Prévia do material em texto
Parte superior do formulário Fechar Disciplina: PESQUISA OPERACIONAL Avaliação: CCE0512_AV1_201202129145 Data: 16/05/2017 18:19:36 (F) Critério: AV1 Aluno: Professor: SILVANA RIBEIRO LIMA Turma: 9003/AC Nota da Prova: 10,0 de 10,0 Nota de Partic.: 1a Questão (Ref.: 205072) Pontos: 1,0 / 1,0 Quais são as cinco fases num projeto de PO? Formar um problema; Resolução do modelo; Obtenção da solução; Teste do modelo e avaliação da solução e Implantação e acompanhamento da solução (manutenção) Resolução do problema; Construção do modelo; Obtenção da solução; Teste do modelo e avaliação da solução e Implantação e acompanhamento da solução (manutenção) Formulação da resolução; finalização do modelo; Obtenção das análises; Efetivação do modelo e avaliação da solução e Implantação e acompanhamento da solução (manutenção) Formulação do problema; Construção do modelo; Obtenção da solução; Teste do modelo e avaliação da solução e Implantação e acompanhamento da solução (manutenção) Formulação do problema; Construção do modelo; Obtenção da solução; Teste do modelo e solução e Implantação sem acompanhamento da solução (manutenção) 2a Questão (Ref.: 212135) Pontos: 1,0 / 1,0 Assinale a alternativa que não corresponde as problemas que podem ser resolvidos através da Pesquisa Operacional (PO) PROGRAMAÇÃO INTEIRA PROGRAMAÇÃO DINÂMICA TEORIA DAS FILAS PROGRAMAÇÃO BIOLÓGICA PROGRAMAÇÃO LINEAR Gabarito Comentado. 3a Questão (Ref.: 121888) Pontos: 1,0 / 1,0 Seja o seguinte modelo de PL: Max L = 2x1 + 3x2 sujeito a -x1 + 2x2 ≤ 4 x1 + 2x2 ≤ 6 x1 + 3x2 ≤ 9 x1, x2 ≥ 0 O valor de L máximo é: 16 4 12 8 20 Gabarito Comentado. 4a Questão (Ref.: 121906) Pontos: 1,0 / 1,0 Seja o seguinte modelo de PL: Max L = 2x1 + 3x2 sujeito a -x1 + 2x2 ≤ 4 x1 + x2 ≤ 6 x1 + 3x2 ≤ 9 x1, x2 ≥ 0 O valor de L máximo é: 14,5 16,5 13,5 15 15,5 Gabarito Comentado. Gabarito Comentado. 5a Questão (Ref.: 118604) Pontos: 1,0 / 1,0 Sejam as seguintes sentenças: I - Em um problema padrão de PL, toda desigualdade relativa a uma restrição do problema deve ser do tipo ≤ II - A região viável de um problema de PL é um conjunto convexo. III - Na resolução de um problema de PL, as variáveis definidas como zero são chamadas de variáveis não básicas. IV - Um problema de PL não pode ter uma única solução. Assinale a alternativa errada: III é verdadeira I e III são falsas IV é verdadeira I ou II é verdadeira III ou IV é falsa Gabarito Comentado. 6a Questão (Ref.: 121116) Pontos: 1,0 / 1,0 Seja a seguinte sentença: "A última tabela obtida pelo método Simplex para a resolução de um problema de PL apresenta a solução ótima PORQUE a linha objetiva da tabela tem elementos negativos nas colunas rotuladas com variáveis." A partir das asserções acima, assinale a opção correta: Tanto a primeira como a segunda asserção são falsas. As duas asserções são verdadeiras, e a segunda é uma justificativa correta da primeira. A primeira asserção é uma proposição falsa, e a segunda é uma proposição verdadeira. As duas asserções são verdadeiras, mas a segunda não é uma justificativa correta da primeira. A primeira asserção é uma proposição verdadeira, e a segunda é uma proposição falsa. Gabarito Comentado. Gabarito Comentado. 7a Questão (Ref.: 120693) Pontos: 1,0 / 1,0 Seja a primeira tabela do método simplex para cálculo da solução de um problema de PL: z x1 x2 xF1 xF2 xF3 b 1 -3 -5 0 0 0 0 0 2 4 1 0 0 10 0 6 1 0 1 0 20 0 1 -1 0 0 1 30 Quais são as variáveis básicas? x2, xF2 e xF3 x1 e x2 xF1, xF2 e xF3 x1 e xF1 x2 e xF2 Gabarito Comentado. Gabarito Comentado. 8a Questão (Ref.: 122395) Pontos: 1,0 / 1,0 Uma empresa fabrica dois modelos de cintos de couro. O modelo M1, de melhor qualidade, requer o dobro do tempo de fabricação em relação ao modelo M2. Se todos os cintos fossem do modelo M2, a empresa poderia produzir 1000 unidades por dia. A disponibilidade de couro permite fabricar 800 cintos de ambos os modelos por dia. Os cintos empregam fivelas diferentes, tipos A e B, cuja disponibilidade diária é de 400 para M1 (tipo A) e 700 para M2 (tipo B). Os lucros unitários são de R$ 4,00 para M1 e R$ 3,00 para M2. A quantidade que sobra de fivelas tipo A é: 250 100 180 200 150 9a Questão (Ref.: 266802) Pontos: 1,0 / 1,0 Considere o modelo Z de programação de produção de dois itens A e B, onde x1 e x2 são decisões de produção no período programado. Max Z= 25x1+40x2 Sujeito a: x1+ 5x2≤30 x1 + 3x2≤100 x1≥0 x2≥0 Desta forma,construa o modelo dual correspondente: Max D=30y1+100y2 Sujeito a: y1 + y2≥25 5y1+y2≥40 y1≥0 y2≥0 Min D=3y1+100y2 Sujeito a: 3y1 + y2≥20 5y1+3y2≥40 y1≥0 y2≥0 Min D=30y1+100y2 Sujeito a: y1 + y2≥25 5y1+3y2≥40 y1≥0 y2≥0 Min D=3y1+10y2 Sujeito a: y1 + 2y2≥25 5y1+3y2≥40 y1≥0 y2≥0 Max D=30y1+100y2 Sujeito a: y1 + y2≥25 y1+3y2≥40 y1≥0 y2≥0 Gabarito Comentado. 10a Questão (Ref.: 172651) Pontos: 1,0 / 1,0 Estabelecendo o problema dual do problema de maximização abaixo, obtemos Max Z=x1+2x2 Sujeito a: 2x1+x2≤6 x1+x2≤4 -x1+x2≤2 x1≥0 x2≥0 Min 6y1+4y2+2y3 Sujeito a: y1+y2-2y3≥1 y1+y2+y3≥2 y1≥0 y2≥0 y3≥0 Min 4y1+6y2+2y3 Sujeito a: 2y1+y2-y3≥1 y1+y2+y3≥2 y1≥0 y2≥0 y3≥0 Min 6y1+4y2+2y3 Sujeito a: 2y1+y2-y3≥1 y1+2y2+2y3≥2 y1≥0 y2≥0 y3≥0 Min 6y1+4y2+2y3 Sujeito a: 2y1+y2-y3≥1 y1+2y2+y3≥2 y1≥0 y2≥0 y3≥0 Min 6y1+4y2+2y3 Sujeito a: 2y1+y2-y3≥1 y1+y2+y3≥2 y1≥0 y2≥0 y3≥0 Gabarito Comentado. Parte inferior do formulário