Buscar

20181015 93135 Apost Prot Sistemas Elétricos Ap A

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

A-1 
Apêndice A CURTOS-CIRCUITOS EM SISTEMA DE DISTRIBUIÇÃO RADIAL 
A.1 Introdução 
 
A determinação das correntes de curtos-circuitos de sistemas elétricos, é fundamental para o 
projeto de um sistema de proteção, isto é: 
 
• Dimensionamento das capacidades de interrupção ou rutura dos equipamentos interruptores 
(chaves-fusíveis, disjuntores, religadores); 
• Dimensionamento de transformadores de corrente; 
• Ajustes de relés de proteção; 
• Estudo de seletividade e coordenação. 
 
Além disso, essas correntes também são usadas para determinação dos limites de suportabilidade 
térmica de cabos, transformadores, chaves de manobra, etc., pelo tempo necessário para atuação dos 
equipamentos de proteção. 
 
É importante observar que a magnitude de uma corrente de curto-circuito, ao contrário da corrente 
de carga, independe da potência da carga. Depende diretamente da potência do gerador. Isto é, tanto maior 
será a corrente de curto, quanto maior for a potência que o sistema poderá fornecer. 
 
A.2 Descrição do problema 
 
Quando ocorre um curto, surge um transitório equivalente ao fechamento de um circuito RL, em 
que R e L são os parâmetros do circuito (resistências e indutâncias). Nos primeiros instantes após o curto, a 
corrente é ASSMÉTRICA em relação ao eixo dos tempos, isto é : 
 
 
ττττ−−−−++++ /t0M,CCCC eIwtcosI=(t)I 
 
Onde , ττττ = X/R é a constante de tempo do circuito. 
 
A componente wtcosI M,CC , é conhecida como componente em regime ou simétrica. Já a 
componente ττττ−−−− /t0eI , é uma exponencial chamada de componente unidirecional (ou contínua). A 
componente assimétrica, ICC (t) , é a corrente dinâmica. 
 
Observando-se a equação acima, pode-se concluir que a assimetria da corrente será máxima 
imediatamente após o curto, tornando-se gradualmente simétrica com o passar do tempo. 
 
A duração da componente exponencial é função da constante de tempo do circuito, ou seja X/R, 
isto é: 
 
 Se R <<<<<<<< X , então ττττ →→→→ ∞ ���� I0 →→→→ const. ; 
 Se R >>>>>>>> X , resulta ττττ →→→→ 0 ���� I0 →→→→ 0 
 
Em sistemas elétricos de potência, os valores típicos dos tempos de duração da componente 
contínua, são de 1/2 a 8 ciclos de 60Hz (8,3 ms a 133,3 ms) . 
 
Tendo em vista a dificuldade de se determinar a magnitude de corrente assimétrica, ela é dividida, 
para efeito de simplificação de cálculo, nas suas componentes SIMÉTRICA e EXPONENCIAL. 
 A-2 
 
A componente simétrica ou de regime, é determinada pelos métodos convencionais de cálculo de 
curto-circuito. Para isso, emprega-se componentes simétricas, conforme será visto. 
 
A corrente assimétrica é calculada de, forma prática, através de fatores de assimetria. São 
utilizados para multiplicar o valor eficaz da componente em regime. São números que assumem valores 
típicos entre 1 e 1,7 , a depender da relação X/R (Tabela 1). Portanto, dependem da localização do curto-
circuito. 
 
