO: B
PERMUTAÇÕES
(ANEEL-2005/ESAF) Dez amigos, entre eles Mário e José, devem formar uma fila para comprar as entradas para um jogo de futebol. O número de diferentes formas que esta fila de amigos pode ser formada, de modo que Mário e José fiquem sempre juntos é igual a:
a) 2! 8!		
b) 0! 18!		
c) 2! 9!		
d) 1! 9!		
e) 1! 8!
A idéia é imaginarmos Mário e José como sendo uma só pessoa. Neste caso, teremos 9 pessoas na fila (9!). Como Mário e José podem permutar entre si, teremos 2!
 
Logo,
 
 9! . 2!
Gabarito: C
(MPOG) Três rapazes e duas moças vão ao cinema e desejam sentar-se, os cinco, lado a lado, na mesma fila. O número de maneiras pelas quais eles podem distribuir-se nos assentos de modo que as duas moças fiquem juntas, uma ao lado da outra, é igual a:
a) 2	
b) 4		
c) 24		
d) 48		
e) 120
Supondo as duas moças como sendo uma só (tal qual o problema anterior), teremos 4 pessoas na fila ( 4! ). Como as duas moças podem permutar entre si (2!) , teremos
 
 4! . 2! =
 4 x 3 x 2 x 1 x 2x1 = 
 48
Gabarito: E
(MRE – ESAF) Chico, Caio e Caco vão ao teatro com suas amigas Biba e Beti, e desejam sentar-se, os cinco, lado a lado, na mesma fila. O número de maneiras pelas quais eles podem distribuir-se nos assentos de modo que Chico e Beti fiquem sempre juntos, um ao lado do outro, é igual a:
a) 16		
b) 24		
c) 32		
d) 46		
e) 48
Supondo Chico e Beti como sendo uma só (tal qual o problema anterior), teremos 4 pessoas na fila ( 4! ). Como as duas moças podem permutar entre si (2!) , teremos
 
 4! . 2! =
 4 x 3 x 2 x 1 x 2x1 = 
 48
Gabarito: E
(MPOG) O número de maneiras diferentes que3 rapazes e 2 moças podem sentar-se em uma mesma fila de modo que somente as moças fiquem todas juntas é igual a:
a) 6	
b) 12		
c) 24		
d) 36		
e) 48
Esta questão NÃO é igual à questão anterior. Ela afirma que SOMENTE as moças podem ficar todas juntas. Nesse caso, teremos duas possibilidades:
___ ___ ___ ___ ___
R M M R R
___ ___ ___ ___ ___
R R M M R
Repare que a “missão” das moças é impedir que os rapazes fiquem todos juntos. Em cada caso anterior, teremos para as moças, 2! e para os rapazes, 3! .
1º caso : 2! x 3!
 2 x 1 x 3 x 2 x 1 = 12
2º caso: 12 ( A mesma coisa ).
 Logo
 12 + 12 = 24
Gabarito: C 
(MPU – ESAF) Quatro casais compram ingressos para oito lugares contíguos em uma mesma fila de teatro. O número de diferentes maneiras em que podem sentar-se de modo que:
homens e mulheres sentem-se em lugares alternados
todos os homens sentem-se juntos e que todas as mulheres sentem-se juntas
são respectivamente:
a) 1.112 e 1.152		
b) 1.152 e 1.100	
c) 1.152 e 1.152	
d) 384 e 1.112		
e) 112 e 384
Homens e mulheres em lugares alternados, significa:
___ ___ ___ ___ ___ ___ ___ ___
 H M H M H M H M
 OU
___ ___ ___ ___ ___ ___ ___ ___
 M H M H M H M H
Em cada caso, temos:
 
H= 4! = 24 e M= 4! = 24
 
24 x 24 = 576
 
576 + 576 (são dois casos, lembre-se?) = 1152.
Devo lembrar aos amigos que a questão fala em alternância entre homens e mulheres, porém não disse que os casais tinham que ficar juntos. Estamos comentando isso, porque esse foi um grande motivo de erros na questão. 
b) Homens juntos e mulheres juntas
___ ___ ___ ___ ___ ___ ___ ___
 H H H H M M M M 
 OU
___ ___ ___ ___ ___ ___ ___ ___
 M M M M H H H H
Em termos práticos, não há diferença entre o item a) e o item b).
 
