Buscar

Tratamento eletrostático

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 60 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 60 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 60 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Tecnologias de Tratamento Eletrostático no 
Processamento Primário de Petróleo 
 
 
RECURSOS HUMANOS 
UNIVERSIDADE PETROBRAS 
Escola de Ciências e Tecnologias E&P 
 
 
 
 
 
 
 
 
 
 
 
TECNOLOGIAS DE TRATAMENTO ELETROSTÁTICO NO 
PROCESSAMENTO PRIMÁRIO DE PETRÓLEO 
 
 
 
 
 
Autores 
 
Robson Pereira Alves 
Roberto Carlos Gonçalves de Oliveira 
João Batista Vianey da Silva Ramalho 
(CENPES/PDP/Tecnologia de Processamento Primário e Avaliação de Petróleos) 
 
 
 
 
 
Rio de Janeiro 
Abril de 2010
 
Escola de Ciências e Tecnologias E&P 1 
1. FORMAÇÃO DE EMULSÕES NO PROCESSAMENTO PRIMÁRIO DE PETRÓLEO 
 
1.1 CONCEITO DE EMULSÃO 
 
Uma emulsão é definida como uma mistura de dois líquidos imiscíveis, com um dos quais 
disperso no outro, sob a forma de gotículas, e mantém-se estabilizada pela ação de agentes 
emulsificantes. De forma resumida, podem-se classificar as emulsões de petróleo em dois 
grandes grupos: as emulsões tipo óleo em água (O/A), onde a água é a fase externa; e as 
emulsões tipo água em óleo (A/O), onde o óleo é a fase externa, sendo este último tipo o 
objeto deste curso. A figura 1 mostra a imagem de uma emulsão A/O, formada por diminutas 
gotas de água dispersa no petróleo. 
 
 
 
Fig. 1 – Imagem de uma emulsão de petróleo do tipo água-em-óleo por microscopia. 
 
A figura 2 mostra, didaticamente, uma gota de água de uma emulsão de petróleo do tipo 
água-em-óleo. Observe-se que a gota apresenta moléculas de emulsificantes adsorvidas na 
superfície da gota, dando origem a um filme interfacial que reveste e protege a gota. 
 
 
 
Fig. 2 – Representação de uma gota de água de uma emulsão do tipo água-em-óleo. 
 
 
 
Escola de Ciências e Tecnologias E&P 2 
Pode-se classificar a forma de apresentação da água contida no petróleo produzido em seis 
formas distintas: 
- livre, quando o diâmetro de gota é superior a 1000 micrometros; 
- dispersão grosseira, para diâmetro de gota entre 100 e 1000 micrometros; 
- emulsão pouco resistente ao tratamento, para diâmetro de gota entre 20 e 100 
micrometros; 
- emulsão resistente ao tratamento, para diâmetro de gota entre 0,5 e 20 micrometros; 
- dispersão coloidal, quando o diâmetro de gota é inferior a 0,5 micrometro; 
- água solúvel, quando a mesma encontra-se solubilizada a nível molecular no petróleo. 
 
Também se pode classificar e definir a água associada ao petróleo em livre, emulsionada e 
solúvel: 
- água livre: uma vez que água e óleo são líquidos imiscíveis e desde que o volume de água 
seja tal que não haja tempo suficiente para um íntimo contacto com o óleo, uma parte da 
água estará escoando junto com o óleo, porém em fases distintas, ou as gotas de água terão 
um diâmetro tal que torna fácil a coalescência. Nestes casos, a separação entre as fases é 
facilmente obtida por decantação. 
- água emulsionada: havendo um mistura muito íntima entre a água e o óleo, devido ao 
escoamento turbulento ou à ação cisalhante criada em bombas, válvulas, etc., a água se 
dispersa em gotículas muito pequenas, dando origem a uma emulsão água-óleo. O interesse 
do processo de desidratação está na remoção da água sob esta forma. 
- água solúvel: embora sejam considerados líquidos imiscíveis, existe uma pequena 
solubilidade da água em óleo. Esta solubilidade é função da temperatura (portanto, se 
separará ao se resfriar o petróleo), ou do tipo de hidrocarbonetos e dos compostos com 
heteroátomos presentes no petróleo (portanto, se separará do petróleo somente por 
destilação). 
 
1.2 A GERAÇÃO DE EMULSÃO DE PETRÓLEO 
 
O processo de produção de petróleo é normalmente acompanhado pela co-produção de 
água. Esta água pode ter como origem o próprio reservatório produtor ou ser conseqüência 
da utilização de processos de recuperação secundária, tais como injeção de água ou vapor. 
No início da produção de um reservatório, o teor de água no petróleo produzido tende a ser 
zero. Porém, com a continuidade da produção, este teor tende a aumentar, sendo comum 
ultrapassar 50%. A água produzida pode se aproximar de 100% à medida que o poço chega 
ao fim de sua vida produtiva. 
 
No reservatório, as fases água e óleo ainda estão separadas. A incorporação da água ao 
petróleo ocorre geralmente em função da forte agitação imposta a estas fases ao longo do 
processo de elevação, além do intenso cisalhamento imposto na forte despressurização 
ocorrida já na unidade de produção, através da válvula choke. A válvula choke é utilizada 
para regular e limitar a vazão de produção dos poços. Cada poço possui sua válvula choke, 
que se encontra instalada na linha de chegada do poço na Unidade de Produção. 
 
A maior ou menor facilidade que um petróleo tem de formar emulsões estáveis depende de 
vários fatores, dentre os quais destacam-se as suas propriedades físico-químicas, que por 
sua vez estão intrinsecamente relacionadas a sua constituição. É importante acrescentar que 
a formação de uma emulsão é um processo não-espontâneo, requerendo o fornecimento de 
energia ao sistema óleo-água. O grau de energia fornecido a este sistema depende 
essencialmente das características construtivas das facilidades e equipamentos utilizados 
 
Escola de Ciências e Tecnologias E&P 3 
durante o processo de produção do petróleo. 
 
De forma geral, considera-se que a formação de emulsões de petróleo está diretamente 
associada à presença de agentes emulsificantes. Estes agentes tendem a concentrar-se na 
superfície das gotas (ínterface óleo-água) e desta forma funcionam como uma barreira física 
e/ou elétrica, que dificulta a coalescência das gotas. Dentre os agentes tensoativos mais 
encontrados nos petróleos, destacam-se os asfaltenos, as resinas, os ácidos naftênicos e os 
finos, estes últimos oriundos da própria formação produtora, tais como o quartzo e as argilas, 
ou gerados a partir do processo de corrosão, a exemplo do óxido e sulfeto de ferro. 
 
Quando o agente emulsificante apresenta ação tensoativa, observa-se também a redução da 
tensão interfacial óleo-água, permitindo assim a formação de emulsões com diâmetros de 
gota bastante reduzidos. No entanto, diversos autores têm demonstrado que a redução da 
tensão interfacial óleo-água, por si só, não é capaz de elevar a estabilidade das emulsões e, 
portanto, esta propriedade física não pode ser utilizada isoladamente como parâmetro para 
quantificar a eficiência de emulsificação de um dado tensoativo. Estes autores também 
verificaram que a tensão interfacial óleo-água diminui com o tempo de contato, levando 
várias horas até que se atinja um valor estável; este fato indica que a velocidade de migração 
dos tensoativos naturais presentes nos petróleos é relativamente baixa e, portanto, quanto 
mais cedo se iniciar o tratamento, mais facilmente as emulsões serão rompidas. O 
envelhecimento da emulsão favorece a oxidação e compactação dos agentes emulsificantes 
na camada interfacial das gotas. 
 
Da mesma forma que a tensão, a viscosidade interfacial também sofre de histerese, ou seja, 
o seu valor só se estabiliza após várias horas (e até mesmo dias) da formação da emulsão; 
este comportamento é explicado pelo fato de que a formação da película quase-rígida de 
agente emulsificante depende da compactação das moléculas segundo um arranjo orientado 
gerado pelo equilíbrio dinâmico do sistema. 
 
A presença de cátions (principalmente os divalentes cálcio e magnésio), tende a provocar 
compactação das películas de agentes emulsificantes adsorvidas na interface óleo-água. 
Esta compactação causa um aumento na rigidez das películas, dificultando a drenagem do 
filme interfacial, conferindo por sua vez maior estabilidade as emulsões. 
 
Vários autores relatam a existência de uma relação entre os teores de asfaltenos, resinas, 
enxofre, nitrogênio e metais pesados, e a dificuldade de desidratação dos petróleos. 
Trabalhosmostram que as substâncias emulsificantes responsáveis pela estabilização das 
emulsões de petróleo tendem a se concentrar nas frações de refino mais pesadas. 
 
