Buscar

Apostila Tecnicas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Coordenadoria de Automação Industrial 
 
 
 
 
 
 
 
 
 
 
 
 
 
Técnicas de Análise 
de Circuitos 
 
Eletricidade Geral 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Serra – 10/2005 
 
 
Centro Federal de Educação Tecnológica do Espírito Santo 1 
 
LISTA DE FIGURAS 
 
 
 
 
Figura 1 - Definição de nó, malha e ramo ...................................................................3 
Figura 2 – LKC ............................................................................................................4 
Figura 3 – Exemplo 1 da LKC .....................................................................................5 
Figura 4 – Aplicação do exemplo 1 da LKC ................................................................5 
Figura 5 – Exemplo 1 da LKC .....................................................................................6 
Figura 6 – Aplicação do exemplo 2 da LKC ................................................................6 
Figura 7 – LKT.............................................................................................................7 
Figura 8 – Exemplo 1 da LKT......................................................................................8 
Figura 9 – Aplicação do exemplo 1 da LKT.................................................................8 
Figura 10 – Exemplo 2 da LKC ...................................................................................9 
Figura 11 – Aplicação do exemplo 2 da LKT...............................................................9 
Figura 12 – Transformação de fontes .......................................................................11 
Figura 13 – Equivalência entre fonte de tensão e fonte de corrente .........................11 
Figura 14 – Exemplo de transformação de fonte.......................................................11 
Figura 15 – Exemplo da aplicação do teorema da superposição ..............................12 
Figura 16 – Efeito da fonte de 60 V no circuito..........................................................12 
Figura 17 – Efeito da fonte de 36 V no circuito..........................................................12 
Figura 18 – Circuito equivalente de Thévenin ...........................................................13 
Figura 19 – Exemplo da aplicação do teorema de Thévenin ....................................13 
Figura 20 – Retirando a carga do circuito, para análise de Thévenin .......................13 
Figura 21 – Calculo da resistência equivalente de Thévenin ....................................14 
Figura 22 – Calculo da tensão de Thévenin..............................................................14 
Figura 23 – Circuito equivalente de Thévenin do exemplo........................................14 
 
 
 
 
Centro Federal de Educação Tecnológica do Espírito Santo 2 
 
SUMÁRIO 
 
 
 
1 INTRODUÇÃO........................................................................................................3 
2 LEIS DE KIRCHHOFF ............................................................................................4 
2.1 LEI DE KIRCHHOFF PARA AS CORRENTES (LKC)..........................................4 
2.1.1 Como utilizar a LKC, procedimentos: ...........................................................4 
2.2 LEI DE KIRCHHOFF PARA TENSÃO (LKT)........................................................7 
2.2.1 Como utilizar a LKT, procedimentos:............................................................7 
3 TRANSFORMAÇÃO DE FONTES .......................................................................11 
4 SUPERPOSIÇÃO .................................................................................................12 
5 TEOREMA DE THÉVENIN ...................................................................................13 
6 REFERÊNCIAS ....................................................................................................15 
 
 
Centro Federal de Educação Tecnológica do Espírito Santo 3 
 
1 INTRODUÇÃO 
Em alguns circuitos, como a ponte de wheaststone e circuitos com mais de uma fonte, 
observa-se a necessidade de utilização de outros métodos mais avançados para análise e 
resolução de circuitos, pois os métodos utilizados para circuitos série-paralelo nem sempre 
podem ser aplicados. 
Para a utilização de métodos mais sofisticados devem ser entendidas algumas definições: 
 
• Nó: É a junção de três ou mais elementos de um circuito. 
• Ramo: É um caminho entre dois nós. 
• Malha: É um caminho elétrico fechado. 
 
