Buscar

CORPO NEGRO

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 35 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 35 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 35 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

NOTAS DE AULAS DE 
FÍSICA MODERNA 
 
 
Prof. Carlos R. A. Lima 
 
 
CAPÍTULO 2 
 
 
RADIAÇÃO TÉRMICA E CORPO NEGRO 
 
 
 
 
 
 
 
 
 
 
 Edição de janeiro de 2009 
 
 
 
 
 
 
 
 
 2
 
CAPÍTULO 2 – RADIAÇÃO TÉRMICA E CORPO NEGRO 
 
ÍNDICE 
 
2.1- Radiação Térmica 
2.2- Corpo Negro 
2.3- Teoria Clássica da Radiação de Cavidade de Rayleigh - Jeans 
2.4- Teoria de Planck da Radiação de Cavidade 
 
 
Nessa apostila aparecem seções, sub-seções e exemplos resolvidos intitulados como 
facultativos. Os assuntos que se referem esses casos, podem ser dispensados pelo professor 
durante a exposição de aula sem prejuízo da continuidade do curso de Estrutura da Matéria. 
Entretanto, é desejável que os alunos leiam tais assuntos e discutam dúvidas com o professor 
fora do horário de aula. Fica a cargo do professor a cobrança ou não dos tópicos facultativos. 
 
Excluindo os tópicos facultativos, esse capítulo deve ser abordado no máximo em 2 aulas de 
quatro créditos. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3
 4
 
 5
 
 6
 
 7
 
 8
 
 9
 
 10
 
 11
 
 12
 
 13
 
 14
 
 15
 
 16
 
 17
 
 18
 
 19
 
 
 20
 21
 
 22
 
 23
 
 24
 
 25
 
 26
 
 27
 
 28
 
 29
 
 30
 
 31
 
 32
 
 
 33
 
Lista de Exercícios 
 
1- Um corpo negro tem que ser necessariamente negro? Explique o termo corpo negro. 
 
2- Um pedaço de metal brilha com uma cor avermelhada a . Entretanto, nessa mesma temperatura, um 
pedaço de quartzo não brilha. Explique este fato sabendo-se que, ao contrário do metal, o quartzo é transparente à 
luz visível. 
K1100
 
3- Uma das primeiras tentativas de se explicar a distribuição espectral de um corpo negro foi feita por Rayleigh – 
Jeans, a partir de conceitos clássicos da termodinâmica. Em que região do espectro eletromagnético a lei de 
Rayleigh – Jeans não se verifica e que fato ficou conhecido como catástrofe do ultravioleta? 
 
4- Na tentativa de explicar os resultados experimentais observados no espectro de um corpo negro, Planck 
concluiu que o problema estava principalmente num conceito clássico da termodinâmica. Qual seria esse conceito, 
e que alteração foi sugerida por Planck? Essa alteração invalida conceitos clássicos da termodinâmica, ou redefine 
esses conceitos de modo a incluir os casos clássicos como particulares? Explique. 
 
5- Em muitos sistemas clássicos as freqüências possíveis são quantizadas, tal como, por exemplo, a propagação 
de ondas sonoras num tubo ressonante. Nestes casos, a energia também é quantizada? Explique. 
 
6- Faça uma estimativa para encontrar o comprimento de onda em que corpo humano emite sua radiação térmica 
máxima? 
 
7- Em uma explosão termonuclear, a temperatura no centro da explosão é momentaneamente 107 K . Ache o 
comprimento de onda para o qual a radiação emitida é máxima. 
 
8- A uma dada temperatura, nmmax 650λ = para uma cavidade de corpo negro. Qual será λmax se a taxa de 
emissão de radiação espectral for duplicada? 
 
9- O máximo da distribuição espectral da potência irradiada por certa cavidade ocorre para um comprimento de 
onda de m27,0μ (na região do infravermelho). A temperatura da cavidade é aumentada ata que a potência total 
irradiada se torne três vezes maior. (a) Determine a nova temperatura da cavidade. (b) Determine a nova posição 
do máximo da distribuição espectral. 
 