Tab. 1 - Fatores de assimetria 
X/R F. Assim. X/R F. Assim. X/R F. Assim. 
Até 0,25 1,000 2.10 1,075 5,80 1,310 
0,30 1,004 2,20 1,080 6,00 1,315 
0,40 1,005 2,30 1,085 6,20 1,324 
0,50 1,006 2,40 1,090 6,40 1,335 
0,55 1,007 2,50 1,104 6,60 1,350 
0,60 1,008 2,60 1,110 6,80 1,360 
0,65 1,009 2,70 1,115 7,00 1,362 
0,70 1,010 2,80 1,123 7,25 1,372 
0,75 1,011 2,90 1,130 7,50 1,385 
0,80 1,012 3,00 1,140 7,75 1,391 
0,85 1,013 3,10 1,142 8,00 1,405 
0,90 1,015 3,20 1,150 8,25 1,410 
0,95 1,018 3,30 1,155 8,50 1,420 
1,00 1,020 3,40 1,162 8,75 1,425 
1,05 1,023 3,50 1,170 9,00 1,435 
1,10 1,025 3,60 1,175 9,25 1,440 
1,15 1,026 3,70 1,182 9,50 1,450 
1,20 1,028 3,80 1,190 9,75 1,455 
1,25 1,029 3,90 1,192 10,00 1,465 
1,30 1,030 4,00 1,210 11,00 1,480 
1,35 1,033 4,10 1,212 12,00 1,500 
1,40 1,035 4,20 1,220 13,00 1,515 
1,45 1,037 4,30 1,225 14,00 1,525 
1,50 1,040 4,40 1,230 15,00 1,550 
1,55 1,043 4,50 1,235 16,00 1,560 
1,60 1,045 4,60 1,249 17,00 1,570 
1,65 1,047 4,70 1,255 18,00 1,580 
1,70 1,050 4,80 1,260 19,00 1,590 
1,75 1,055 4,90 1,264 20,00 1,600 
1,80 1,060 5,00 1,270 22,50 1,610 
1,85 1,063 5,20 1,275 25,00 1,615 
1,90 1,065 5,40 1,290 27,75 1,625 
2,00 1,070 5,60 1,303 30,00 1,630 
 
 
Geralmente, a magnitude da corrente assimétrica é empregada para determinar a capacidade de 
interrupção de chaves e DISJUNTORES de proteção. Já o valor eficaz da componente simétrica, é usado 
nos estudos de seletividade e coordenação. 
A.3 Determinação de correntes de curtos-circuitos 
 
 A-3 
No cálculo destas correntes, são usados os diagramas de seqüências de fases, acoplados 
convenientemente de acordo o tipo de curto. 
 
 
Os diagramas de seqüências são de três tipos : seqüência positiva, negativa e zero. Na montagem 
destes diagramas, a fim de se determinar correntes de curtos-circuitos, é necessário se conhecer os circuitos 
de seqüências de seus componentes, basicamente: gerador, transformador e linha. 
 
 
 
a) Diagramas de seqüências de um gerador (Fig.1): 
 
IA
IA
IB
IC
1
1
1
EA
EB
EC
Z1
Z1
Z1
IA
IB
IC
2
2
2
Z2
Z2
Z2
IA
IB
IC
0
0
0
ZT
Z0
Z0
Z0
IB
IC
ZT
EA
EB
EC
Z0
3ZT
IA0
EA
Z1
IA1
Z2
IA2
(a)Gerador em
vazio aterrado
através de uma 
impedância
de seq. pos.
(c)Circuito trif.
de seq. neg.
(d)Circ. trif.
de seq. zero
(b)Circuito trif. (e)Circ. monof.
(f)Circ. monof.
de seq. neg.
(g)Cir. monof.
de seq. zero
de seq. pos.
 
 
Fig.1 - Diagrama de seqüências de um gerador trifásico 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 A-4 
b) Diagramas de seqüência zero de bancos trifásicos de transformadores ou de transformadores trifásicos 
de núcleo envolvente (Fig.2): 
 
 
Z0
Z0
Z0
Z0
Z0
(a) Diagramas de Ligação (b)Circuitos Equivalentes
de Sequência Zero
 
 
 Fig. 2- Diagramas de seqüência zero de um transformador 
 trifásico de núcleo envolvente ou de um banco trifásico 
 
É importante lembrar que não havendo o aterramento da estrela, não haverá caminho para as 
correntes de seqüência zero. 
 
Os diagramas de seqüências positiva e negativa de transformadores se apresentam de acordo com 
os circuitos da Fig. 3: 
 
Z1 Z2
(a)Diagrama de
Seq. Pos.
(b)Diagrama de 
Seq. Neg.
 
 
 Fig. 3 – Diagramas de seqüências positiva e negativa de um transformador 
 
As impedâncias são representadas por fase. No caso de ligação ∆ , é feita a transformação de 
DELTA para ESTRELA. 
 
c) Diagramas de seqüências de linhas: 
 
 A-5 
Os circuitos de seqüências dos condutores das linhas, são dados conforme Fig. 4 . Na prática, as 
impedâncias de seqüências positiva e negativa são tomadas iguais (Z1 = Z2). 
 