 
Figura 1 - Definição de nó, malha e ramo 
 
 
Centro Federal de Educação Tecnológica do Espírito Santo 4 
 
2 LEIS DE KIRCHHOFF 
Esta técnica foi desenvolvida pelo físico alemão Gustav Robert Kirchhoff e é descrita em 
duas formas. 
2.1 Lei de kirchhoff para as correntes (LKC) 
“A soma das intensidades de correntes que chegam em um nó de um circuito é igual a soma 
das intensidades de correntes que saem desse mesmo nó.” 
I1I4
I2
 
Figura 2 – LKC 
CHEGAM SAEM
2 3 5 1 4
I I
 - SÍMBOLO DE SOMATÓRIO
I I I I I
=
+ + = +
∑ ∑
∑ 
2.1.1 Como utilizar a LKC, procedimentos: 
1) Adotar quais serão os nós principais e qual será o nó de referência do circuito (o terra do 
circuito, potencial é nulo, ou seja, 0V); 
2) Definir, arbitrariamente, os sentidos das correntes nos ramos do circuito; 
3) Aplicar a LKC, 
CHEGAM SAEM
I I=∑ ∑ , nos nós principais; 
4) Cálculo da corrente I do ramo pela seguinte expressão: 
N N
eq Ramo
N
N
V V EI = 
R
V : Tensão do nó onde a corrente sai
V : Tensão do nó onde a corrente chega
+E: Caso haja uma fonte de tensão que favorece a corrente
-E: Caso haja uma fonte de tensão que desfavor
− ±G H
G
H
eq Ramo
ece a corrente
R : Resitência equivalente do ramo
 
 
5) Resolver o sistema de equações da LKC, caso alguma corrente resultante seja negativa, 
o sentido real está ao contrário ao adotado. 
 
 
 
 
 
 
 
 
 
 
 
Centro Federal de Educação Tecnológica do Espírito Santo 5 
 
Exemplo 1: 
R1
R3
R2V1 V2
B
A
 
Figura 3 – Exemplo 1 da LKC 
1) Adotando nó A como nó principal e o nó B como nó de referência (0V); 
2) Adotar os sentidos das correntes nos ramos; 
3) Aplicar a LKC, 
CHEGAM SAEM
I I=∑ ∑ , nos nós principais; 
 
Figura 4 – Aplicação do exemplo 1 da LKC 
Obtendo a seguinte expressão: 1 2 3I I I+ = 
 
4) Cálculo da corrente I em cada ramo: 
 
a 1 a 1
1
1 1
0 - V + V - V + VI = 
R R
= , a corrente sai do nó B (0V), chega ao nó A (Va) e a fonte 
V1 favorece a corrente; 
a 2 a 2
2
3 3
0 - V + V - V + VI = 
R R
= , a corrente sai do nó B (0V), chega ao nó A (Va) e a fonte 
V2 favorece a corrente; 
a a
3
2 2
V - 0 VI = 
R R
= , a corrente sai do nó A (Va), chega ao nó B (0V) e não existe fonte no 
ramo. 
 
5) Resolver o sistema 
 
1 2 3
a 1 a 2 a
1 3 2
I I I
- V + V - V + V V
R R R
+ =
⎛ ⎞⎛ ⎞ + =⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠
 
 
Como V1, V2, R1, R2 e R3 são dados, determinam-se Va, e posteriormente, as 
correntes I1, I2, I3. Caso uma das correntes seja negativa, o sentido real da corrente 
está ao contrário em relação ao sentido adotado. 
 
 
Centro Federal de Educação Tecnológica do Espírito Santo 6 
 
Exemplo 2: 
 
Calcule as correntes em cada ramo do circuito abaixo. 
 
 
Figura 5 – Exemplo 1 da LKC 
1) Adotando nó A como nó principal e o nó B como nó de referência (0V); 
2) Adotar os sentidos das correntes nos ramos; 
3) Aplicar aLKC, 
CHEGAM SAEM
I I=∑ ∑ , nos nós principais. 
 
Figura 6 – Aplicação do exemplo 2 da LKC 
Obtendo a seguinte expressão: 1 2 3I I I= + 
 
4) Cálculo da corrente I em cada ramo: 
 
a a
1
0 - V + 60 - V + 60I = 
4 4
= , a corrente sai do nó B (0V), chega ao nó A (Va) e a 
fonte de 60 V favorece a corrente; 
a a
2
V - 0 VI = 
3 3
= , a corrente sai do nó A (Va), chega ao nó B (0V) e não existe fonte 
no ramo; 
a a
3
V - 0 - 36 V 36I = 
12 12
−= , a corrente sai do nó A (Va), chega ao nó B (0V) e.fonte 
36 V desfavorece a corrente 
 