No 1º caso, H = 4! e M = 4!
Logo : 4! x 4!= 24x24=576
576 + 576=1152
GABARITO: C
(ANALISTA ADMINISTRATIVO - ANEEL – ESAF) Um grupo de amigos formado por três meninos - entre eles Caio e Beto - e seis meninas - entre elas Ana e Beatriz - , compram ingressos para nove lugares localizados lado a lado, em uma mesma fila no cinema. Ana e Beatriz precisam sentar-se juntas porque querem compartilhar do mesmo pacote de pipocas. Caio e Beto, por sua vez, precisam sentar-se juntos porque querem compartilhar do mesmo pacote de salgadinhos. Além disso, todas as meninas querem sentar-se juntas, e todos os meninos querem sentar-se juntos. Com essas informações, o número de diferentes maneiras que esses amigos podem sentar-se é igual a:
a) 1920
b) 1152
c) 960
d) 540
e) 860
Trabalhemos primeiro com as meninas. Como Ana e Beatriz tornaram-se uma só, o número de meninas passe a ser 5. Teremos então 5! x 2! .
2! é a permutação da Ana e da Beatriz.
 
O caso dos meninos é parecido. Caio e Beto tornam-se um só, portanto, temos 2 meninos, o que gera 2! x 2! .
Além disso, meninos e meninas permutam entre si
Juntando tudo:
 
5! x 2! x 2! x 2! x 2!
5 x 4 x 3 x 2 x 1 x 2 x 1 x 2 x 1 x 2 x 1 x 2 x 1 = 1920
GABARITO: A
PERMUTAÇÕES COM REPETIÇÃO
Um sistema de sinalização visual é composto por dez bandeiras, sendo quatro vermelhas, três pretas e três brancas, as quais são hasteadas numa determinada ordem para gerar as mensagens desejadas. Sabe-se que apenas um centésimo das mensagens que podem ser geradas por este sistema é utilizado na prática. Deseja-se desenvolver um novo sistema de sinalização visual, composto apenas de bandeiras de cores distintas e que seja capaz de gerar, pelo menos, a quantidade de mensagens empregadas na prática. O número mínimo de bandeiras que se deve adotar no novo sistema é
A) 4.
B) 6.
C) 3.
D) 7.
E) 5.
Qual é o total de mensagens que podem ser geradas por 4 bandeiras vermelhas, três pretas e três brancas?
Esse é um caso típico de permutações com repetição, visto que trocando, por exemplo, duas bandeiras brancas de lugar, o resultado é inócuo.
P = 
 V P B
A questão afirma que apenas um centésimo das mensagens que podem ser geradas, ou seja, 1%4200 = 42, é utilizado na prática.
Utilizaremos agora um novo sistema que utiliza bandeiras de cores diferentes.
Façamos por tentativa:
n = 3 bandeiras → 3!= 6 mensagens
Não é suficiente. Precisamos de 42 mensagens.
 