Z2
Seq. Neg.
Z1
Seq. Pos.
Z
(a)Diagrama de
Seq. Zero
0
(b)Diagrama de (c)Diagrama de
 
 
 Fig. 4 – Diagramas de seqüências de uma L.T. 
 
De acordo com o estudo de componentes simétricas para sistemas trifásicos, tem-se as seguintes 
relações: 
 
a = 1∠120o ; a2 = 1∠240o 
 
VAN = V0 + V1 + V2 ; (1) 
VBN = V0 + aV1 + a2V2 ; (2) 
VC N = V0 + a2V1 + aV2 ; (3) 
 
IA = I0 + I1 + I2 ; (4) 
IB = I0 + aI1 + a2I2 ; (5) 
IC = I0 + a2I1 + aI2 (6) 
A.4 Curto-circuito trifásico 
 
O curto trifásico é equilibrado (Fig. 5), portanto é representado somente pelo diagrama de 
seqüência positiva. Não aparecem as componentes de seqüências positiva e zero. A corrente é dada 
pela expressão : I I E
ZCC,3 1 1
Φ = = 
 
 
EA
EB
ZA
ZB
ZCEC
E
Z1
I1F
 
 
 Fig. 5 – Curto trifásico com seu circuito de seqüência positiva 
 
As tensões da fontesão consideradas sempre equilibradas, então nos diagramas de seqüências irá 
aparecer somente a componente de seqüência positiva. 
 
A impedância Z1 , representa a soma das impedâncias de seqüência positiva da fonte e dos 
condutores, por fase, até o ponto de falta F (Fig. 5) . 
 
 
 A-6 
 
A.5 Curto-circuito bifásico 
 
Na Fig. 6, está representado um curto-circuito envolvendo as fases B e C. O seu diagrama 
seqüencial equivalente é composto pelos circuitos de seqüência positiva e negativa. A seqüência zero não 
aparece, pois o curto não envolve a terra, portanto não oferece caminho para I0 . 
 
 
EA
EB
ZA
ZB
ZCEC
E
Z1
I1 Z2
I2
V1 V2
IB
IC
F
 
 
 Fig. 6 – Curto-circuito bifásico e seu circuito de seqüências 
 
 De acordo com os circuitos acima, podem-se escrever: 
 
IA = 0 ; IB = -IC ; VB = VC ; V1 = V2 
 
I1 = -I2 = E / (Z1 + Z2), considerando Z1 = Z2 , resulta: I1 = -I2 = E / 2Z1 
 
Substituindo-se os valores de I1 e I2 , nas relações (5) e (6) , obtêm-se: 
IB = (a2 - a )E / 2Z1 � ICC,2 φ = I j EZB =
3
2 1
 
IC = (a - a2)E / 2Z1 � ICC,2 φ = I j EZC = −
3
2 1
 
De acordo com os sinais das equações acima, observa-se que as correntes têm sentidos contrário. 
A.6 Curto-circuito bifásico-terra 
 
Este tipo de curto (Fig. 7), é desequilibrado e envolve a terra, portanto no seu circuito de seqüência 
têm as componentes de seqüência zero, positiva e negativa. 
 
EA
EB
ZA
ZB
ZCEC
IB
IC
F
E
Z1
I1
V1 V2Z2
I2
I0 Z0
V0
IF
IF
Fig. 7 Fig. 7.a
 
 Fig. 7 – Curto-circuito bifásico-terra e seu circuito de seqüências 
 
 
 
 A-7 
Observando-se os circuitos das Fig. 7 , obtêm-se as seguintes relações: 
 
IA = 0 ; ICC,2 φ = IF = IB + IC ; VB = VC = 0 (no ponto de falta) ; V0 = V1 = V2 
 
( ) ( )
I E
Z Z Z
Z Z
E Z Z
Z Z Z Z Z Z
E Z Z
D
E
DI
Z Z
I E Z I
Z
EZ
D
I E Z I
Z
EZ
D
1
1
2 0
2 0
2 0
1 0 2 0 1 2
2 0 1
2 0
2
1 1
2
2
0
0
1 1
0
0
2
=
+
+
=
+
+ +
=
+
� =
+
− =
−
� = −
− =
−
� = −
 I
 I
 
 
Substituindo-se os valores de I0 , I1 e I2 nas equações (5) e (6), resultam: 
 
IB = E (- Z2 + a2Z2 + a2Z0 - aZ0) / D ; 
 
IC = E (- Z2 + aZ2 +aZ0 - a2Z0) / D 
 
ICC,2 φT = IB + IC = - 3EZ2 / D 
 
Como Z1 = Z2 , então: ICC,2 φT = −3 1E
Z
D
 
A.7 Curto-circuito fase-terra 
 
Este curto é desequilibrado e envolve a terra (Fig. 8), então o seu circuito de seqüências é 
constituído das seqüências zero, positiva e negativa. 
 