5) Resolver o sistema 
 
1 2 3
a a a
a a a
a
a
I I I
- V + 60 V V - 36
4 3 12
- 3V 180 4V V 36
12 12
- 8V - 216
V = 27 V
= +
⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
+ + −=
=
 
 
 
 
Centro Federal de Educação Tecnológica do Espírito Santo 7 
 
Como: 
a
1
- V + 60 - 27 + 60I = = = 8,25 A
4 4
 
a
2
V 27I = = = 9 A
3 3
 
a
3
V - 36 27 - 36I = = = - 0,75 A
12 12
 
Observa-se que a corrente I3 está negativa, ou seja, o sentido adotado está inverso. 
2.2 Lei de Kirchhoff para tensão (LKT). 
“A soma de todas as tensões no sentido horário de uma malha, ou num circuito fechado, é 
igual às somas das tensões no sentido anti-horário.” ou 
 
“A soma de todas as quedas de tensões de uma malha, ou num circuito fechado, é igual à 
soma de todos os aumentos de tensão em relação à corrente adotada na malha, ou seja, a 
soma de todas as tensões na malha é igual à zero.” 
 
Figura 7 – LKT 
Para realização de soma algébrica das tensões no circuito elétrico, deve-se estabelecer: 
 
• Para um aumento de tensão atribuir um sinal positivo; 
• Para uma queda de tensão atribuir um sinal negativo. 
 
Resolvendo o circuito por LKT: 
1 2 3
V = 0
V V V 0− − =
∑ 
 
Observa-se que V1 é um aumento de tensão em relação a corrente I, pois a fonte V1 auxilia 
a corrente I, que foi adotada, e V2 e V3 são quedas de tensão, pois como são resistências 
(oposição à passagem de corrente elétrica) as diferenças de potencial nas resistências 
sempre é contrária a corrente. 
 
2.2.1 Como utilizar a LKT, procedimentos: 
1) Definir o sentido das correntes nas malhas (horário ou anti-horário), na prática defini-se o 
mesmo sentido da corrente para todas as malhas; 
2) Aplicar a LKT, V = 0∑ ; 
3) Resolver o sistema de equações originado da aplicação da LKT, caso alguma corrente 
seja negativa o sentido real está ao contrário ao adotado. 
 
 
 
 
Centro Federal de Educação Tecnológica do Espírito Santo 8 
 
Exemplo 1: 
R1
R3
R2
V1 V2
B
AC
D F
E
 
Figura 8 – Exemplo 1 da LKT 
1) Definir o sentido das correntes nas malhas (horário) 
2) Aplicar a LKT, V = 0∑ ; 
 
Figura 9 – Aplicação do exemplo 1 da LKT 
Malha A: ACDBA 
Malha B: AEFBA 
Observa-se que o ramo “AB” pertence à malha A e também a malha B. 
 
Malha A 
 
1 3 4 5
V = 0
V V V V 0− − + =
∑ 
 
• V1 e V5 são aumentos de tensão, pois auxiliam a corrente I1; 
• V3 e V4 são quedas de tensão, pois estão ao contrário da corrente I1, isto é devido por 
serem quedas nas resistências; 
• V5 está na equação da malha A, pois é uma tensão provocada por I2 no ramo “AB” 
que pertence à malha A. 
 
Como 3 1 1 4 2 1 5 2 2V =R .I , V =R .I , V =R .I 
( )
1 1 1 2 1 2 2
1 2 1 2 2 1
V - R .I - R .I + R .I 0
R + R .I - R .I V
=
= 
 
Malha B 
 
2 6 5 4
V = 0
 V V V V 0− − − + =
∑ 
 
 
 
Centro Federal de Educação Tecnológica do Espírito Santo 9 
 
• V4 são aumentos de tensão, pois auxiliam a corrente I2; 
• V2, V5 e V6 são quedas de tensão, pois estão ao contrário da corrente I2. V5 e V6 é 
devido por serem quedas nas resistências; 
• V4 está na equação da malha B, pois é uma tensão provocada por I1 no ramo “AB” 
que pertence a malha B. 
 
Como 4 2 1 5 2 2 6 3 2V =R .I , V =R .I , V =R .I 
( )
2 3 2 2 2 3 1
2 1 2 3 2 2
-V - R .I - R .I + R .I 0
- R .I + R R .I V
=
+ = − ` 
 
3) Resolver o sistema de equações originado da aplicação da LKT, caso alguma corrente 
seja negativa o sentido real está ao contrário ao adotado. 
 
