Buscar

ALGA1M143 1516 teste2

Prévia do material em texto

Álgebra Linear e Geometria Analítica I (M143) 2015/16
Teste 2 – 16-12-2015
Duração: 2hrs
Nome completo: Número mecanográfico:
Curso: No. de folhas extra :
1 2 3 4 Total
1. (Cada alínea vale 0, 4 valores.) Considere as aplicações lineares f : R3 ! R3 e g : R2 ! R3 tais que:
f(1, 0, 0) = (1, 1, 0), f(0, 1, 0) = (1, 0, 1), f(0, 0, 1) = (2, 1, 1);
g(a, b) = (a, a+ b, 2a+ b), (a, b) 2 R2 .
Considere as bases b = ((1, 1), (1,�1)) de R2 e bc = ((1, 0, 0), (0, 1, 0), (0, 0, 1)) de R3. Indique, sem justificar:
a) f(1, 2, 3) b) f(a, b, c) c) Mbc,bc(f)
d) Uma base de ker(f) e) Uma base de Im(f)
f) ker(g) g) Mb,bc(g) h) Uma base de Im(g)
i) dim Im(f � g) j) dimker(f � g) k) Mb,bc(f � g)
2. (Cada alínea vale 0, 4 valores.) Em R3, considere as bases bc = ((1, 0, 0), (0, 1, 0), (0, 0, 1)) eB = ((0, 0, 1), (0, 1, 1), (1, 1, 1)),
o vector u = (1, 1, 3) e o subespaço S = {(x, y, z) 2 R3 : x+ y = 0}; indique sem justificar:
a) As coordenadas de u na base B b) MB,bc(idR3)
c) Mbc,B(idR3) d) Uma base de R3 contendo uma base de S
3. Cada alínea vale 0, 4 valores: deve apenas escolher a opção correcta sem justificar; à ausência de resposta é atribuída
a cotação de 0, a uma resposta errada é atribuída uma cotação de �0, 1 valores.
a) Considere os espaços vetoriais R3 e R6.
Existe uma aplicação f : R3 ! R6 linear e sobrejetiva.
Existe uma aplicação f : R3 ! R6 linear tal que dimker(f) = dim Im(f).
Existem aplicações lineares f : R3 ! R6 e g : R6 ! R3 tais que a composta g � f é injetiva.
Existem aplicações lineares f : R3 ! R6 e g : R6 ! R3 tais que a composta f � g é sobrejetiva.
b) Considere a aplicação linear f : R3 ! R3 tal que f(1, 1, 1) = (2, 2, 2), f(1, 2, 2) = (2, 4, 4), f(1, 1, 2) = (1, 1, 1).
f é diagonalizável e invertível.
f é diagonalizável e det(f) = 0.
f não tem valores próprios.
f não é diagonalizável mas admite um valor próprio.
c) Considere os seguintes subespaços de R3: S1 = {(x, y, z) 2 R3 : x+ y+ z = 0} e S2 = {(x, y, z) 2 R3 : x = �z, y = 0}.
Seja f : R3 ! R3 um endomorfismo cujo núcleo é S1 e conjunto imagem é S2. Seja bc a base canónica de R3 e A = Mbc,bc(f).
car(A) = 1
car(A) = 2
car(A2) = 1
car(A2) = 2
d) Considere a aplicação linear f : R3 ! R3 tal que f(1, 1, 1) = (1, 1, 1), f(1, 1, 0) = (0, 1, 1), f(0, 1, 1) = (1, 0, 1).
f é invertível e f�1(1, 2, 3) = (3, 1, 2).
f é invertível e f�1(1, 2, 3) = (2, 3, 1).
f não é invertível e dimker(f) = 1.
f não é invertível e dim Im(f) = 1.
e) Em C, considere as funções f, g : C! C tais que f(z) = Re(z) e g(z) = z.
f e g são aplicações lineares considerando C com a estrutura complexa usual.
f e g são aplicações lineares considerando C com a estrutura real usual.
Considerando C com a estrutura real usual, f é linear mas g não é linear.
Considerando C com a estrutura complexa usual, f é linear mas g não é linear.
f) Seja f : R3 ! R3 uma aplicação linear.
A soma de valores próprios de f é um valor próprio de f .
A soma de vetores próprios de f é um vetor próprio de f .
Se 0 é valor próprio de f então f não é um isomorfismo.
ker(f) = ker(f � f).
4. (1, 6 valores.) Nesta questão, deve responder e justificar em folha anexa.
a) Seja V um espaço vetorial real de dimensão finita n > 0. Sejam V1, V2 dois subespaços de V tais que V = V1 + V2 e
dimV = dimV1 + dimV2. Mostre que V1 \ V2 = {0V }.
b) Sejam f : Rn ! Rn e g : Rn ! Rn duas aplicações lineares tais que f � g = g � f . Qual a relação entre ker(f � g) e
ker(f), ker(g)?

Continue navegando