 
EA
EB
ZA
ZB
ZCEC
E
Z1
I1
V1
V2
Z2
I2
I0
Z0
V0
IA
3I 0
F
 
 
 Fig. 8 – Curto-circuito fase-terra com seu circuito de seqüências 
 
As seguintes relações podem ser tiradas dos circuitos: 
 
IB = IC = 0 ; IA = ICC, φ T ; VA = 0 (no ponto de falta) ; I0 = I1 = I2 
 
I0 = I1 = I2 = E / (Z0 + Z1 + Z2) , como Z1 = Z2 , então I0 = I1 = I2 = E / (2Z1 + Z0) 
 
 
 A-8 
 
Substituindo-se os valores das componentes simétricas na equação (6), obtêm-se: 
 
 I I E
Z ZCC T A,φ
= =
+
3
2 1 0
 
 
A.8 Curtos-circuitos através de impedância 
 
As faltas discutidas anteriormente consistiam de curtos diretos entre fases ou entre estas e a terra. 
Isto é, foram desprezadas as IMPEDÂNCIAS DE FALTA (ZF). Entretanto, a maioria das faltas são 
resultantes de arcos entre fases ou entre estas e pontos aterrados, envolvendo, geralmente, os isoladores. 
Isto resulta em RESISTÊNCIA DE ARCO (Rarco). Além disso, quando a falta é para a terra, a 
RESISTÊNCIA DE TERRA(RT) deverá ser considerada. As Figuras 9 mostram os diversos tipos de curto 
através da impedância de falta (ZF). 
 
A
B
C
ZF
ZF
ZF
A
B
C
ZF
A
B
C
ZF
A
B
C
ZF
Fig.9.a Fig.9.b
Fig.9.c
Fig.9.d
 
 
 Fig. 9 – Curtos-circuitos através da impedância de falta ( ZF) 
 
Considerando ZF igual nas três fases, o curto TRIFÁSICO permanece equilibrado, portanto 
somente circulam correntes de seqüência positiva (Fig. 10), então : 
 
 I I E
Z ZCC F
,3 1
1
φ = = +
 
Para a falta BIFÁSICA, tem-se : 
 
I1 = -I2 = E / (Z1 + Z1F + Z2 + Z2F) 
 
Considerando Z1 = Z2 e Z1F = Z2F = ZF 
Resulta: I1 = -I2 = E / 2(Z1 + ZF) � ICC, 2 φ B = - ICC, 2 φ C = ( )j
E
Z ZF
3
2 1 +
 
A Fig. 10, mostra os diagramas de seqüências desse curto, onde pode ser visto ZF . 
 A-9 
No caso de falta BIFÁSICA À TERRA, a corrente que irá circular para a terra através da 
impedância ZF , será : ICC,2 φT = −3 1E
Z
D
 
O produto desta corrente por ZF , resulta na queda de tensão de seqüência zero no ponto da falta: 
 V0F = ZF ( −3 1E
Z
D
) = −�
�
�
�
�
�E
Z
D
ZF1 3 =3I0ZF 
Então, ZF deverá se apresentar no circuito de seqüência zero multiplicada por 3, para manter a queda de 
tensão, uma vez que neste circuito circula I0 , e não 3I0 , (Fig 10). Com ZF incluído, o valor do denominador 
D, passa a ser: D’ = Z1Z2 + Z1(Z0 + 3ZF) + Z2(Z0 + 3ZF) , 
portanto, a corrente do curto será dada por : I E
Z
DCC T,2
13φ = −
′
 
Se a falta for FASE-TERRA, a corrente de falta é dada por: I E
Z ZCC T,φ
=
+
3
2 1 0
 