1.3 A ÁGUA CO-PRODUZIDA NO PETRÓLEO 
 
A separação da água na produção de petróleo faz-se necessária, pois, além de não 
apresentar valor econômico, contém diferentes tipos e teores de sais, onde se destacam os 
cloretos, sulfatos e carbonatos de sódio, cálcio e magnésio. Em geral, o cloreto de sódio é o 
sal inorgânico presente em maior quantidade. Por este motivo, o teor de sais (salinidade) de 
uma água produzida, ou de um petróleo, é sempre relatado com base no teor de NaCl. 
Valores típicos de salinidade são na ordem de 70 000 mg/L de NaCl (70 000 ppm), como os 
encontrados no campo de Marlim. Porém, podem atingir valores na ordem de 110 000 mg/L 
de NaCl (Marlim Leste P-53) ou 160 000 mg/L de NaCl (Roncador). Por outro lado, a água 
produzida no campo terrestre de Fazenda Alegre apresenta a salinidade de 27 000 mg/L, em 
 
Escola de Ciências e Tecnologias E&P 4 
função da injeção de vapor no reservatório. O teor de sais na água do mar se situa entre 
30 000 mg/L de NaCl e 40 000 mg/L de NaCl. Já no petróleo tratado (enviado da produção 
para as refinarias), o teor de sais deve ser menor que 570 mg/L de NaCl e o teor de água, 
menor que 1,0% v/v. 
 
1.4 CONSEQÜÊNCIAS DA PRESENÇA DE ÁGUA E SAIS NO PETRÓLEO PRODUZIDO 
 
A presença de água no petróleo produzido gera uma grande variedade de problemas 
operacionais e de perda de qualidade, não só do petróleo exportado como também das 
frações refinadas. No segmento de Exploração e Produção (E&P), a presença de água reduz 
a capacidade de armazenamento e transporte, além do aumento dos custos de escoamento 
e processamento. Propicia também o aparecimento de incrustações, aceleração do processo 
de corrosão das facilidades de processo e formação de hidratos, que poderá promover o 
bloqueio total ou parcial das linhas de produção. No segmento de abastecimento, além dos 
problemas já mencionados, também ocorre a perda de especificação de algumas frações 
refinadas, o envenenamento de catalisadores e o aumento do consumo de produtos 
químicos. 
 
Os cloretos de cálcio e magnésio, em presença de petróleo, já apresentam hidrólise em 
temperaturas acima de 130 
o
C. Esta hidrólise dá origem a formação de ácido clorídrico 
gasoso que condensa no topo das torres de refino. O ácido clorídrico é fortemente agressivo 
aos aços em geral. Para evitar corrosão dos equipamentos de refino, é comum a prática de 
injeção de amônia no topo das torres de destilação atmosférica. Cumpre destacar que a 
eliminação da amônia e seus subprodutos dos efluentes aquosos é extremamente difícil, 
gerando assim sérios problemas para o meio ambiente. 
 
A presença do cloreto de sódio no petróleo é bastante nociva aos processos catalíticos e 
sobre a especificação dos produtos finais. Inicialmente, o cloreto de sódio está solubilizado 
na água emulsionada no petróleo que será refinado. Contudo, após o aquecimento desta 
carga, a água vaporiza e os cristais de cloreto de sódio ficam dispersos nas frações 
refinadas, especialmente nas frações mais pesadas, como o resíduo atmosférico, que por 
sua vez é utilizado como carga para a produção de óleo combustível e asfalto. A presença do 
cloreto de sódio no asfalto reduz a sua ductibilidade enquanto que no caso do óleo 
combustível ocorre o aparecimento de resíduos de queima, capazes de agredir as partes 
aquecidas das caldeiras e fornos. O resíduo de vácuo pode ser utilizado como carga para as 
unidades de craqueamento catalítico (FCC), onde a temperatura de processo pode atingir 
700
o
C. Desta forma, uma grande quantidade de cloretos é decomposta gerando a altas 
concentrações de ácido clorídrico gasoso. Parte do sal não decomposto pelo processo de 
FCC fica aderido no catalisador, indo posteriormente ao regenerador onde a temperatura 
supera 700
o
C, dando origem a formação de compostos capazes de reduzir a atividade do 
catalisador, devido a perda de área superficial ativa por processo de sinterização do mesmo. 
 
 
Escola de Ciências e Tecnologias E&P 5 
2. MECANISMOS DE ESTABILIZAÇÃO DE EMULSÕES DE PETRÓLEO DO TIPO 
ÁGUA-EM-ÓLEO 
 
A estabilidade de uma emulsão está relacionada com o grau de dificuldade da emulsão de 
separar em suas fases originais. Esta dificuldade está relacionada com a natureza do filme 
interfacial que circunda as gotas de água, das interações entre as gotas que se aproximam 
uma das outras e das características físico-químicas do meio dispersante. 
 
A desestabilização da emulsão é obtida mediante a coalescência das gotas dispersas. A 
figura 3 ilustra as etapas que ocorrem durante o processo de coalescência entre duas gotas 
de uma emulsão. 
 
 
 
Fig. 3 – Etapas para a coalescência entre duas gotas. 
 
Primeiro, a gotas se aproximam, formando superfícies plano-paralelas entre elas. Em 
seguida, ocorre a drenagem do filme intersticial entre as gotas, que é acompanhada da 
drenagem e do afinamento do filme interfacial. Finalmente, com a ruptura do filme interfacial 
ocorre a coalescência das gotas em uma gota de maior tamanho, mais fácil de ser removida 
da fase oleosa por segregação gravitacional. 
 
2.1 EMULSIFICANTES NATURAIS DO PETRÓLEO 
 
A estabilidade das emulsões de petróleo do tipo água-em-óleo está relacionada com a 
natureza e a quantidade dos emulsificantes naturais existentes no petróleo. O petróleo é 
formado pela mistura de vários compostos, de natureza orgânica. Compostos como ácidos 
carboxílicos, ácidos naftênicos, composto nitrogenados, sulfurados e organometálicos, 
resinas e asfaltenos, apresentam regiões apolares e polares em sua estrutura molecular, que 
dão o caráter anfifílico (hidrofílico e lipofílico) a essas moléculas. Essa dupla afinidade a 
compostos orgânicos e à água faz com que essas espécies químicas apresentem ação 
surfatante ou tensoativa. Assim, quando as gotas de água são geradas, esses emulsificantes 
irão migrar e alojar-se na superfície das gotas de água, criando uma barreira (película ou 
filme interfacial), que impede o contato entre as gotas. A rigidez do filme irá depender da 
natureza e da quantidade de moléculas de emulsificantes adsorvidos na superfície das gotas 
e do grau de empacotamento dessas moléculas. 
 
As resinas, os ácidos naftênicos e, principalmente, os asfaltenos são os emulsificantes 
naturais que mais se destacam na formação e na estabilização das emulsões de petróleo do 
tipo água-em-óleo. Normalmente, quando se aumenta a quantidade de asfaltenos e de ácido 
naftênicos, aumenta a estabilidade dessas emulsões. As resinas têm sido relatadas como 
 
Escola de Ciências e Tecnologias E&P 6 
substâncias estabilizantes dos asfaltenos no petróleo, diminuindo a adsorção dos asfaltenos 
na superfície das gotas. 
 
Sólidos finamente divididos adsorvidos, com características anfifílicas, também são 
adsorvidos na superfície das gotas, como as argilas, promovendo a estabilização das 
emulsões de petróleo do tipo água-em-óleo. 
 
2.2 REPULSÃO ELÉTRICA 
 
A existência de emulsificantes naturais adsorvidos na superfície das gotas de água pode 
impedir, por repulsão elétrica, o contato para que haja a coalescência das gotas de água. 
Sabe-se que os emulsificantes naturais são compostos que apresentam polaridade em 
determinadas porções de sua estrutura molecular. Esses grupos polares são capazes de 
interagir eletricamente com a água, formando uma camada elétrica superficial (fig. 4), que 
causa a repulsão entre as gotas e impede o contato entre elas. Os sólidos finamente 
divididos também possuem carga elétrica superficial que pode causar a repulsão entre as 
gotas. 
 
 
Fig. 4 – Repulsão elétrica entre duas gotas de água. 
 
A estabilização pela repulsão elétrica é mais significante quando a fase contínua é a água,isto é, em emulsões do tipo óleo-em-água. 
 
2.3 IMPEDIMENTO ESTÉRICO 
 
A parte estrutural apolar das moléculas dos emulsificantes naturais adsorvidos na interface 
pode gerar um impedimento estérico (fig. 5), que impede a aproximação o contato entre as 
gotas. Os emulsificantes naturais possuem, em geral, elevado peso molecular e cadeias com 
estruturas complexas, que criam essa barreira física. Essa barreira física é comumente 
conhecida como película ou filme interfacial. 
 
