Buscar

MECANISMOS REGULADORES DO TRATO GASTROINTESTINAL

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 4 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Ao contrário dos sistemas cardiovascular e respiratório, o trato GI passa por períodos de quiescência relativa (o período entre as refeições) e por períodos de intensa atividade, após a ingestão de alimentos (período pós-prandial). Como consequência, o trato GI precisa detectar se houve ingestão de alimentos e responder a isso de modo apropriado. Além disso, a quantidade de macronutrientes pode variar, consideravelmente, de uma refeição para outra, e é preciso que existam mecanismos capazes de detectar essa variação e de preparar as respostas fisiológicas adequadas. Por isso, o trato GI precisa se comunicar com os órgãos associados, como o pâncreas. Por fi m, como o trato GI é, na prática, um longo tubo, é preciso que existam mecanismos por meio dos quais os eventos que ocorrem em sua porção proximal sejam sinalizados para as partes mais distais e vice-versa. 
Há três mecanismos de controle principais envolvi- dos na regulação do funcionamento GI: o endócrino, o parácrino e o neural. 
Regulação Endócrina 
A regulação endócrina é o processo por meio do qual a célula sensora do trato GI, a célula enteroendócrina (CEE), responde a um estímulo secretando um peptídio ou hormônio regulador que viaja pela corrente sanguínea até células-alvo situadas em um local distante de onde ocorreu a secreção. As células que respondem a hormônio GI expressam receptores específicos para esse hormônio. Os hormônios liberados pelo trato GI têm efeitos sobre células localizadas em outras regiões desse trato e também sobre estruturas glandulares as- sociadas, como o pâncreas. Além disso, os hormônios GI têm efeitos sobre outros tecidos que não têm papel direto na digestão e na absorção, como células endócrinas do fígado e do cérebro. 
As CEEs estão repletas de grânulos de secreção, cujos produtos são secretados pelas células em respos- ta a estímulos químicos e mecânicos que atingem a parede do trato GI. Além disso, as CEEs podem ser estimuladas por impulsos neurais ou por outros fatores não associados à refeição.
Existem muitos exemplos de hormônios secretados pelo trato GI. Vale a pena lembrar que o primeiro hormônio identifi cado foi o hormônio GI se- cretina. Um dos hormônios GI mais bem descritos é a gastrina, que é liberada por células endócrinas, locali- zadas na parede da parte distal do estômago. A liberação de gastrina é estimulada pela ativação da eferência parassimpática do trato GI, e a gastrina estimula, de modo intenso, a secreção ácida do estômago, no período pós-prandial. 
Regulação Parácrina 
A regulação parácrina é o processo por meio do qual um mensageiro químico ou peptídio regulador é liberado por célula sensora, com frequência uma CEE da parede intestinal, se difunde pelo espaço intersticial e age sobre célula-alvo próxima. Os agentes parácrinos exercem suas ações sobre vários tipos diferentes de células da parede do trato GI, inclusive sobre as células musculares lisas, os enterócitos absortivos, as células secretoras das glândulas e, até mesmo, sobre outras CEEs. 
Muitas substâncias podem agir como reguladores tanto parácrinos quanto endócrinos do funcionamento GI. Por exemplo, a colecistocinina, que é liberada pelo duodeno em resposta a proteínas e lipídios da ingesta alimentar, age de modo parácrino sobre as terminações nervosas locais e também tem influência sobre o pâncreas.
Regulação Neural do Funcionamento Gastrointestinal 
Os nervos e os neurotransmissores desempenham papel importante na regulação do funcionamento do trato GI. Na sua forma mais simples, a regulação neural ocorre quando um neurotransmissor é liberado por terminação nervosa, localizada no trato GI, e age sobre a célula inervada por esse neurônio. Entretanto, em alguns casos, não existem sinapses entre os nervos motores e as células efetoras do trato GI. A regulação neural do funcionamento do trato GI tem importância muito grande dentro dos órgãos, bem como entre partes distantes desse trato. 