A queda de tensão de seqüência zero, no ponto de falta, é: V0F = 3 2 1 0
Z E
Z ZF +
�
�
�
�
�
� =3I0ZF 
Então, do mesmo modo da falta bifásica-terra, a impedância ZF , será representada no digrama de seqüência 
zero com seu valor multiplicado por 3, Fig. 10: I E
Z Z ZCC T F
,φ = + +
3
2 31 0
 
 
 
 
 
 
 
 
 
 
 
 
 
E
Z1
I1 ZF
Fig. 10.a
 
Trifásico 
 
E
Z1
I1
V1
V2
Z2
I2
Z0
V0
3ZF
I0
I0
Fig.10.d
 Fase-terra 
 
E
Z1
I1 Z2
I2
V1 V2
ZF
Fig.10.b
 Bifásico 
 
E
Z1
I1
V1 V2Z2
I2
I0 Z0
V0
3ZF
Bifásico-terra 
 
Fig. 10 – Circuitos de seqüências para 
curtos-circuitos através de impedância 
 
 A-10 
Quando se considera a impedância de falta, a tensão na mesma não pode ser tomada igual a zero. O 
seu valor será: VF = ZF IF . 
A.9 Elevação de tensões nas fases sãs devido ao curto-circuito fase-terra 
Os curtos para a terra elevam as tensões das fases que não estão envolvidas (fases sãs). Os valores 
que irão atingir, dependem da resistência de falta, que no caso, é basicamente a resistência de terra “vista” 
pela corrente de curto. Isto é, dependerá da classe de aterramento do sistema (Tabela 2): 
Tab. 2 – Elevação de tensões divido a curtos-circuitos para a terra 
 
Classe de 
Aterramento 
 
Relações de 
 
Simetria 
Tensão 
Transitória 
Fase-Terra 
(pu da crista 
da tensão 
pré-falta) 
Tensão em 
Regime 
Fase-Terra 
(pu da 
tensão pré- 
falta) 
EfetivamenteA
terrado 1 3
0
1
≤ ≤
X
X
 
0 10
1
≤ ≤
R
X
 1,5 a 2,0 1,1 a 1,38 
Não 
Efetivamente 
Aterrado 
Aterrado através 
de X: 
X
X
0
1
3≥ 
Aterrado através 
de R: 
R
X
0
1
1≥ 
 
2,3 a 2,73 
 
1,38 a 1,73 
Multiaterrado 
a 4 Fios 
___ ___ 1,5 a 2,0 1,15 a 1,38 
Sistema 
Isolado ( X0 é 
Capacitiva) 
Delta: 
−∞ ≤ ≤ −
X
X
0
1
40 
Estrela Isolada: 
− ≤ ≤40 00
1
X
X
 
 
3,0 
 
≥ 1,73 
Para uma determinada falta à terra, as sobretensões atingirão os valores tabelados. Estes valores 
decrescerão no sentido do ponto de falta para a fonte. 
Considerando-se um curto fase-terra através de uma impedânciade falta (Fig. 9.d), as tensões, no 
ponto de falta, são calculadas por componentes simétricas. Da Fig.10.d , são tiradas as seguintes equações: 
 I E
Z Z Z ZF
1
0 1 2 3
=
+ + +
 ; V0 = - Z0 I0 ; V1 = E - Z1 I1 ; V2 = - Z2 I2 
Substituindo-se estes valores nas equações (1) , (2) e (3) , resultam: 
VAN = - Z0 I0 + E - Z1 I1 - Z2 I2 , mas I0 = I1 = I2 � VAN = E - (Z0 + Z1 + Z2) I1 = E - ZA I1 
Substituindo o valor de I1 , resulta : VAN = E - [ZA E / (ZA+3ZF)] = 3ZF E / (ZA +3ZF) = 3ZFI1 
Mas , I1 = ICC, φ F T / 3 � V Z IAN F CC T= ,φ 
 A-11 
VBN = - Z0 I0 + a2 (E - Z1 I1) + a (- Z2 I2) = a2 E - [E(Z0 + a2 Z1 + a Z2) / (Z0 + Z1 + Z2 + 3ZF)] 
V a E EZ a EZ aEZ
dBN
= −
− −2 0
2
1 2
 , onde d = Z0 + Z1 + Z2 + 3ZF 
Fatorando a expressão acima , resulta : V E a Z a Z aZ
Z Z Z ZBN F
= −
+ +
+ + +
�
�
�
�
�
�
2 0
2
1 2
0 1 2 3
 (7) 
De maneira semelhante, obtêm-se : V E a Z aZ a Z
Z Z Z ZCN F
= −
+ +
+ + +
�
�
�
�
�
�0 1
2
2
0 1 2 3
 (8) 
Nas expressões (7) e (8) , fazendo-se ZF e Z0 tenderem a ZERO, obtêm-se: 
 