 
Fig. 5 – Impedimento estérico entre duas gotas de água. 
 
2.4 FILME INTERSTICIAL 
 
Escola de Ciências e Tecnologias E&P 7 
 
Quando duas gotas se aproximam, as mesmas deformam-se e estabelece-se o 
aparecimento de superfícies plano-paralelas entre essas gotas, levando à formação um filme 
intersticial entre essas superfícies. A pequena distância criada entre as gotas faz com que, 
por capilaridade, haja a tendência à drenagem do filme intersticial (fig. 6). 
 
 
 
Fig. 6 – Drenagem do filme intersticial. 
 
Entretanto, com a formação das superfícies plano-paralelas e a drenagem do filme intersticial 
ocorre a perturbação da distribuição das moléculas dos surfatantes ao longo das superfícies 
plano-paralelas. Essa diferença de distribuição das moléculas do surfatante gera o 
aparecimento de um gradiente de tensão nessas superfícies e, para compensar esse 
desequilíbrio, imediatamente são gerados fluxos reversos para restaurar o equilíbrio de 
distribuição de surfatante na interface (fig. 7). Esses fluxos reversos contrapõem-se à 
drenagem do filme intersticial e, conseqüentemente, à desestabilização da emulsão. 
 
 
 
Fig. 7 – Drenagem do filme intersticial. 
 
2.5 FILME INTERFACIAL 
 
A rigidez do filme interfacial que circunda a gota é outro fator que influencia na estabilidade 
da emulsão. Filmes muitos rígidos apresentam dificuldade em serem rompidos, dificultado a 
coalescência entre as gotas. 
 
A viscosidade interfacial é um parâmetro que mede a resistência do filme interfacial a 
deformar-se, que tem haver com a estabilidade da emulsão, pois filmes com alta viscosidade 
interfacial reduz, consideravelmente, a drenagem do filme interfacial e, conseqüentemente, 
 
Escola de Ciências e Tecnologias E&P 8 
diminui a coalescência entre as gotas. 
 
A quantificação da compressibilidade do filme interfacial também avalia a rigidez do filme 
interfacial, e filmes interfaciais incompressíveis estão associados com a alta estabilidade da 
emulsão. 
 
Outro fenômeno que deve ser considerado rigidez do filme interfacial é o envelhecimento da 
interface. À medida que o tempo passa, mais emulsificantes vão sendo adsorvidos na 
superfície das gotas e maior é o grau de empacotamento das moléculas desses 
emulsificantes e a interação entre as moléculas. Conseqüentemente, o filme interfacial vai 
tornando-se cada vez mais espesso e rígido, aumentando a estabilidade da emulsão. 
 
 
 
Escola de Ciências e Tecnologias E&P 9 
3. MECANISMOS DE DESESTABILIZAÇÃO DE EMULSÕES DE PETRÓLEO 
DO TIPO ÁGUA-EM-ÓLEO 
 
Os mecanismos de desestabilização de emulsões são aqueles que dizem a respeito à 
quebra da emulsão. Eles são classificados de acordo com seu acontecimento cronológico. 
 
3.1 FLOCULAÇÃO 
 
A floculação é a aglomeração das gotas em agregados (fig. 8) quando a emulsão é posta em 
repouso. A floculação não é um fenômeno irreversível, podendo as gotas voltar a serem 
dispersas na fase contínua, quando submetidas à moderada agitação. 
 
 
 
Fig. 8 – Floculação das gotas de água. 
 
As forças responsáveis pela floculação são as de Van der Walls. Entretanto, a repulsão 
elétrica e o impedimento estérico podem impedir a etapa subseqüente: a coalescência. 
 
A floculação é uma etapa importante para a desestabilização das emulsões, uma vez que as 
gotas são colocadas mais próximas umas das outras, estando, portanto, predispostas para o 
processo de coalescência. 
 
3.2 COALESCÊNCIA 
 
A coalescência ocorre com ruptura do filme interfacial e a fusão das gotas em outra de maior 
tamanho e peso (fig. 9). O surgimento de gotas de maior tamanho favorece a sedimentação 
e, por conseguinte, a separação da água do petróleo. 
 
 
 
Fig. 9 – Fenômeno de coalescência. 
 
 
Escola de Ciências e Tecnologias E&P 10 
Como a coalescência das gotas só ocorre após os mecanismos de estabilização terem sido 
vencidos, o uso do produto quebrador de emulsão (desemulsificante) é essencial nesta 
etapa. 
 
3.3 SEDIMENTAÇÃO 
 
Em função da imiscibilidade entre as fases, da diferença de densidade e da ação do campo 
gravitacional, as gotas de água tendem a sedimentar, quando a emulsão é posta em 
repouso. 
 
A equação descrita por Stokes (eq. 1) demonstra a velocidade de sedimentação de uma gota 
de água em óleo. 
 
g.
.18
d).(
v
o
2
goa
g



 (1) 
onde: 
vg - velocidade de sedimentação da gota, cm/s; 
o - massa específica do óleo, g/cm³; 
a - massa específica da água, g/cm³; 
ηo - viscosidade absoluta do óleo, g/cm.s; 
dg - diâmetro da gota, cm; 
g - aceleração da gravidade, cm/s
²
. 
 
Várias conclusões podem ser retiradas desta equação: 
 quanto menor a diferença entre as massas específicas das fases (a - o), menor é a 
velocidade de sedimentação da gota de água. Desta maneira, os petróleos mais 
pesados (mais densos) apresentam maior dificuldade em separar água pelo 
mecanismo de segregação gravitacional; 
 quanto maior a viscosidade da fase externa (ηo), menor é a velocidade de 
sedimentação das gotas de água. Normalmente, os petróleos mais pesados exibem 
maior viscosidade, apresentando maior dificuldade em separar água. Como o aumento 
da temperatura é acompanhado da diminuição da viscosidade do meio, os petróleos 
pesados requerem o uso de maiores temperaturas de processo para separar a água; 
 quanto menor o diâmetro da gota de água (dg), menor é sua velocidade de 
sedimentação. Portanto, se possível, deve-se evitar que as emulsões de petróleo sejam 
submetidas a intensas taxas de cisalhamento. A escolha de métodos de elevação que 
imponham menores taxas de cisalhamento é de suma importância para a posterior 
separação da água do petróleo; 
 se a intensidade do campo gravitacional for aumentada, a velocidade de segregação da 
gota de água será maior. 
 
Ressalte-se que o modelo ideal proposto por Stokes não leva em conta os fenômenos e as 
interações físico-químicas envolvidas, além do fenômeno de coalescência que altera o 
tamanho das gotas. 
 
 
Escola de Ciências e Tecnologias E&P 11 
4. MÉTODOS DE DESESTABILIZAÇÃO DAS EMULSÕES DE PETRÓLEO DO 
TIPO ÁGUA-EM-ÓLEO 
 
Diferentes métodos de desestabilização das emulsões de petróleo do tipo água-em-óleo são 
empregados para promover a quebra das emulsões em campo. Eles serão apresentados a 
seguir. 
 
4.1 ADIÇÃO DE DESEMULSIFICANTE 
 
Uma emulsão de petróleo do tipo água-em-óleo é desestabilizada pelo deslocamento dos 
emulsificantes naturais na superfície das gotas, permitindo a coalescência das gotas. Esse 
produto químico é comumente conhecido na indústria de petróleo como desemulsificante. A 
figura 10 ilustra, de maneira simplificada, a quebra de uma emulsão de petróleo do tipo água-
em-óleo, mediante a adição do desemulsificante. 
 
 
 
Inicialmente, o desemulsificante, ao chegar 
à interface, desloca os emulsificantes 
naturais da interface, desestabilizando a 
emulsão. 
 
 
 
 
 
Em seguida, ocorre a coalescência das 
gotas em gotas de maior tamanho e peso. 
 
 
 
 
 
 
Finalmente, ocorre a sedimentação das 
gotas de água, havendo a separação da 
água do petróleo, por segregação 
gravitacional. 
 
 
Fig. 10 – Esquema da quebra da emulsão 
pela ação do desemulsificante. 
 
 
 
Escola de Ciências e TecnologiasE&P 14 
Cada petróleo requer o uso de formulação específica de desemulsificante e, normalmente, 
cada Unidade de Produção utiliza sua formulação de desemulsificante, para promover 
adequada separação da água do petróleo a ser tratado, compatível com as condições de 
processo. 
 