( )
( )
1 2 1 2 2 1
2 1 2 3 2 2
R + R .I - R .I V
- R .I + R R .I V
=⎧⎪⎨ + = −⎪⎩
 
 
Exemplo 2: 
 
Calcule as correntes em cada malha do circuito abaixo. 
 
Figura 10 – Exemplo 2 da LKC 
1) Definir o sentido das correntes nas malhas (horário) 
2) Aplicar a LKT, V = 0∑ ; 
 
Figura 11 – Aplicação do exemplo 2 da LKT 
Malha 1 
 
1 2 5 6
1 1 2
1 2
V = 0
V V V V 0
60 - 4I - 3I + 3I =0
-7I 3I 60
− − + =
+ = −
∑
 
 
 
 
Centro Federal de Educação Tecnológica do Espírito Santo 10
 
• V1 e V6 são aumentos de tensão, pois auxiliam a corrente I1; 
• V2 e V3 são quedas de tensão, pois estão ao contrário da corrente I1, isto é devido por 
serem quedas nas resistências; 
• V6 está na equação da malha A, pois é uma tensão provocada por I2 no ramo “AB” 
que pertence à malha 1. 
 
Malha 2 
 
4 3 6 5
2 2 1
1 2
V = 0
-V V V V 0
-36 - 12I - 3I + 3I =0
3I 15I 36
− − + =
− =
∑
 
 
• V5 são aumentos de tensão, pois auxiliam a corrente I2; 
• V3, V4 e V6 são quedas de tensão, pois estão ao contrário da corrente I2. V3 e V6 é 
devido por serem quedas nas resistências; 
• V5 está na equação da malha B, pois é uma tensão provocada por I1 no ramo “AB” 
que pertence a malha 2. 
 
4) Resolver o sistema de equações 
 
1 2
1 2
7I + 3I 60
 3I - 15I 36
− = −⎧⎨ =⎩
 
 
Multiplicando a primeira equação por 5 e somando as duas equações tem-se: 
 
1 2
1 2
35I + 15I 300
 3I - 15I 36
− = −⎧⎨ =⎩ 
1
1
- 32I = - 264
I = 8,25 A
 
 
1 2
2
2
2
3I - 15I = 36
3 8,25 - 15I =36
-15I = 11,25
I = - 0,75 A
×
 
 
Observe-se que a corrente I2 está negativa, ou seja, o sentido adotado está invertido. 
 
A corrente no ramo AB, resistor de 3Ω, é igual a 1 2I - I , ou seja, 8,25 – (0,75) igual a 
9Ω. 
 
 
 
 
 
 
Centro Federal de Educação Tecnológica do Espírito Santo 11
 
3 TRANSFORMAÇÃO DE FONTES 
Existe uma equivalência entre uma fonte de tensão em série com uma resistência com uma 
fonte de corrente em paralelo com uma resistência, mantendo as mesmas características 
nos terminais da fonte, obedecendo à lei de ohm V = R x I. 
r
V
B
A
I r
B
A
 
Figura 12 – Transformação de fontes 
 
Dado os circuitos abaixo, existe uma equivalência entre eles, a corrente percorrida no 
resistor RL é a mesma nos dois circuitos. 
 
r
RLV
B
A
I r RL
B
A
IL IL
 
Figura 13 – Equivalência entre fonte de tensão e fonte de corrente 
Exemplo: 
 
Calcular a corrente IL no resistor de 3Ω, utilizando transformação de fontes. 
 
 
 
Figura 14 – Exemplo de transformação de fonte 
 
 
 
Centro Federal de Educação Tecnológica do Espírito Santo 12
 
4 SUPERPOSIÇÃO 
“Dado um circuito, contendo somente elementos lineares e com mais de uma fonte de 
tensão (e/ou corrente), a corrente em qualquer trecho do circuito é igual à soma algébrica 
das correntes individuais causadas por cada fonte independente atuando sozinha, com 
todas as outras fontes de tensão substituída por curtos-circuitos e todas as outras fontes de 
corrente substituídas por circuitos abertos". 
 