( )
V
Z a a E
Z
EBN =
−
=
1
2
12
3
2
∠270o ; 
( )
V
Z a a E
Z
ECN =
−
=
1
2
12
3
2
∠90o 
Para esta situação não há elevação das tensões das fases sãs. Então, concluí-se que quanto melhor 
o aterramento, isto é, resistência de terra mais baixa, menor será a elevação das tensões das fases sãs. 
Dividindo-se as expressões (7) e (8) por Z0 , resultam: 
V E a
a Z aZ
Z
Z Z Z
Z
E a
aZ a Z
Z
Z Z Z
Z
BN
F
CN
F
= −
+
+
+
+ +
�
�
�
�
�
�
�
�
�
�
�
�
= −
+
+
+
+ +
�
�
�
�
�
�
�
�
�
�
�
�
2
2
1 2
0
1 2
0
1
2
2
0
1 2
0
1
1 3
1
1 3
 ; V 
Nas expressões acima, fazendo-se Z0 → ∞ , resulta : VBN = (a2 - 1)E = 3 E ∠210o 
 VCN = (a -1)E = 3 E ∠150o 
Nesta situação, como era de se esperar, houve elevação das tensões das fases sãs. Portanto, 
concluí-se que, quanto pior o aterramento do sistema (resistência de terra elevada) , maiores serão as 
elevações das tensões das fases sãs. 
A.10 Comparação entre os módulos de correntes de curtos-circuitos 
Este estudo será feito, tomando-se como base a corrente de curto trifásica e será desprezada 
a impedância de falta. A comparação é importante, porque fornece condições para uma análise crítica dos 
valores das correntes de curtos nos diversos pontos do sistema. 
A.10.1 Curto-circuito trifásico versus fase-terra 
Dividindo-se a corrente de curto fase-terra pela trifásica, obtêm-se: I Z
Z Z
ICC T CC, ,φ φ= +
3
2
1
1 0
3 
 A-12 
Se : Z0 < Z1 � ICC, φ T > ICC,3φ (1) ; 
 Z0 = Z1 � ICC, φ T = ICC,3φ (2) ; 
 Z0 > Z1 � ICC, φ T < ICC,3φ (3) 
A condição (1) é comum nas proximidades de transformador ligado em ∆-ΥT , no lado ΥT , pois como foi 
visto no diagrama de seqüência zero, o circuito é aberto do lado ∆ para o lado YT. 
A.10.2 Curto-circuito trifásico versus bifásico-terra 
A razão entre a corrente de curto bifásico-terra e a trifásica, resulta: 
I
Z
Z Z
ICC T CC, ,2 1
1 0
3
3
2φ φ
= −
+
× 
 Se : Z0 < Z1 � ICC, 2 φ T > ICC,3φ (4) ; 
 Z0 = Z1 � ICC, 2 φ T = ICC,3φ (5) ; 
 Z0 > Z1 � ICC, 2 φ T < ICC,3φ (6) 
A condição (4) é semelhante à condição (1), portanto tudo que foi dito para a (1), vale para a (4). 
A.10.3 Curto-circuito trifásico versus bifásico 
Dividindo-se a corrente de curto bifásico pela corrente trifásica, obtêm-se: 
 I I ICC CC CC, , ,,2 3 3
3
2
0 866φ φ φ= = 
Isto é, os curtos trifásico e bifásico, calculados em um mesmo ponto , guardam sempre a relação acima. Ou 
seja, a corrente de curto bifásico vale aproximadamente 86% do valor da corrente de curto trifásico. 
Para o cálculo das correntes de curtos, são necessários os seguintes dados: 
• potências de curto-circuito (monofásica e trifásica) na barra de alta-tensão da subestação, ou 
impedâncias equivalentes (de seqüências positiva e negativa), vistas atrás desta barra (impedâncias 
equivalentes do sistema); 
• características do transformador da subestação: potência nominal , tensões nominais (primária, 
secundária e terceária, se for o caso) , impedâncias de seqüências positiva e zero , tipo de ligação ; 
• características do circuito: tipo , bitola e espaçamento dos condutores ; 
• distâncias entre os pontos que se deseja calcular os curtos ; 
• classe de aterramento do sistema (se for aterrado, informar a resistência de terra). 
 A-13 
A.11 Exercício de aplicação 
A Fig.11 mostra o diagrama unifilar de um sistema de distribuição primário (13,8kV), aéreo, 
trifásico a três fios e aterrado na S/E. Estão representados os equipamentos de proteção comumente 
utilizados: Disjuntor (52) ; Relés (51), que comandam o disjuntor ; Transformadores de Corrente (TC), que 
alimentam os relés ; Religador (R); Seccionalizador (S), que opera em conjunto com o religador e Chave-
Fusível (CF), cujo dispositivo sensor é o Elo-Fusível. Além destes equipamentos, estão representados os 
Transformadores de Força (TF) e de Distribuição (TD) , localizados na S/E e nos ramais, respectivamente. 
Y
13,8kV
69kV
51
52
TCTF
R
R
A
S
D
CF
C
CF
B2/0 CAA-8km 1/0CAA-3km
2/0CAA-6km
69/13,8kV
S=15MVA
Z1 =Z =8%0
4MVA
3,5MVA
TD
75KVA
CF
CF
TD
75KVA
CF
CF
45kVA
TD
 