O ponto de injeção do desemulsificante é de suma importância para seu desempenho. 
Usualmente, o desemulsificante é injetado em linha, a montante do sistema de tratamento, 
numa região de fluxo com turbulência, para que se promova íntima mistura do mesmo na 
emulsão. O ponto de injeção do desemulsificante deverá ser localizado o mais afastado 
possível da planta de processamento primário, para que a ação do produto seja mais efetiva. 
A injeção do desemulsificante no interior do poço pode promover a melhor ação na 
desestabilização das emulsões de petróleo do tipo água-em-óleo, pois impedirá que os 
emulsificantes naturais migrem para a interface das gotas de água geradas durante o 
escoamento do petróleo. Essa prática está sendo usada nos novos projetos de produção e 
processamento de petróleos pesados 
 
A composição química do desemulsificante é algo pouco elucidado. Os desemulsificantes 
atualmente utilizados são tipicamente constituídos misturas de copolímeros em bloco de 
óxido de etileno (EO) e de propileno (PO), com diferentes relações molares EO/PO. 
Normalmente, as bases de desemulsificantes são obtidas mediante a propoxilação seguida 
da etoxilação de um aduto (A-O), comumente o glicerol, a resina fenólica e a resina epóxi. As 
formulações comerciais de desemulsificantes são obtidas mediante a mistura dessas bases. 
A figura 11 apresenta a fórmula química geral de uma base de desemulsificante. A figura 12 
apresenta fórmula química de algumas bases usadas no preparo de formulações de 
desemulsificantes. 
 
 
 
Fig. 11 – Fórmula química geral de uma base de desemulsificante. 
 
 
 
Fig. 12 – Fórmula química de bases de desemulsificantes. 
 
4.2 AQUECIMENTO 
 
O aquecimento da emulsão é acompanhado da diminuição da viscosidade do meio. Desta 
maneira, as principais vantagens da elevação da temperatura na desestabilização da 
emulsão são: 
 aumento da difusibilidade do desemulsificante no meio, facilitando a chegada do 
desemulsificante na superfície das gotas; 
 aumenta a taxa de colisão entres as gotas, pelo aumento do movimento browniano; 
 
 
Escola de Ciências e Tecnologias E&P 15 
 facilita a drenagem do filme intersticial; 
 diminui a rigidez do filme interfacial, facilitando a ruptura do filme e a coalescência das 
gotas; 
 aumenta a velocidade de sedimentação das gotas. 
 
A figura 13 mostra, para alguns exemplos de petróleo, como a viscosidade reduz com o 
aumento da temperatura. Analisando-se a equação de Stokes, é possível concluir como a 
redução da viscosidade é importante para a sedimentação das mesmas. Portanto, o 
aquecimento da emulsão aumenta a velocidade de separação da água do petróleo. 
 
 
Fig. 13 – Variação da viscosidade com a temperatura para alguns exemplos de petróleo 
 
 
4.3 AUMENTO DO TEOR DE ÁGUA 
 
À medida que aumenta o teor de água na emulsão, aumenta a população de gotas de água. 
Esse aumento é acompanhado de maior proximidade e do aumento de do tamanho das 
gotas. Com o aumento da população de gotas na emulsão, o sistema disperso torna-se mais 
instável, pois aumenta a probabilidade de colisão entre as gotas, condição essencial para o 
processo de coalescência. 
 
A incorporação de água no petróleo é finita. Chega a determinado ponto que o sistema 
disperso torna-se instável e não é mais possível incorporar água ao petróleo sob a forma de 
emulsão estável. Esse excedente de água, que não se emulsiona no petróleo e que se 
mantém separado, é denominado de água livre. 
 
O aparecimento de água livre no petróleo não depende somente do teor de água. A natureza 
petróleo, a temperatura de incorporação e a intensidade de agitação e de cisalhamento 
também serão determinantes para que se atinja o ponto de saturação. 
 
Os petróleos muito leves, com baixa densidade, apresentam água livre com baixos teores de 
água, muito em função da pequena quantidade de emulsificantes naturais existente em sua 
composição. Os petróleos mais pesados, com alta densidade, apresentam alta quantidade 
de emulsificantes naturais em sua composição. Podem incorporar até 85% água, se a 
 
 
Escola de Ciências e Tecnologias E&P 16 
temperatura de incorporação estiver próxima a 80°C. Entretanto, à temperatura ambiente 
esses petróleos altamente viscosos poderão apresentar água livre com 50% de teor de água, 
muito em função da alta viscosidade das emulsões obtidas, que criam resistência ao 
cisalhamento. 
 
A intensidade de agitação e de cisalhamento é outro fator preponderante na incorporação de 
água no petróleo. Quanto maior forem essas intensidades, maior é a incorporação da água 
no petróleo. O escoamento da produção em regime turbulento gera a maior agitação dos 
fluidos do que em regime laminar, e os fluidos escoados a grandes distâncias são mais 
submetidos à maior agitação. O intenso cisalhamento obtido através das bombas centrífugas 
e da válvula choke é responsável pela dispersão da água no petróleo na forma de diminutas 
gotas. 
 
Uma maneira de obter água livre com baixos teores de água é injetar previamente 
desemulsificante ao petróleo. Como os desemulsificantes apresentam atividade interfacial 
superior à dos emulsificantes naturais, as moléculas do desemulsificante adsorvem, 
preferencialmente, na interface, não deixando que os emulsificantes naturais sejam 
adsorvidos. Conseqüentemente, evita-se a formação de emulsões estáveis mediante a 
adição prévia de desemulsificante ao petróleo. 
 
4.4 USO DE CAMPO ELÉTRICO 
 
Quando uma gota de água é submetida a um campo elétrico intenso, ocorre a formação de 
um dipolo induzido (fig. 14). A polarização da gota faz com que ocorra seu alongamento, na 
direção do campo elétrico. 
 
 
 
Fig. 14 – Formação de dipolo induzido. 
 
Quando várias gotas se encontram vizinhas umas as outras, as gotas alinham-se na direção 
do campo elétrico, e ocorre a formação de dipolos induzidos de sentidos contrários, que se 
atraem (fig. 15). Essa atração gerada faz com que se aumente a taxa de colisão e de 
coalescência entre as gotas. 
 
 
 
Fig. 15 – Atração elétrica entre as gotas de água. 
 
 
Escola de Ciências e Tecnologias E&P 17 
 
O processo de desidratação eletrostática utiliza densidade de campo elétrico entre 0,2 kV/cm 
e 2 kV/cm, com o uso de corrente alternada (AC) e freqüência elétrica entre 50 Hz e 100 Hz. 
Devido ao uso de corrente alternada, o comportamento senoidal do campo elétrico faz com 
que as gotas sofram alongamentos e contrações sucessivas. Desta maneira, o filme 
interfacial fica submetido a vibrações longitudinais, que causam a dessorção de parte dos 
emulsificantes naturais, favorecendo a coalescência das gotas. 
 
Por outro lado, quanto menor a tensão interfacial óleo-água, maior é o alongamento das 
gotas sob a ação do campo elétrico e, portanto, maior é a possibilidade de coalescência as 
gotas vizinhas. Os desemulsificantes apresentam a propriedade de diminuir a tensão 
interfacial óleo-água, sendo seu uso providencial nos processos de eletrocoalescência. 
 
Entretanto, se a gota de água for submetida à intensidade de campo elétrico muito elevado, 
poderá haver o alongamento demasiado das gotas, ocasionando a ruptura das gotas e a 
formação de gotas de menores tamanhos. É por isso que o gradiente de tensão não deve 
superar seu valor crítico, da ordem de 4 kV/cm. 
 
4.5 USO DE CAMPO CENTRÍFUGO 
 
Baseando-se na equação de Stokes, pode-se deduzir que a velocidade de segregação de 
uma gota de água dispersa num meio oleoso pode ser aumentada de várias grandezas com 
o aumento do campo gravitacional. 
 
As centrífugassão equipamentos providos de um rotor capaz de girar com velocidades 
elevadas, dando origem a campo centrífugo que permite separar boa parte de água do 
petróleo. A figura 16 mostra a influência do campo centrífugo sobre a eficiência de 
separação, para vários valores de viscosidade. Observa-se o aumento significativo da 
eficiência de separação de água com o uso do campo centrífugo. 
 
 
 
Fig. 16 – Influência do campo centrífugo na separação de água. 
 
 
 
 
Escola de Ciências e Tecnologias E&P 18 
5. DESCRIÇÃO DO PROCESSO ELETROSTÁTICO 
 
O processo de separação eletrostática aplica-se à separação de um líquido condutor 
disperso em um meio não-condutor. Quando submetidas à ação de um campo elétrico, além 
das forças gravitacional (Fg) e viscosa (Fv), atuam sobre as gotas de uma emulsão tipo água 
em óleo, forças eletrostáticas (Fe) e tipo dipolo-dipolo (Fd). 
 