A regulação neural do trato GI é surpreendentemente complexa. O intestino é inervado por dois conjuntos de nervos: os sistemas nervosos intrínseco e extrínseco. O sistema nervoso extrínseco consiste nos nervos que inervam o intestino, mas que têm seus corpos celulares do lado de fora da parede do intestino. Esses nervos extrínsecos fazem parte do sistema nervoso autônomo (SNA). O sistema nervoso intrínseco, também chamado sistema nervoso entérico, é composto por neurônios cujos corpos celulares estão na parede do intestino (plexos submucoso e mioentérico). Algumas funções do trato GI são muito dependentes do sistema nervoso extrínseco, mas algumas funções que podem ser executadas de modo independente do sistema nervoso extrínseco são inteiramente mediadas pelo SNE. Entretanto, os nervos extrínsecos podem, com frequência, modular o funcionamento do sistema nervoso intrínseco. 
Sistema Nervoso Extrínseco 
A inervação extrínseca que se dirige ao intestino é composta pelas duas principais subdivisões do SNA, a simpática e a parassimpática. A inervação parassimpática que chega ao intestino é composta pelos nervos vago e pélvicos. O nervo vago, o 10o nervo craniano, inerva o esôfago, o estômago, a vesícula biliar, o pâncreas, a primeira parte do intestino, o ceco e a parte proximal do cólon. 
Os nervos pélvicos inervam a parte distal do cólon e a região anorretal, além de outros órgãos pélvicos que não fazem parte do trato GI. Seguindo a organização típica do sistema nervoso parassimpático, os corpos celulares dos neurônios pré- ganglionares estão situados no tronco encefálico (vago) e na medula espinhal sacra (pélvicos). Os axônios desses neurônios cursam por nervos (nervos vago e pélvicos, respectivamente) até o intestino, onde fazem sinapse com neurônios pós-ganglionares na parede do órgão que, neste caso, são neurônios entéricos da parede do intestino. Esses nervos eferentes não inervam, diretamente, as células efetoras, situadas na parede do intestino. A transmissão nervosa ocorre sempre por meio de neurônio do SNE. 
Seguindo o modelo de transmissão do SNA, a sinapse existente entre os neurônios pré-ganglionar e pós- ganglionar é sempre do tipo nicotínico, isto é, a sinapse entre esses neurônios é mediada pela acetilcolina que é liberada da terminação nervosa do neurônio pré- ganglionar e age nos receptores nicotínicos do neurônio pós-ganglionar, que nesse caso é um neurônio intrínseco. 
A inervação simpática é formada por corpos celulares situados na medula espinhal e fibras nervosas que terminam nos gânglios pré-vertebrais (gânglios celíaco e mesentéricos superior e inferior). Esses corpos celulares e suas fibras nervosas correspondem aos neurônios pré-ganglionares. Essas fibras nervosas fazem sinapse com neurônios pós-ganglionares localizados nos gânglios, e as fibras destes últimos saem dos gânglios e se dirigem ao órgão-alvo, acompanhando os principais vasos sanguíneos e seus ramos. Raras vezes existe sinapse nos gânglios paravertebrais (cadeia de gânglios), como ocorre na inervação simpática de outros sistemas de órgãos. Algumas fibras simpáticas vasoconstritoras inervam, diretamente, os vasos sanguíneos do trato GI, e outras fibras simpáticas inervam estruturas glandulares da parede do intestino. 
O SNA, tanto a subdivisão simpática quanto a paras- simpática, também transporta as fibras de neurônios aferentes (em direção ao sistema nervoso central[SNC]); estas são fibras sensitivas. Os corpos celulares dos neurônios aferentes vagais ficam no gânglio nodoso. Esses neurônios têm projeção central que termina no núcleo do trato solitário, situado no tronco encefálico, e outra projeção terminal localizada na parede do in- testino. Os corpos celulares dos neurônios aferentes espinais que cursam junto com a via simpática estão separados por segmentos e se encontram nos gânglios das raízes dorsais. As terminações periféricas dos neurônios aferentes vagais e espinais estão localizadas em todas as camadas da parede do intestino, onde detectam informações sobre o estado desse órgão e as enviam ao SNC. Dessa forma, o SNC recebeinformações sobre o conteúdo luminal, como acidez, concentração dos nutrientes e osmolalidade, bem como sobre o grau de estiramento ou contração do músculo liso. A inervação aferente também é responsável pela transmissão dos estímulos dolorosos ao SNC. 