 
Fig. 11- Sistema de distribuição radial 
Em cada ponto de instalação de um equipamento de proteção é necessário se conhecer as correntes 
de curtos-circuitos, portanto será necessário calculá-las. 
Dados para cálculo dos curtos: 
• potência de curto trifásico na barra de 69kV, na S/E: SCC,3 φ = √3 V ICC, 3 φ = 120MVA ; 
• para um espaçamento equivalente dos condutores de 1,355m, as impedâncias de seqüências são: 
 . Cabo 2/0 CAA : Z1 = Z2 = 0,4387 + j0,4567 Ω/km; Z0 = 0, 6163 + j 1, 9135 Ω/km 
 . Cabo 1/0 CAA : Z1 = Z2 = 0,5599 + j0,4501 Ω/km ; Z0 = 0,7275 + j1,9069 Ω/km 
• Para os curtos envolvendo a terra fora da S/E, considerar resistência de terra igual a 33,3Ω : 
3RT =100Ω (valor recomendado pelo CCON) ; 
• No caso de curtos envolvendo a terra dentro da S/E , considerá-los FRANCOS, isto é, fazer a 
resistência de terra igual a ZERO : RF = 0 
Resolução: 
1) Impedância de seqüência positiva equivalente do sistema, vista da barra de AT da S/E : 
 A-14 
 Z X V
SS S
BT
CC
1 1
2
3
213 8
120
15870= = = =( ) ( , ) ,
, φ
Ω 
2) Impedâncias de seqüências positiva e negativa do transformador: 
 X X Z V
ST T
BT
T
1 0
2 2
100
8
100
13 8
15
1 0157= = = =% ( ) ( , ) , Ω 
3) Impedâncias dos cabos, por trecho: 
AB : Z1 = 8 (0,4387 + j0, 4567) = 3,5096 + j3,6536Ω ; 
 Z0 = 8 (0,6163 + j1,9195) = 4,9304 + j15,3560Ω 
BC : Z1 = 6 (0,4387 + j0,4567) = 2,6322 + j2,7402Ω 
 Z0 = 6 (0,6163 + j1,9195) = 3,6978 + j11,5170Ω 
CD : Z1 = 3 (0,5499 + j0,4501) = 1,6497 + j1,3503Ω 
 Z0 = 3 (0,7275 +j1,9069) = 2,1825 + j5,7207Ω 
4) Determinação dos curtos na Barra A (S/E): 
Para isso, são necessários as montagens dos circuitos de seqüências, até o ponto de falta (Barra A): 
 
a) Curto Trifásico (diagrama de seq. pos.) : 
 
E
Barra de Referência
E=
3Z1T
Z1T =j1,0157ohms
1SZ
1SZ =j1,5870ohms
A 13,8
=7,97 kV
 