Com o aumento da intensidade do campo elétrico aplicado, as gotas de água se polarizam e 
tendem a passar da forma esférica para a forma elíptica. Uma vez polarizadas, as gotas 
tenderão a alinhar-se com as linhas de força do campo elétrico, dando origem às interações 
dipolo-dipolo entre as gotas. 
 
A força de atração dipolo-dipolo entre duas gotas sujeitas a ação de um campo elétrico é 
descrita pela equação 2. 
4
223
2
3
1
2 )cos.2.(....3
S
senRREK
FD
 

 (2) 
onde: 
R1 e R2 são os raios das gotas; 
S é a distância entre o centro das gotas; 
K é a constante dielétrica da fase contínua; 
E é o gradiente de tensão aplicado; 
 é o ângulo entre o centro das gotas e a linha de força do campo elétrico. 
 
Da análise da equação 2, nota-se que a força das interações dipolo-dipolo decresce 
rapidamente com o aumento da distância entre as gotas (S), e aumenta rapidamente com o 
aumento do raio das gotas (R) e com o aumento do gradiente de tensão do campo elétrico 
(E). 
 
No caso de campo elétrico de corrente contínua (DC), ocorre o efeito de eletroforese, ou 
seja, a migração das gotas em direção aos eletrodos de carga contrária, sendo a força 
eletrostática (Fe) atuante descrita pela equação 3, 
32
0 166 ).(E.R..K..,F de 
 (3) 
onde, 
 é a permissividade dos espaços livres; 
R é o raio da gota; 
é a fração volumétrica de fase aquosa. 
 
O rompimento de emulsões em campos elétricos de corrente contínua (DC) se processa de 
duas formas: pela coalescência por choque entre gotas de carga elétrica de sinais contrários 
e pelo efeito de eletroforese, que culmina na coalescência das gotas sobre a superfície das 
 
 
Escola de Ciências e Tecnologias E&P 19 
placas. 
 
Para campo elétrico de corrente alternada (AC), a velocidade de migração das gotas em 
direção aos eletrodos é praticamente nula e, portanto, a equação 3 descreve somente a 
intensidade da força eletrostática que atua sobre as gotas em um intervalo de tempo muito 
pequeno (Freqüência = 60 hertz, portanto, tempo = 0,0083 s). Nesse tipo de campo (AC) 
predomina a ação dos dipolos induzidos responsável pela polarização e mudanças na 
geometria das gotas. As gotas polarizadas tendem a se atrair mutuamente aumentando a 
probabilidade de choque entre as mesmas. Além disso, a vibração segundo a freqüência 
aplicada, provoca a dessorção de parte dos tensoativos presentes na superfície das gotas, 
facilitando o processo de coalescência. 
 
Conforme mostrado nas equações 2 e 3, quanto maior o gradiente de tensão aplicado sobre 
as gotas de uma emulsão mais rápido ocorrerá o processo de coalescência das mesmas. No 
entanto, se o gradiente de tensão aplicado sobre uma gota em particular ultrapassar a um 
certo valor crítico, a distorção imposta sobre esta gota causará a sua ruptura, originando 
gotas de diâmetros inferiores ao da gota original, muito mais difíceis de serem removidas. 
Esse gradiente crítico (Ec) é expresso pela equação 4 a seguir: 
50
2
,
c )
R.
(KE


 (4) 
onde: 
 é a tensão interfacial óleo-água. 
O consumo de energia elétrica é um dos principais parâmetros para o correto 
dimensionamento dos transformadores utilizados nos tratadores eletrostáticos. A potência 
mínima requerida (P) neste caso pode ser estimada pela equação 5. 
L
A.C.E
P
2

 (5) 
onde: 
E é o gradiente de tensão, Volt.cm
-1
; 
C é a condutividade específica do meio, mho.cm; 
A é a área de eletrodos, cm
2
; 
L é a distância entre os eletrodos, cm. 
 
Geralmente, os petróleos mais pesados são também os mais condutivos e os de mais difícil 
tratamento. A característica condutora destes petróleos está associada principalmente à 
presença da salmoura e metais pesados, estes últimos associados às frações mais pesadas 
do petróleo, especialmente nos asfaltenos e resinas. 
 
No tratamento de petróleos sabe-se que a condutividade do meio cresce proporcionalmente 
com a temperatura e, portanto, operações em temperaturas acima daquelas realmente 
necessárias devem ser evitadas pois, além do gasto extra no aquecimento da carga, teremos 
um consumo de energia elétrica adicional. 
 
 
 
Escola de Ciências e Tecnologias E&P 20 
Outro ponto importante que deve ser destacado é o aumento da solubilidade da água nos 
petróleos com o incremento da temperatura. Sob o ponto de vista prático, isso significa que 
mesmo a remoção total das gotas presentes em um dado petróleo não é capaz de “zerar” o 
teor de água presente no mesmo, uma vez que uma quantidade residual de água continuará 
sob a forma molecular, dissolvida no petróleo. Para exemplificar o impacto dessa 
observação, podemos tomar a solubilidade da água em um dado petróleo processado a 
140°C utilizando-se o gráfico da figura 17. A partir desse gráfico obtém-se para a 
temperatura de 140°C um teor de água dissolvida no petróleo equivalente a 0,36% em 
volume. Com o resfriamento desse petróleo para 20°C cerca de 0,02% em volume de água 
continuará dissolvida no petróleo, enquanto que 0,34% em volume sairá de solução 
passando a forma de micro-gotas emulsionadas. 
 0,00
0,10
0,20
0,30
0,40
0,50
0,60
20 40 60 80 100 120 140 160 180
Temperatura (°C)
T
eo
r 
d
e 
ág
u
a 
so
lú
ve
l n
o
 p
et
ró
le
o
 (
%
 v
/v
)
 
Fig. 17 – Teor de água sob a forma solúvel no petróleo, em função da temperatura. 
 
 
 
 
Escola de Ciências e Tecnologias E&P 21 
6. O TRATADOR ELETROSTÁTICO NA PLANTA DE PROCESSO 
 
O tratador eletrostático é o responsável por especificar o petróleo quanto aos teores de água 
e sal. No petróleo tratado, o teor de água deve ser menor ou igual a 1,0% v/v, e o teor de 
sais deve ser menor ou igual a 570 mg/L de NaCl. Cabe ressaltar que especificações mais 
rígidas que estas são desejáveis, pois amplia a aceitação de um petróleo no mercado 
internacional. 
 
A figura 18 mostra um fluxograma de processo da P-37, típico de uma unidade de 
processamento offshore. 
 
Fig. 18 – Planta de processamento do FPSO P-37 
 
Após a chegada à plataforma, a carga é aquecida até a temperatura de separação 
gravitacional, onde grande parte do gás e parte da água são separados. O gás segue para o 
sistema de compressão, onde será utilizado para geração de energia e exportação, quando 
há excesso. A corrente aquosa é enviada para o sistema de tratamento de água oleosa, que 
consiste, na maioria dos casos, em hidrociclones seguidos de flotador(es). A água oleosa 
também pode ser tratada em tanques de slop, como acontece em alguns FPSOs. A corrente 
oleosa, ainda com parte da água produzida, é enviada aos tratadores eletrostáticos. O teor 
de água desta corrente é projetado para ser de, aproximadamente, 15%. 
 
A escolha do tipo de processo a ser utilizado depende do espaço e dos fatores econômicos 
envolvidos. Muitas vezes, outros fatores,como o aumento da estabilidade das emulsões 
FPSO P-37
O
O
A
Poços
Produtores
A
O
Descarte
Gás Lift
Gás Comb.
Gasoduto
p/ P26 (8")
Separador
A T. O.
A
Sep. Atm.
(Surge)
Separador
Teste
Separador
B T. O.
B
Gás
Sep.
Aquecedor
Aquecedor
GLICOL
Desgaseif.
Caisson
Slop
A O
G
A O
A O
G
G
D
es
ae
ra
do
ra
Água
Resfriam.
4 Bombas
CaptaçãoGás Comb.
Biocida
MAR
Poços
Injetores
Vent
Vent
HC
HC
HC
HC
HC
TC
TC
A
G
G
O
URV
G
Flare
Gás
Óleo
Água Injeção
Água Oleosa
LEGENDA
Filtros
4 Bombas
Booster
4 Bombas
Principais
2
2
1
1
1
1
1
1
pré-Aq. o/o
Aquecedor
pré-Aq. o/o
Navios 
Aliviadores
Bombas
Offloading
Tanques
de carga
Gasoduto
p/ P40 (9,2")
Sep. Atm.
(Surge)
O
3 Boosters
Medição
3 Boosters
Medição
Tanques
Slop
O
pré-Aq. o/o
O
pré-Aq. o/o
 
 
Escola de Ciências e Tecnologias E&P 22 
devido ao seu envelhecimento, são postos em segundo plano. Neste sentido, deve-se ter em 
mente que o tratamento de uma emulsão já envelhecida exige a utilização de condições 
operacionais mais severas e um gasto adicional com produtos químicos, ou a entrega de um 
petróleo com menor qualidade, se as condições de processamento empregadas forem as 
mesmas. Sob o ponto de vista ambiental, a opção pela reinjeção da água produzida no 
próprio reservatório produtor representa a melhor opção de descarte. 
 