Existe via reflexa, cujos componentes — neurônios aferentes, interneurônios e neurônios eferentes — fazem parte da inervação extrínseca que se dirige ao trato GI. Os reflexos podem ser totalmente mediados pelo nervo vago (chamados reflexo vagovagal), que tem fibras aferentes e eferentes. As fibras aferentes vagais enviam informações sensitivas ao SNC e lá fazem sinapse com um interneurônio que, por sua vez, ativa neurônio eferente motor. Esses reflexos extrínsecos são muito importantes para a regulação do funcionamento GI, após a ingestão de refeição. 
Exemplo de reflexo vagovagal importante é o reflexo do relaxamento receptivo gástrico, no qual a distensão do estômago causa o relaxamento da musculatura lisa desse órgão. Esse fato permite que o estômago se encha, sem que ocorra aumento da pressão intraluminal. Em geral, como ocorre em outros sistemas de órgãos viscerais, os sistemas nervosos simpático e parassimpático tendem a trabalhar em oposição. Mas esse anta- gonismo não é tão simples como o observado, por exemplo, no sistema cardiovascular. A ativação do sistema nervoso parassimpático é importante para a resposta integrativa à refeição, e muitos exemplos disso serão analisados nos próximos capítulos. O sistema nervoso parassimpático, geralmente, ativa processos fisiológicos da parede do intestino, embora existam exceções dignas de nota. Em contrapartida, o sistema nervoso simpático tende a inibir o funcionamento GI e, com frequência, é ativado em circunstâncias fi siopatológicas. No geral, a ativação do sistema simpático inibe a função da musculatura lisa, mas existe exceção: a ativação da inervação simpática dos esfíncteres GI tende a provocar a contração da musculatura lisa dessas estruturas. Além disso, o sistema nervoso simpático é, especialmente, importante para a regulação do fluxo sanguíneo do trato GI. 
Inervação Neural Intrínseca 
O SNE é composto por dois plexos principais, que consistem em grupos de corpos celulares (gânglios) e suas fibras, todas originadas na parede do intestino. O plexo mioentérico fica situado entre a camada muscular circular e a longitudinal, e o plexo submucoso fica localizado na submucosa. Os neurônios dos dois plexos estão conectados por fibras interganglionares. 
De modo similar aos neurônios da parte extrínseca do SNA, os neurônios do SNE são caracterizados, funcionalmente, como neurônios aferentes, interneurônios e neurônios eferentes. Assim, todos os componentes de uma via reflexa podem estar contidos no SNE. Os estímulos que chegam à parede do intestino são detectados por neurônios aferentes, que ativam interneurônios. Após serem ativados, os interneurônios ativam neurônios eferentes e, como consequência, ocorre alteração no funcionamento do órgão. Dessa forma, o SNE é capaz de agir, de modo autônomo, em relação à inervação extrínseca. Entretanto, como já foi dito, os neurônios do SNE são inervados por neurônios extrínsecos e, portanto, o funcionamento dessas vias reflexas pode ser modula- do pelo sistema nervoso extrínseco. Por ser capaz de realizar suas próprias funções integrativas e vias reflexas complexas, o SNE é, às vezes, chamado de “pequeno cérebro do intestino”. Estima-se que existam no SNE tantos neurônios quantos existem na medula espinhal. Além disso, muitos hormônios GI também agem como neurotransmissores do SNE e do encéfalo em regiões envolvidas na eferência autônoma. Esses mediadores e peptídios reguladores são, por essa razão, denomina- dos “peptídios cérebro-intestinais”, e os componentes intrínsecos e extrínsecos que inervam o intestino são, às vezes, chamados de “eixo cérebro-intestinal”.

Continue navegando