10- A energia solar que atinge a parte superior da atmosfera da terra é , a chamada constante 
solar. (a) Supondo que a terra se comporte como um corpo negro de temperatura uniforme use a equação de 
Stefan - Boltzmann para estimar a temperatura de equilíbrio da terra. (b) Se o diâmetro do sol é da ordem de 
 e a distância da terra ao sol é de aproximadamente e supondo que o sol irradie como 
um corpo negro use a equação de Stefan - Boltzmann para estimar a temperatura na sua superfície. 
W m31,36 10 /× 2
m91,6 10× m111,3 10×
 
11- A temperatura do filamento de uma lâmpada incandescente de é . (a) Supondo que o 
filamento se comporte como um corpo negro, determine o comprimento de onda 
W40 K3300
máxλ no ponto de máximo da 
distribuição espectral. (b) Supondo que máxλ seja uma boa aproximação para o valor médio do comprimento de 
onda dos fótons emitidos pela lâmpada, determine o número de fótons produzidos por segundo pela lâmpada. (c) 
Se um observador está olhando para a lâmpada a de distância, quantos fótons penetram por segundo nos 
olhos do observador, sabendo-se que o diâmetro da pupila humana é, aproximadamente, . 
m5
mm5
 
12- Um radiador de cavidade a tem um orifício de de diâmetro feito em sua parede. Ache a 
potência irradiada através do orifício no intervalo de comprimentos de onda entre a . Resp.: 
. (Sugestão: Use o fato que 
K6000 mm0,10
nm550 nm551
W7,53 ( )T TR R
551
550
dλ λ= ∫ é, aproximadamente, a área de um retângulo estreito no 
 34
gráfico ( )TR λ λ× , de largura nm551 550 1λΔ = − = . Encontre a altura do retângulo ( )TR λ , com 
( ) nm550 551 / 2 550,5λ = + = , usando a fórmula de Planck) 
 
13- Utilizando a relação ( ) εε −= Bk T
B
eP
k T
 mostre que ( )
0
ε ε ε ε
∞
= =∫ BP d k T . Mostre também que o ponto de 
máximo da função ( )Pε ε ocorre para Bk Tε = . 
 
14- Na determinação clássica da energia média total de cada modo da radiação no interior de uma cavidade 
ressonante, adotou-se a lei da eqüipartição da energia. De acordo com essa lei, moléculas de um gás que se 
movem em equilíbrio térmico a uma temperatura T , a energia cinética média por grau de liberdade da molécula é 
1
2 B
k T . Essa lei poderia ser aplicada ao problema do corpo negro desde que se adotasse um modelo mecânico de 
oscilador harmônico para as partículas que compõe as paredes da cavidade, como se fossem pequenos sistemas 
massa – molas, de modo que a energia potencial também deveria se incluída na determinação da energia total. A 
vibração dessas partículas, por conseqüência da temperatura, daria origem as vibrações dos campos elétricos 
associados às ondas eletromagnéticas transversais. Baseado nesse modelo mecânico, conclui-se que a energia 
média total por grau de liberdade deveria ser , isto é, o dobro da energia cinética média que se esperaria para 
cada partícula oscilante. Considerando-se que a energia total de um oscilador harmônico simples é 
Bk T
mv kx2
1 1
2 2
+ 2 , onde k é a constante elástica da mola, m é a massa da partícula, v sua velocidade e 
 sua posição em cada instante de tempo, mostre que essa energia total é o dobro da energia cinética 
média. 
x x t= 0 cosω
 
 
15- Obtenha a lei do deslocamento de Wien, máxT
32,898 10λ − K m= × × , a partir da função distribuição 
espectral de um corpo negro obtida por Planck ( ) 58 1 1λ
πρ λ λ= −BT hc k T
hc
e
. (Sugestão: faça a substituição de 
variável λ= B
hcx
k T
, e reescreva a função distribuição na forma ( ) ( ) ( )
5
4 3
2πρ λ = BT k T g xh c , onde ( ) x
x
g x
e
5
1
= − 
descreve a forma universal do espectro de um corpo negro para qualquer temperatura. Encontre o valor máxx para 
o qual a função é máxima, derivando-a em relação à g xb g x e igualando a zero. Use esse valor na equação 
λ=máx máx B
hcx
k T
 e obtenha o resultado procurado). 
 
 
16- Suponha que a radiação de uma cavidade de corpo negro a está sendo examinada através de um 
filtro passa banda de 
K5000
nm2λΔ = centrado no comprimento de onda máxλ , do pico do espectro. Se o orifício da 
cavidade é um círculo de raio r , encontre a potência cm1= P transmitida pelo filtro. (Sugestão: Usualmente, apotência irradiada seria calculada por ( )nmT T
nm
R R
581
579
dλ λ= ∫ multiplicada pela área do orifício. Entretanto, λΔ é 
pequeno o suficiente para permitir uma aproximação do tipo ( )T TR área abaixo da curva R máxλ λ= ≈ Δ , em 
que máxλ pode ser calculado utilizando-se a lei do deslocamento de Wien). Resp.: . P W25,3≈
 
 35
	Notas de Aulas de 
	Física Moderna
	Prof. Carlos R. A. Lima
	Capítulo 2
	Radiação Térmica e Corpo Negro
	 Edição de janeiro de 2009
	Capítulo 2 – Radiação Térmica e Corpo Negro
	Índice

Continue navegando