Em experiências utilizando-se unidades-piloto e industriais, não foi encontrada uma relação 
entre a influência do volume inicial de água (e o seu grau de dispersão) sobre o processo de 
tratamento eletrostático de petróleos. Estudos realizados na Unidade-piloto de Desidratação 
Eletrostática de Petróleos do CENPES também constataram este fato. Nestes estudos ficou 
constatada a existência de outros fatores mais importantes, tais como a presença de agentes 
emulsificantes naturais, a velocidade de migração destes agentes e suas interações com os 
produtos desemulsificantes utilizados durante o processo de tratamento. 
 
 
 
 
Escola de Ciências e Tecnologias E&P 23 
7. TIPOS DE TRATADORES ELETROSTÁTICOS 
 
Quanto à tecnologia, os tratadores eletrostáticos podem ser classificados em: 
 Convencional, de corrente alternada, ou simplesmente AC; 
 Dual Polarity, ou simplesmente AC/DC; 
 Dual Frequency; 
 AC de Fluxo Horizontal. Também é conhecido como Tratador Aker, pois foi 
desenvolvido pela empresa Aker Solutions. 
 
Quanto ao modo de introdução da carga, os tratadores eletrostáticos ainda podem ser 
subdivididos em de alta velocidade e de baixa velocidade; 
 
 
7.1. TRATADORES ELETROSTÁTICOS AC (CONVENCIONAIS) 
 
Este tipo de tratador eletrostático é o mais tradicional, por ser mais antigo. O campo elétrico 
utilizado é somente o de corrente alternada (AC), de 60 Hz. Esta tecnologia é a mais utilizada 
nas plantas de processamento primário de petróleo da Petrobras. Através de um seletor 
instalado externamente ao transformador, é possível selecionar o nível de voltagem do 
secundário a ser aplicado nos eletrodos. 
 
Quanto à forma de introdução da carga, os tratadores eletrostáticos convencionais podem 
ser subdivididos em de baixa velocidade e de alta velocidade. 
 
7.1.1 TRATADORES AC DE BAIXA VELOCIDADE 
 
Nos tratadores eletrostáticos de baixa velocidade, a carga é introduzida na região próxima à 
interface água-óleo, ou seja, abaixo da região dos eletrodos (fig. 19), por meio do uso de um 
tubo distribuidor perfurado, instalado ao longo do vaso. Como é gerado um campo elétrico 
fraco entre os eletrodos e a interface água-óleo, grande parte das gotas de água de maior 
tamanho coalescem nessa região e somente as gotas de menor diâmetro chegam à região 
entre os eletrodos, para serem coalescidas sob o efeito campo elétrico de maior intensidade, 
chamado de campo elétrico forte. Este tipo de configuração permite que o equipamento 
suporte maior variação e maiores teores de água na carga. Em caso de presença de 
água livre na entrada, esta é rapidamente separada do petróleo, não chegando à região dos 
eletrodos. Deste modo, evita-se a formação de curto-circuito na região dos eletrodos, o que 
prejudicaria a aplicação do campo elétrico no interior do tratador. 
 
 
Escola de Ciências e Tecnologias E&P 24 
 
 
 
 
 
Fig. 19 – Configuração de um tratador eletrostático de baixa velocidade e dos eletrodos. 
 
7.1.2 TRATADORES AC DE ALTA VELOCIDADE 
 
Nos tratadores eletrostáticos de alta velocidade, a carga é introduzida diretamente na região 
entre os eletrodos (fig. 20). Apesar da injeção da carga ser feita diretamente nesta região, o 
que em condições bastante controladas propicia melhor coalescência (pois as gotas de água 
maiores capturam as menores), esse tipo de configuração é muito suscetível às variações de 
vazão e de BS&W na entrada, principalmente quando há a presença de água livre, o que é 
comum nas unidades de produção. Variações de vazão podem acarretar em má distribuição 
da carga ao longo do tratador, criando caminhos preferenciais no interior do vaso. Variações 
de BS&W e presença de água livre geralmente acarretam em aumento da condutividade do 
meio, o que reduz sensivelmente a aplicação do campo elétrico. Em casos mais críticos, 
poderá ocorrer desestabilização do sistema elétrico do tratador, ocasionado por curtos-
circuitos na região dos eletrodos. Pelos motivos citados, os tratadores de alta velocidade não 
são recomendados para unidades marítimas de produção. Este tipo de tratador é mais 
indicado para uso em refinarias. 
 
 
Escola de Ciências e Tecnologias E&P 25 
 
 
 
Fig. 20 – Configuração de um tratador eletrostático de alta velocidade e dos eletrodos. 
 
 
O distribuidor para o tratador de alta velocidade pode ser de abertura variável, controlado 
externamente por um volante colocado na parte superior do vaso, que se conecta a um plug 
situado na região entre os eletrodos. O plug ou "sino" do distribuidor possui deslocamento 
vertical e a abertura é indicada externamente pela posição do volante (fig. 21). 
 
Fig. 21 – Distribuidor de petróleo (à esq.) e válvula distribuidora (à dir.) 
 
Este distribuidor tem a vantagem adicional de poder ser limpo durante a operação do 
tratador, por um simples movimento de abertura e fechamento de um segundo volante 
situado acima do volante controlador da abertura. A movimentação do volante superior com o 
volante principal na posição fechada faz deslizar o sino contra a parte fixa do distribuidor, 
deslocando partículas que tenham se acumulado na abertura de passagem da emulsão. 
É muito importante que as válvulas distribuidoras da emulsão operem na abertura adequada 
para a vazão processada, a fim de evitar os seguintes problemas: 
 se as válvulas estiverem muito abertas, há uma má distribuição do petróleo entre os 
eletrodos, o que vai reduzir a eficiência do processo, além de haver possibilidade de 
aterramento dos eletrodos inferiores devido à elevada amperagem provocada pela 
 
 
Escola de Ciências e Tecnologias E&P 26 
quantidade excessiva de água arrastada pelos vórtices de petróleo no seu movimento 
ascendente. Esta situação extrema pode acontecer se a vazão de operação for 
reduzida, e não se alterar a abertura da válvula distribuidora (fig. 22). 
 
Fig. 22 – Válvula distribuidora muito aberta 
 se as válvulas estiverem muito fechadas, os vórtices de petróleo se dirigem 
diretamente aos eletrodos superiores, onde poderá ocorrer o coalescimento das gotas 
de água sobre os mesmos, aterrando-os, devido ao aumento da amperagem. Esta 
situação pode ocorrer no caso inverso ao da situação anterior, ou seja, a vazão de 
processamentoaumentou e a abertura da válvula permaneceu inalterada (fig. 23). 
 
Fig. 23 – Válvula distribuidora muito fechada 
 
Há também tratadores eletrostáticos com três seqüências de grades, e não somente duas, 
cujo sistema é conhecido como bielétrico. O nome original é Bilectric, dado pela empresa 
Petreco. Sua finalidade é promover o aumento do tempo de residência do petróleo entre os 
eletrodos e, como conseqüência, aumentar o desempenho no processo de separação (fig. 
24). 
 
 
 
Fig. 24 – Configuração de um tratador eletrostático bielétrico de alta velocidade. 
 
 
 
 
Escola de Ciências e Tecnologias E&P 27 
O distribuidor para o tratador Bilectric fica situado na região entre os eletrodos, como no 
tratador de alta velocidade. Porém, há duas diferenças básicas: o distribuidor é fixo e tem 
duas saídas, uma para cada par de grade de eletrodos. O número de distribuidores será 
tanto quantos forem os módulos de tratamento, à semelhança dos demais tratadores de alta 
velocidade (fig. 25). 
 
Fig. 25 – Detalhe do distribuidor Bilectric 
 
7.1.3 COMPARATIVO ENTRE TRATADORES ELETROSTÁTICOS DE ALTA 
VELOCIDADE E DE BAIXA VELOCIDADE 
 
Os tratadores eletrostáticos de alta velocidade são usualmente utilizados na dessalgação do 
petróleo nas refinarias da Petrobras, onde a carga de entrada é controlada e mantida 
constante em termos de vazão e teor de água. Nas Unidades de Produção, 
preferencialmente utilizam-se tratadores eletrostáticos de baixa velocidade, muito em função 
da variação de vazão e de BS&W que se tem na carga de entrada, pois os tratadores 
eletrostáticos de baixa velocidade absorvem melhor essas variações. 
 