I Ej Z Z j j ACC T S, ( )
.
,
.3
1 1
7 970
2 6027
3062φ = +
= =
 
 
 
 
 
 A-15 
b) Curto Bifásico(diagramas se seqüências pos. e neg.) : 
E
A
Z1T
Z1T
Z2S
Z2SZ2T
Z2T
Z1S
Z1S
=
=
 
ICC,2 φ = I j EZ Z j j ACC T S, ( )
,
.
,
.2
1 1
3
2
0 866 7 970
2 6027
2 652φ = ± +
= ± = ± 
Esta corrente poderia ter sido calculada utilizando-se a relação : I I ICC CC CC, , ,,2 3 3
3
2
0 866φ φ φ= = 
c) Curto Bifásico-Terra (diagramas de seqüências. pos. , neg. e zero) : 
E
A
Z1T
Z2S
Z2S
Z1S
Z1S
Z1T Z2T=
=Z2TZ0T
Z0T =
 
Observações: 
(1) Devido à ligação do transformador de força ser do tipo ∆-ΥT , as impedâncias de seqüência zero do lado 
do ∆ , não passam. Isto é, não são representadas nos circuitos de seqüência zero, do lado YT . Por isso, Z0S 
não aparece no ramo de seqüência zero da figura acima. 
(2) Devido ao curto ser dentro da S/E, desprezou-se a resistência de terra (RF = 0) , isto é, considerou-se o 
curto FRANCO. 
I E
Z
D
Z Z
D
D Z Z Z Z Z Z Z Z Z Z
CC T
T S
T T S T T S T S T S
,
.
( )
( )( ) ( )( ) ( )( )
2
1 1 1
0 1 1 0 2 2 1 1 2 2
3 3 7 970φ = − = − ×
+
= + + + + + +
 
O cálculo desta corrente fica menos trabalhoso quando se utiliza a corrente de curto trifásica como base, 
isto é: I Z
Z Z
ICC T CC, ,2
1
1 0
3
3
2φ φ
= −
+
× 
I Z Z
Z Z Z
I jj j ACC T
T S
T S T
CC, ,
( )
( )
,
, ,
. .2
1 1
1 1 0
3
3
2
3 2 6027
2 6027 2 1 0157
3 062 5159φ φ= −
+
+ +
× = −
×
+ ×
× = − 
 
 
 A-16 
d) Curto Fase-Terra (diagramas de seqüências. pos., neg. e zero) 
As observações que foram feitas para o curto bifásico-terra, valem também para este curto. 
I E
Z Z
E
Z Z Z j j j ACC T T S T, ( )
.
, ,
.φ = +
=
+ +
=
×
× +
= −
3
2
3
2
3 7 970
2 2 6027 1 0157
3843
1 0 1 1 0
 
Este curto também poderia ter sido calculado tomando-se como base o curto trifásico, 
ou seja: 
I
Z
Z Z
I
Z Z
Z Z Z
ICC T CC T S
T S T
CC, , ,
( )
( )φ φ φ= + × =
+
+ +
×
3
2
3
2
1
1 0
3
1 1
1 1 0
3 
 
Os curtos nos demais pontos (B , C e D) , são calculados de maneira semelhante. Entretanto, é 
importante lembrar que na determinação das correntes dos curtos envolvendo a terra, fora da S/E, deve ser 
considerada a resistência de terra. (Entra nos circuitos de seqüência zero com o valor 3RT). 
A figura abaixo mostra o sistema da Fig. 11, com as correntes curtos SIMÉTRICAS calculadas 
nos pontos A, B, C e D: 
51
52
R
R
A
S
D
C
B
Legenda
ICC,3 0
I 0CC,2
0ICC,2 T
0ICC, T
3062
2652
5159
3843
1111
962
732
634
867
757
110
207
103
144
106
194
 
A.12-Exercício proposto 
(a) Monte os circuitos de seqüências para os curtos nos pontos B, C e D; (b) Calcule os curtos nestes pontos 
e confira com os resultados dados; (c) Determine as correntes ASSIMÉTRICAS nos pontos B e C ; (d) 
Dimensione os elos-fusíveis e as respectivas chaves-fusíveis; (e) Recalcule os curtos usando p.u. 
 
E
Z1S
Z2S
Z0T
Z1T
Z2T
A

Continue navegando