n = 4 bandeiras → 4!= 24 mensagens
Ainda não é suficiente.
n = 5 bandeiras → 5!= 120 mensagens
Finalmente!
GABARITO: E
A figura abaixo representa o mapa de bairro, na qual há 7 ruas na direção norte-sul e 6 ruas na direção leste-oeste. Alexandre Meirelles, o guru, mora no ponto A, enquanto que sua jovem, linda e indefesa namorada mora no ponto B. Porém o malvado mago ESAFIM mora no ponto C e tentará impedir que Alexandre Meirelles, o guru, se encontre no ponto B com a sua jovem, linda e indefesa namorada. De quantas maneiras Alexandre Meirelles, o guru, consegue chegar ao ponto B (onde encontra-se a sua jovem, linda e indefesa namorada – eu já disse isso ?) sem passar pelo ponto C ?
a) 462		
b) 210		
c) 200		
d) 452		
e) 252
Seja qual for o caminho escolhido por Alexandre Meirelles, ele necessariamente será uma permutação do caminho.
DDDDDDCCCCC
Qualquer caminho mínimo conterá 6 “direitas” e 5 “para cima”.
O total de permutações que podemos formar com a “palavra” acima é:
 caminhos no total
 D C
Ótimo! Já achamos o total de caminhos.
Agora acharemos quantos caminhos passem pelo ponto C. Temos que fazer A para C e depois C para B.
A → C e C → B
DDDDCCCC			 DDC
A → C e 
D C D
70 . 3 = 210 caminhos passando por C
Portanto o número de caminhos que NÃO passam por C é
462 - 210 = 252 caminhos.
GABARITO: E
COMBINAÇÕES SIMPLES
(Auditor – Sefaz – PI) Em um grupo de dança participam dez meninos e dez meninas. O número de diferentes grupos de cinco crianças, que podem ser formados de modo que em cada um dos grupos participem três meninos e duas meninas é dado por:
a) 5.400		
b) 6.200		
c) 6.800		
d) 7.200		
e) 7.800
 10 MO 10 MA
 ↓	 ↓
 3R 2M
	Como em um grupo de dança a ordem não importa temos combinações simples.
	
Não utilizaremos a fórmula. Utilizaremos o macete.
 “três em cima e três embaixo”
= 
 “2 em cima e 2 embaixo”
= 
120 x 45 = 5400
GABARITO A
(AFRF – ESAF) Uma empresa possui vinte funcionários, dos quais dez são homens e dez são mulheres. Desse modo, o número de comissões de cinco pessoas que se pode formar com três homens e duas mulheres é:
a) 1.650		
b) 165		
c) 5.830		
d) 5.400		
e) 5.600
 10H 10M
 ↓	 ↓
 3R 2M
	Como em uma comissão a ordem não importa temos combinações simples.
	
Não utilizaremos a fórmula. Utilizaremos o macete.
 “três em cima e três embaixo”
= 
 “2 em cima e 2 embaixo”
= 
120 x 45 = 5400
GABARITO B
(TFC – CGU – 2008) Uma turma de 20 formandos é formada por 10 rapazes e 10 moças. A turma reúne-se para formar uma comissão de formatura composta por 5 formandos. O número de diferentes comissões que podemser formadas, de modo que em cada comissão deve haver 3 rapazes e 2 moças, é igual a:
a) 2500
b) 5400
c) 5200
d) 5000
e) 5440
 10R 10M
 ↓	 ↓
 3R 2M
	Como em uma comissão de formatura a ordem não importa temos combinações simples.
	
Não utilizaremos a fórmula. Utilizaremos o macete.
 “três em cima e três embaixo”
= 
 “2 em cima e 2 embaixo”
= 
120 x 45 = 5400
GABARITO B
(TFC – CGU – 2008) Ana precisa fazer uma prova de matemática composta de 15 questões. Contudo, para ser aprovada, Ana só precisa resolver 10 questões das 15 propostas. Assim, de quantas maneiras diferentes Ana pode escolher as questões?
a) 3003
b) 2980
c) 2800
d) 3006
e) 3005
Ana deve escolher 10 questões em 15. A ordem é importante nesse processo? Claro que não.
Combinação!
Porque 10 +5 = 15.
“5 em cima e 5 embaixo”.
GABARITO: A
Num acampamento estão 14 jovens, sendo 6 paulistas, 4 cariocas e 4 mineiros. Para fazer a limpeza do acampamento, será formada uma equipe com 2 paulistas, 1 carioca e 1 mineiro, escolhidos ao acaso. O número de maneiras possíveis para se formar essa equipe de limpeza, é:
a) 96		
b) 182		
c) 212		
d) 240		
e) 256
Na equipe de limpeza a ordem importa? Trabalhar Alex Meirelles e Carlos Henrique ou Carlos Henrique e Alex Meirelles tem diferença? NÃO! Então é... COMBINAÇÃO!
6 paulistas			 	4 cariocas		 	4 mineiros
 ↓					 ↓					 ↓
 2					 1				 1
 