Os tratadores eletrostáticos de alta velocidade operam somente com corrente alternada (AC). 
Já os de baixa velocidade podem operar com diferentes arranjos de eletrodo (verticais e 
horizontais) e corrente (alternada e contínua – AC/DC, como será visto adiante), conferindo a 
estes últimos, maior eficiência. 
 
Na tabela I, são apresentados os efeitos do uso de tratadores eletrostáticos de alta e de 
baixa velocidade no Processamento Primário de Petróleo. 
 
 
 
Escola de Ciências e Tecnologias E&P 28 
Tabela I 
Efeitos do Uso de Tratadores Eletrostáticos no Processamento Primário de Petróleo 
Variável 
Efeito sobre o tratador eletrostático 
Alta velocidade Baixa velocidade 
Qualidade do petróleo tratado em 
função da variação de vazão e 
BS&W na carga de entrada 
Mais suscetível à variação de 
vazão 
Menos suscetível à variação de 
vazão 
Limitação ao do teor de água na 
carga de entrada 
Limitado a valores inferiores a, 
preferencialmente, 10%, podendo 
haver desarme do transformador 
para valores acima, por curto-
circuito entre os eletrodos 
Permite trabalhar com maiores 
teores de água, pois grande 
parte da água é separada 
abaixo da região de eletrodos 
Presença de água livre na carga 
de entrada 
Queda de eficiência do 
equipamento, causada por curto-
circuito entre os eletrodos 
Não afeta o desempenho do 
equipamento, desde que seja 
possível se retirar este excesso 
pela linha de saída de água 
Garantia de continuidade 
operacional no processamento 
primário de petróleo 
Menor garantia, principalmente 
para altos teores de água na 
carga de entrada (>20%) 
Maior garantia, pela maior 
capacidade em absorver 
flutuações de vazão e teor de 
água na carga de entrada 
Velocidade de coalescência das 
gotas 
Maior, levando a equipamento 
com menores dimensões 
Menor, levando a equipamento 
com maiores dimensões 
 
Pela análise da tabela I, verifica-se que, embora o tratador de eletrostático de alta velocidade 
permita a construção de equipamento de menor tamanho, no Processamento Primário de 
Petróleo o tratador eletrostático de baixa velocidade oferece maior garantia de continuidade 
operacional, muito em função das variações que se têm na carga de entrada do 
equipamento. Cabe destacar que normalmente numa Unidade de Produção, o tratador 
eletrostático encontra-se instalado após um separador gravitacional trifásico, e que, havendo 
perda operacional de desempenho do separador gravitacional, somente um tratador 
eletrostático de baixa velocidade poderá propiciar garantia operacional da Unidade de 
Produção, mesmo havendo redução da quantidade da carga processada. 
 
O espaçamento entre as varas dos eletrodos não é uma variável de maior importância. 
Geralmente as varas são de aço carbono de 8 mm (5/16") de diâmetro, com espaçamento 
entre si de 76 mm (3") para os modelos de baixa velocidade, e de 102 mm (4") para os 
modelos de alta velocidade. 
 
 
 
 
Escola de Ciências e Tecnologias E&P 29 
7.2 TRATADORES ELETROSTÁTICOS DUAL POLARITY 
 
Os tratadores eletrostáticos do tipo Dual Polarity foram desenvolvidos pela empresa Natco. 
Também são chamados de AC/DC, por apresentarem um campo elétrico de corrente 
alternada (AC) entre a extremidade inferior dos eletrodos e a interface água-óleo, e um 
campo elétrico de corrente contínua (DC) pulsante na região entre os eletrodos verticais 
(fig. 26). O desempenho deste tipo de tratador é superior ao dos convencionais AC. 
 
 
Fig. 26 – Configuração de eletrodos de tratadores dual polarity. 
 
As gotas de água de maior diâmetro são coalescidas no campo elétrico fraco (AC), gerado 
entre a interface água-óleo e os eletrodos, ou seja, da mesma forma que os tratadores 
eletrostáticos convencionais. As gotas menores seguem até a região dos eletrodos (região 
de campo elétrico forte) e adquirem carga do eletrodo mais próximo, sendo então aceleradas 
em direção à placa com carga oposta (fig. 27). Neste percurso, as gotas de água colidem 
entre si e coalescem, dando origem a gotas maiores que serão capazes de sedimentar sob 
ação da gravidade. O transformador Dual Polarity também opera a 60 Hz. É possível 
selecionar a voltagem a ser aplicada entre os eletrodos, através de um seletor instalado 
externamente ao transformador, que normalmente vai de 12kV a 25kV. 
 
 
Fig. 27 – Movimento eletrocinético das gotas de água entre as placas de corrente contínua (DC). 
 
Na tecnologia Dual Polarity ocorre a divisão da alta voltagem do secundário do transformador 
em componentes positivos e negativos, através de retificadores presentes no compartimento 
de diodos do transformador. Os eletrodos são então carregados, sucessivamente, de forma 
positiva e negativa, de modo que cada eletrodo positivo tem sempre eletrodos negativos 
como vizinhos, e vice-versa. Assim, as gotas de água que atravessam o campo elétrico são 
alongadas e atraídas para um dos eletrodos, aceitando a carga do eletrodo mais próximo. 
Em função dos fatos citados, a tecnologia Dual Polarity é mais eficiente que a tecnologia AC. 
 
 
Escola de Ciências e Tecnologias E&P 30 
 
Em função da polaridade constante do campo DC, há tempo para as gotas de água 
migrarem entre os eletrodos. Em um tratador convencional AC, o movimento é praticamente 
inexistente, devido à curta duração do ciclo. No campo elétrico puramente AC, nenhuma 
carga é fornecida às gotas de água: a coalescência depende somente atração causada pela 
polarização das gotas. 
 
Inicialmente, os eletrodos utilizados nos tratadores Dual Polarity eram de aço carbono. 
Tratadores deste tipo foram instalados na plataforma PGP-1 (Garoupa), na década de 80. As 
instalações da plataforma S-06 e do campo terrestre de Guamaré também possuem 
tratadores deste tipo. Já a versão atual dos tratadores Dual Polarity possui eletrodos de 
material compósito. Estes eletrodos são constituídos de material polimérico com uma banda 
central de grafite. Este novo modelo foi fornecido a P-32, P-47, P-51, P-52, Fazenda Alegre e 
Piloto de Siri, além das dessalgadoras da Lubnor e da Refinaria do Nordeste (fig. 28). 
 
 
 
 
 
Fig. 28– Configuração de eletrodos de tratadores Dual Polarity e foto do transformador 
 
 
Escola de Ciências e Tecnologias E&P 31 
7.3 TRATADORES ELETROSTÁTICOS DUAL FREQUENCY 
 
A tecnologia de tratamento eletrostático Dual Frequency é a mais recente lançada no 
mercado. É patenteada pela Natco. Trata-se de uma derivação da tecnologia Dual Polarity. 
Além de aplicar um campo elétrico de corrente alternada (AC) e contínua (DC), como na 
tecnologia Dual Polarity, na tecnologia Dual Frequency é possível se ajustar da freqüência 
base (de 800 Hz a 1600 Hz), modulação da freqüência (de 1 Hz a 20 Hz), voltagem (5kV a 
32kV) e a forma de onda (senoidal, circular, circular inversa, serrilhada, trapezoidal, 
logarítmica e exponencial), através de um sistema de controle baseado em um computador. 
O objetivo é obter um campo eletrostático otimizado para cada tipo de petróleo. A Natco 
pretende obter, com esta tecnologia, desempenho ainda superior em relação ao Dual 
Polarity, que por sua vez já é superior a tecnologia convencional AC. Por ser recente, esta 
tecnologia ainda está em processo de qualificação na Petrobras (os testes estão em 
andamento na unidade terrestre de Fazenda Alegre e no FPSO Cidade de Rio das Ostras - 
Piloto de Siri). 
 
Internamente ao vaso, o tratador Dual Frequency é idêntico ao Dual Polarity. A diferença 
entre estas duas tecnologias é externa ao vaso, ou seja, está no transformador e nos painéis 
que o controlam (chamados de LRC e Step-start – figs. 29 e 30). Deste modo, um tratador 
Dual Polarity pode ser convertido em Dual Frequency pela substituição do transformador. 
Entretanto, a conversão de um tratador AC em Dual Frequency (ou em Dual Polarity) requer 
modificações internas ao vaso com, no mínimo, substituição dos eletrodos, além de duas 
perfurações no topo do vaso para instalação de dois bocais para as buchas de entrada. 
Cabe ressaltar que a tecnologia AC necessita de uma bucha de entrada; as tecnologias Dual 
Polarity e Dual Frequency necessitam de duas buchas de entrada, sendo uma conectada aos 
eletrodos positivos e a outra conectada aos eletrodos negativos. 
 