Exemplo: 
 
Calcular a corrente IL no resistor de 3Ω, utilizando o teorema da superposição. 
 
Figura 15 – Exemplo da aplicação do teorema da superposição 
 
Analisando o efeito da fonte de 60 VFigura 16 – Efeito da fonte de 60 V no circuito 
 
Analisando o efeito da fonte de 36 V 
 
Figura 17 – Efeito da fonte de 36 V no circuito 
Calculo da corrente IL e a tensão VL no resistor de 3 Ω será a soma algébrica do efeito de 
cada fonte. 
 
IL = IL’ + IL’’ 
IL = 7,5 + 1,5 
IL = 9 A 
VL = VL’ + VL’’ 
VL = 22,5 + 4,5 
VL = 27 V 
 
 
 
Centro Federal de Educação Tecnológica do Espírito Santo 13
 
5 TEOREMA DE THÉVENIN 
O teorema de Thévenin foi desenvolvido pelo engenheiro francês M.L.Thévenin. Este 
teorema tem como objetivo reduzir parte ou todo circuito num gerador de tensão, ou seja, 
uma fonte de tensão em série com uma resistência. 
 
O teorema de Thévenin descreve “para qualquer circuito de elementos resistivos e fonte de 
energia com um par de terminais identificado (em aberto), o circuito pode ser substituído por 
uma combinação série de uma fonte de tensão (VTH) e uma resistência (RTH)”. 
 
Resistência equivalente de Thévenin: RTH é igual à resistência equivalente vista entre os 
terminais identificados (em aberto), quando substituindo as fontes de tensão por um curto-
circuito e as fontes de corrente pó um circuito aberto. 
 
Fonte equivalente de Thévenin: VTH é igual à tensão vista entre os terminais identificados 
(em aberto). 
RTH
VTH
B
A
I
Circuito Elétrico Linear
RL
A
B
RL
I
Circuito equivalente de Thévenin
 
Figura 18 – Circuito equivalente de Thévenin 
Exemplo: 
 
Calcular a corrente IL no resistor de 3Ω, utilizando o teorema de Thévenin. 
 
Figura 19 – Exemplo da aplicação do teorema de Thévenin 
Primeiramente deve ser retirada a carga, ou seja, o resistor de 3Ω. 
 
Figura 20 – Retirando a carga do circuito, para análise de Thévenin 
 
 
Centro Federal de Educação Tecnológica do Espírito Santo 14
 
• Cálculo da resistência de Thévenin (RTH): substitui-se as fontes de tensão por um curto-
circuito e as fontes de corrente por um circuito aberto e calcular a resistência equivalente 
entre os pontos A e B. 
 
Observa-se que a resistência equivalente entre os pontos A e B é o paralelo entre os 
resistores de 4 Ω e 12 Ω. 
4 
B
12 A
RTH
3 
B
A
 
Figura 21 – Calculo da resistência equivalente de Thévenin 
• Cálculo da tensão de Thévenin (VTH): calcular a tensão entre os pontos A e B. 
 
Figura 22 – Calculo da tensão de Thévenin 
( )
TH 
60 - 36
I = = 1,5 A
4 + 12
V = 60 - 4 1,5 = 54 V×
 
 
Calculo da corrente na carga de 3 Ω, através do circuito equivalente de Thévenin. 
IL= 9 A
VTH
54 V
A
B
RTH = 3 
Circuito equivalente de 
Thévenin
Carga
3 
VTH
54 V
A
B
RTH = 3 
Cálculo da corrente na 
carga 
Figura 23 – Circuito equivalente de Thévenin do exemplo 
Observa-se que o circuito equivalente de Thévenin, em alguns casos, pode ser obtido 
através do teorema de transformação de fontes. 
 
 
 
 
 
 
 
 
Centro Federal de Educação Tecnológica do Espírito Santo 15
 
6 REFERÊNCIAS 
1 BARTKOWIAK, ROBERT A. Circuitos Elétricos. Editora Makron Books do Brasil, 
1999. 
 
2 GUSSOW, MILTON. Eletricidade Básica. Editora McGraw-Hill do Brasil, 1985. 
 
3 MARKUS, OTÁVIO. Circuitos Elétricos – Corrente Contínua e Corrente Alternada. 
Editora Érica, 2ª Edição, 2002.

Outros materiais