			x		 
		x	 
 não deve ser feita. Qualquer combinação n, 1 a 1 é o próprio n. Ou seja
Logo 
“2 em acima, 2 embaixo”
Logo, 
15 x 4 x 4 = 240
GABARITO: D
(AFC – ESAF) Na Mega-Sena, são sorteadas seis dezenas de um conjunto de sessenta possíveis (as dezenas sorteáveis são 01, 02, ..., 60). Uma aposta simples (ou aposta mínima), na Mega-Sena, consiste em escolher seis dezenas. Pedro sonhou que as seis dezenas que serão sorteadas no próximo concurso da Mega-Sena estarão entre as seguintes: 01, 02, 05, 10, 18, 32, 35 e 45. O número mínimo de apostas simples para o próximo concurso da Mega-Sena que Pedro deve fazer para ter certeza matemática de que será um dos ganhadores, caso o seu sonho esteja correto é:
a) 8		
b) 28		
c) 40		
d) 60		
e) 84
Em 8 números, devemos combinar 6 (já que a ordem no sorteio da MEGA-SENA não importa).
Logo	
Porque 6 + 2 = 8
GABARITO: B
(FISCAL DO TRABALHO-2006/ESAF) Quer-se formar um grupo de dança com 9 bailarinas, de modo que 5 delas tenham menos de 23 anos, que uma delas tenha exatamente 23 anos, e que as demais tenham idade superior a 23 anos, Apresentaram-se, para a seleção, quinze candidatas, com idades de 15 a 29 anos, sendo a idade, em anos, de cada candidata, diferente das demais. O número de diferentes grupos de dança que podem ser selecionados a partir deste conjunto de candidatas é igual a:
a) 120		
b) 1220		
c) 870		
d) 760		
e) 1120
	
	X < 23
	X = 23
	X > 23
	Tenho
	8
	1
	6
	Quero
	5
	1
	3
	Total
	9 bailarinas
Como em um grupo de dança, a ordem não importa, teremos:
Lembramos que 5 + 3 = 8
56 . 20 = 1120
GABARITO: E
(ANEEL-/ESAF) Quer-se formar um grupo de danças com 6 bailarinas, de modo que três delas tenham menos de 18 anos, que uma delas tenha exatamente 18 anos, e que as demais tenham idade superior a 18 anos. Apresentaram-se, para a seleção, doze candidatas, com idades de 11 a 22 anos, sendo a idade, em anos, de cada candidata, diferente das demais. O número de diferentes grupos de dança que podem ser selecionados a partir deste conjunto de candidatas é igual a:
a) 85		
b) 220		
c) 210		
d) 120		
e) 150
11 – 12 – 13 – 14 – 15 – 16 – 17 (7 MOÇAS) – 18 – 19 – 20 – 21 – 22(4 MOÇAS)
	
	X < 18
	X = 18
	X > 18
	Tenho
	7
	1
	4
	Quero
	3
	1
	2
	Total
	6 bailarinas
Como em um grupo de dança, a ordem não importa, teremos:
GABARITO C
(GEFAZ-MG- ESAF) Marcela e Mário fazem parte de uma turma de quinze formandos, onde dez são rapazes e cinco são moças. A turma reúne-se para formar uma comissão de formatura composta por seis formandos, sendo três rapazes e três moças. O número de diferentes comissões que podem ser formadas de modo que Marcela participe e que Mário não participe é igual a:
a) 504		
b) 252		
c) 284		
d) 90		
e) 84
 10R	5M
 ↓	 ↓
 3R 5M
A questão não é tão simples. Há mais condições! Marcela tem que participar e Mário não pode participar.
	Com o Mário fora, teremos 3 vagas com 9 candidatos à mesma (Mário não disputa vaga), ou seja, 
	Com a Marcela participando, para as moças sobram duas vagas e 4 candidatas às mesmas.
	
	Resultado 6 x 84 =504
	GABARITO: A
Uma senhora possui 11 amigos e deseja convidar cinco deles para jantar. De quantas maneiras isso pode ser feito ?
460
462
464
466
468
Jantar? NHAM! NHAM! Estou faminto! Bom, faminto ou não a ordem não importa! (A não ser, é claro, que Alex e CH disputem para ver quem fica mais perto do frango...)
 		
GABARITO = B
Uma senhora possui 11 amigos e deseja convidar cinco deles para jantar. De quantas maneiras isso pode ser feito, sabendo-se que dois deles são casados e não podem ser convidados separadamente ?
200
210
220
230
240
João e Maria são casados entre si. A etiqueta “diz” que um não pode ser convidado sem o outro. Ou chama os dois, ou não chama nenhum dos dois.
2 dentro ou 2 fora
Se convidar os 2 (2 dentro), sobram 3 vagas para o jantar com 9 candidatos famintos disputando.
2 dentro = 
 
 
Se os 2 não forem convidados (2 fora! out!), teremos 5 vagas no jantar com 9 candidatos famintos.
 
Adivinhe por quê? 5 + 4 é igual a ... 9.
2 dentro ou 2 fora
 
84 + 126 = 210
GABARITO = B
Uma senhora possui 11 amigos e deseja convidar cinco deles para jantar. De quantas maneiras isso pode ser feito, sabendo-se que dois deles estão brigados e não podem ser convidados juntos ?
370
372
374
376
378
2 brigados! Imaginemos Alex Meirelles e CH brigados! Alex caluniou CH chamando-o de gordo (que absurdo!). Se os 2 forem convidados, eles se arranharão durante o jantar (briga de homem mesmo!).
Qual a solução?
Calculemos todos os jantares possíveis:
Calculemos os jantares em que Alex e CH estarão juntos.
2 in
 
Subtraindo os 2 resultados sobram os jantares em que os 2 não estarão juntos.
462 – 84 = 378
GABARITO: E
A partir de um grupo de oito pessoas, quer-se formar uma comissão constituída de quatro integrantes. Nesse grupo, incluem-se Arthur e Felipe, que, sabe-se, não se relacionam um com o outro. Portanto, para evitar problemas, decidiu-se que esses dois, juntos, não deveriam participar da comissão a ser formada. Nessas condições, de quantas maneiras distintas se pode formar essa comissão?
A) 70
B) 35
C) 55
D) 45
E) 40
Solução parecida com a anterior. Calculamos todas as comissões possíveis.
Agora, calculemos as comissões em que Felipe e Arthur apareçam juntos. Obviamente, nesse caso, sobrarão 2 vagas na comissão com 6 candidatos.
Subtraindo os 2 casos, sobrarão as comissões em que Felipe e Arthur não estarão juntos.
70 – 15 = 55
GABARITO: C
(MPOG - ESAF) Um grupo de estudantes encontra-se reunido em uma sala para escolher, aleatoriamente, por sorteio, quem entre eles irá ao Simpósio de Matemática do próximo ano. O grupo é composto de 15 rapazes e de um certo número de moças. Os rapazes cumprimentam-se, todos e apenas entre si, uma única vez; as moças cumprimentam-se, todas e apenasentre si, uma única vez. Há um total de 150 cumprimentos. O número de moças é, portanto, igual a:
a) 10		
b) 14		
c) 20		
d) 25		
e) 45
15 rapazes e X moças
Como os rapazes cumprimentam-se apenas entre si, teremos um total de cumprimentos igual a
 cumprimentos
Fez sentido? Cada cumprimento envolve duas pessoas e a ordem não importa. O total de cumprimentos é igual a 150. Como os rapazes são responsáveis por 105 cumprimentos, as moças são responsáveis por 45 cumprimentos. Logo,
Qual é a melhor maneira de acharmos o valor de x?
Se tentarmos resolver na “marra”, (2 em cima e 2 embaixo), cairemos em uma equação de 2º grau 
(AAAARGH!)
É melhor fazermos por tentativa.
OPÇÃO A
x = 10
 cumprimentos
YEEES! Estamos com sorte!
Logo na letra A.
GABARITO: A
(AFC-ESAF) Um grupo de dança folclórica formado por sete meninos e quatro meninas foi convidado a realizar apresentações de dança no exterior. Contudo, o grupo dispõe de recursos para custear as passagens de apenas seis dessas crianças. Sabendo-se que nas apresentações do programa de danças devem participar pelo menos duas meninas, o número de diferentes maneiras que as seis crianças podem ser escolhidas é igual a:
a) 286		
b) 756		
c) 468		
d) 371		
e) 752
Notemos que a questão não disse duas meninas, mas sim PELO MENOS duas meninas. Podem ser duas ou mais. A grana só dá para 6 crianças.
TOTAL 		7 MOS		4 MAS
POSSIBILIDADES:
4MOS e 2MAS 
	 ou
3MOS e 3MAS 
 ou
2MOS e 4MAS 
Uau! Tio! Seis combinações para fazer? Relaxe! Vamos ver o que pode ser simplicado.
= 1
De maneira geral, 
.
= 4, qualquer combinação de um número pelo seu antecessor, é o próprio número.
Genericamente 
Já nos livramos de duas combinações! Show!
E ainda, 
Das 6 combinações ficaremos com 3.
4MOS 2MAS ou 3MOS 3MAS ou 2MOS 4MAS
+ 35.4 + 21.1 = 371
GABARITO: D
 (ELETRONORTE) Cinco pessoas devem ser acomodadas em três quartos diferentes. Os quartos 1 e 2 acomodam no máximo duas pessoas; o quarto 3 só pode receber uma pessoa. O número de maneiras distintas de acomodarmos as cinco pessoas é igual a:
a) 6		
b) 20		
c) 30		
d) 45		
e) 60
 
Q1			Q2		 Q3
Chegando ao primeiro quarto, com 5 pessoas teremos:
Chegaremos ao segundo quarto, com 3 pessoas, o que nos leva a:
 (qualquer combinação de um número pelo seu antecessor é igual ao próprio número)
e, finalmente, chegamos ao último quarto com uma vaga e uma pessoa.
 10 . 3 . 1 = 30
GABARITO: C
(AUDITOR – CE - ESAF) Marcam-se 5 pontos sobre uma reta r e 8 pontos sobre uma reta r´ paralela a r. O número de triângulos com vértices com 3 desses 13 pontos é dado por:
230
220
320
210
___________________________ r
___________________________ r’
Imaginemos que pudéssemos formar triângulos com todos os 13 pontos. Quantos triângulos formaríamos?
	
Podemos observar que ao escolhermos três pontos da reta r não formamos triângulos porque tais pontos estão na mesma reta.
O mesmo argumento vale para a reta r’. Ao escolhermos três pontos da reta r’, não formamos triângulos. Logo o número de triângulos que podem ser formados é:
286 – 56 – 10 = 220 triângulos
GABARITO: B
(ANEEL - ESAF) Em um plano são marcados 25 pontos, dos quais 10 e somente 10 desses pontos são marcados em linha reta. O número de diferentes triângulos que podem ser formados com vértices em quaisquer dos 25 pontos é igual a:
 
(A) 2180
(B) 1180
(C) 2350
(D) 2250
(E) 3280
___________________________ 
.	.	.
		 . . . . 
 . . . . .
 . . .
	Se pudéssemos formar triângulos com todos os pontos, teríamos 
 triângulos
	Porém com os 10 pontos da reta não podemos formar triângulos.
	Logo o número total de triângulos é
	
	2300 – 120 = 2180 triângulos
	GABARITO: A
(Técnico de Finanças e Controle – SFC) Em uma circunferência são escolhidos 12 pontos distintos. Ligam-se quatro quaisquer destes pontos, de modo a formar um quadrilátero. O número total de diferentes quadriláteros que podem ser formados é:
a) 128	
b) 495		
c) 545		
d) 1.485	
e) 11.880
Para formar um quadrilátero necessitamos obviamente de 4 pontos.
	O total de quadriláteros que podemos formar com 12 pontos é
 quadriláteros
GABARITO: B
Marcam-se 8 pontos sobre uma circunferência. O número de polígonos convexos que podem ser formados com os 8 pontos é igual a:
a) 215		
b) 216		
c) 217		
d) 218		
e) 219
Quantidade de
Triângulos	
 triângulos
QUADRILÁTEROS 
 quadriláteros
PENTÁGONOS 
 pentágonos
HEXÁGONOS 
 hexágonos
HEPTÁGONOS 
 heptágonos
OCTÓGONOS 
 octógonos
219 polígonos
GABARITO: E
____ ____ ____ ____
 ↓ A,B ou C
 não 
 pode
 ser
Denise
ou
 ___ ___ ___ ___
 D
1 pessoas
2 pessoas
2 pessoas
�PAGE �
�PAGE �1�
_1319947393.unknown
_1319956871.unknown
_1320128058.unknown
_1320561258.unknown
_1320561418.unknown
_1320561470.unknown
_1320561691.unknown
_1320561692.unknown
_1320561535.unknown
_1320561458.unknown
_1320561270.unknown
_1320561209.unknown
_1320559669.unknown
_1320090515.unknown
_1320091222.unknown
_1320091384.unknown
_1320091456.unknown
_1320091500.unknown
_1320091289.unknown
_1320091003.unknown
_1320091106.unknown
_1320090652.unknown
_1320089731.unknown
_1320090093.unknown
_1319956935.unknown
_1319948728.unknown
_1319948997.unknown
_1319949234.unknown
_1319956720.unknown
_1319956795.unknown
_1319949678.unknown
_1319949773.unknown
_1319949859.unknown
_1319949608.unknown
_1319949140.unknown
_1319949191.unknown
_1319949073.unknown
_1319948862.unknown
_1319948904.unknown
_1319948811.unknown
_1319948143.unknown
_1319948573.unknown
_1319948641.unknown
_1319948340.unknown
_1319947680.unknown
_1319947963.unknown
_1319947581.unknown
_1319902295.unknown
_1319904146.unknown
_1319905384.unknown
_1319905597.unknown
_1319947238.unknown
_1319905526.unknown
_1319905140.unknown
_1319905307.unknown
_1319904268.unknown
_1319902521.unknown
_1319903015.unknown
_1319903576.unknown
_1319902599.unknown
_1319902360.unknown
_1319902485.unknown
_1319902326.unknown
_1319900611.unknown
_1319901732.unknown
_1319901938.unknown
_1319902057.unknown
_1319901813.unknown
_1319901624.unknown
_1319901660.unknown
_1319901179.unknown
_1319893639.unknown
_1319897725.unknown
_1319900384.unknown
_1319894381.unknown
_1134072817.unknown
_1319882369.unknown
_1319892997.unknown
_1134072770.unknown

Outros materiais