 
 
Fig. 29 – Painéis do tratador Dual Frequency (FPSO Cidade de Rio das Ostras) 
 
 
 
Escola de Ciências e Tecnologias E&P 32 
 
 
Fig. 30 – Interligação do transformador Dual Frequency com o painel de controle (LRC) e o painel de 
acionamento (Step-start) 
 
A tecnologia Dual Frequency consiste em um transformador trifásico específico (fig. 31), se 
apresentando em apenas um gabinete. Os 480 volts que alimentam o transformador, através 
da caixa de junção, são condicionados no primeiro compartimento do transformador, 
chamado de Chopper, para se obter as freqüências e a forma de onda desejadas (exemplo 
na fig.32), de acordo com os sinais enviados pelo painel controlador, chamado de LRC. Em 
seguida, no segundo compartimento do transformador, chamado de núcleo, ocorre a 
elevação da voltagem para o nível necessário para promover a coalescência. Finalmente, no 
terceiro compartimento do transformador, chamado de Caixa de diodos, a voltagem do 
secundário é retificada em meias-onda positivas e negativas. Este campo elétrico polarizado, 
formado por meias-ondas, é então aplicado aos eletrodos para propiciar os benefícios dos 
campos AC e DC. Um transformador Dual Frequency é mostrado na Figura 31. 
 
 
 
Fig. 31 – Transformador Dual Frequency 
 
 
Escola de Ciências e Tecnologias E&P 33 
 
 
 
Fig. 32 – Exemplo de onda produzida pelo Chopper de um transformador Dual Frequency. 
 
Através da interface mostrada na Figura 33, é realizada a configuração do sistema Dual 
Frequency (escolha da freqüência base, modulação da freqüência, voltagem e forma de 
onda), de forma empírica, com base nas respostas do sistema (valores lidos pelo sistema, 
mostrados no campo feedback values). Busca-se obter o máximo de voltagem, 
simultaneamente a um mínimo de corrente. 
 
 
 
Fig. 33 – Tela principal do LRC (painel de controle) do tratador Dual Frequency. 
 
Pode-se concluir que o sistema de controle da tecnologia Dual Frequency fornece uma 
variedade de voltagens e freqüências, produzindo infinitas combinações possíveis de forma 
de onda. Uma onda otimizada é gerada para cada tipo de óleo, permitindo maior capacidade 
de tratamento, menores temperaturas ou maior desempenho em comparação com as 
tecnologias convencionais. 
 
 
Escola de Ciências e Tecnologias E&P 34 
7.4 TRATADORES ELETROSTÁTICOS AC DE FLUXO HORIZONTAL 
 
A tecnologia de tratamento eletrostático AC de Fluxo Horizontal é também conhecida como 
Aker, pois foi desenvolvida pela empresa então denominada Aker Kvaerner, atual Aker 
Solutions. 
Na Petrobras, há apenas um tratador desta tecnologia, instalado na P-34 (campo de 
Jubarte), mostrado na Figura 34. 
 
 
Fig. 34 – Tratador eletrostático AC de Fluxo Horizontal da P-34 
 
Este tratador consiste em grades de eletrodos verticais, no qual o óleo a ser tratado flui 
horizontalmente - característica que difere este tratador eletrostático dos demais tipos. Ao se 
mover horizontalmente, o petróleo é exposto a uma sucessão de campos elétricos de 
corrente alternada (AC), como se fossem estágios. O tratador da P-34 está esquematizado 
na Figura 35. Pode-se observar que o petróleo a ser tratado é introduzido no tratador pelas 
extremidades do vaso, seguindo um fluxo horizontal, durante seu tratamento, em direção ao 
centro do vaso. O petróleo tratado é coletado na região central do vaso. Os eletrodos são 
verticais e cada um dos quatro transformadores é ligado a um par de eletrodos. 
 
 
 
Escola de Ciências e Tecnologias E&P 35 
 
Fig. 35 – Esquema do tratador eletrostático AC de Fluxo Horizontal da P-34 
Como os transformadores utilizados por esta tecnologia são os mesmos que os AC 
convencionais, é do mesmo modo possível selecionar o nível de voltagem do secundário a 
ser aplicado, através de um seletor instalado externamente ao transformador (fig. 36). Cada 
posição do seletor fecha o circuito acionando um determinado número de espiras. Alterando-
se o número de espiras utilizado, obviamente altera-se a relação das mesmas entre o 
primário e o secundário do transformador (chamada de TAP), alterando-se então o nível de 
voltagem a ser aplicado entre os eletrodos. Quanto maior o TAP, maior a voltagem aplicada. 
Deste modo, na tecnologia AC de fluxo horizontal, recomenda-se aplicar um nível de 
voltagem intermediário nos transformadores das extremidades (chamados de 1 e 4, na 
figura 35), cujos eletrodos estão submetidos a um maior teor de água, do mesmo modo que 
se recomenda aplicar a máxima voltagem possível nos transformadores centrais (chamados 
de 2 e 3, na figura 35), cujos eletrodos estão submetidos a um menor teor de água. 
 
 
Fig. 36 – Seletor de voltagem do tratador eletrostático AC de Fluxo Horizontal da P-34. Na figura, o mesmo 
está no TAP máximo (posição “5”) – que aplica a máxima voltagem. 
 
Este tratador também pode ser projetado para receber a distribuição de carga no centro do 
vaso, com a coleta do petróleo tratado nas extremidades do mesmo. O funcionamento ocorre 
de forma análoga ao mostrado anteriormente. Com a distribuição de carga no centro do 
vaso, os transformadores centrais ficam conectados aos eletrodos submetidos a maiores 
teores de água, recomendando-se aplicar a estes um nível de voltagem intermediário. A 
 
 
Escola de Ciências e Tecnologias E&P 36 
máxima voltagem possível é então aplicada nos transformadores das extremidades. 
 
 
Fig. 37 – Tratador eletrostático AC de Fluxo Horizontal, com distribuição de carga no centro do vaso. 
 
 
Escola de Ciências e Tecnologias E&P 37 
7.5 NOVAS TECNOLOGIAS COMPACTAS QUE UTILIZAM CAMPO ELÉTRICO 
 
São chamados de coalescedores eletrostáticos. Consistem em equipamentos que estãosendo desenvolvidos para aumentar o desempenho da separação de água no interior dos 
separadores gravitacionais, pelo o uso de campos eletrostáticos. 
 
7.5.1 CEC 
O CEC (Compact Electrostatic Coalescer) foi desenvolvido para ser instalado em linha, a 
montante de um separador gravitacional. Foi desenvolvido pela empresa Aker Solutions. 
Consiste em um vaso contendo eletrodos concêntricos, entre os quais é desenvolvido o 
campo elétrico. Desta maneira, ocorre a coalescência das gotas de água, ao passarem entre 
os eletrodos (fig. 38). 
 
 
Fig. 38 – Coalescedor eletrostático CEC 
 
7.5.2 VIEC 
O coalescedor eletrostático VIEC (Vessel Internal Electrostatic Coalescer) é instalado no 
interior dos separadores gravitacionais, aumentando a eficiência dos mesmos. Pode então 
propiciar a diminuição da temperatura de operação de separadores gravitacionais e/ou a 
diminuição do tempo de residência ao líquido, a partir do emprego de um campo elétrico de 
alta intensidade. Foi desenvolvido pela empresa Aibel, atual Hamworthy (fig. 39). 
 
 
Fig. 39 – Coalescedor eletrostático VIEC 
 
 
Escola de Ciências e Tecnologias E&P 38 
Foram realizados, na Facilidade de Testes da Hydro, em Porsgrunn (Noruega), testes de 
desempenho do coalescedor eletrostático VIEC, utilizando-se o petróleo pesado do poço 
ESS-110 (17°API), do campo de Jubarte. Foi observada elevada eficiência desse 
equipamento. 
 
 
 
 
Escola de Ciências e Tecnologias E&P 39 
8 ACESSÓRIOS INTERNOS DOS TRATADORES ELETROSTÁTICOS 
 
8.1 CONTROLE DE NÍVEL DA INTERFACE 
 
O nível da interface água-óleo é controlado automaticamente, alterando-se a vazão de saída 
da salmoura. Quando o nível sobe, o controlador atua aumentando a vazão de saida da 
salmoura e vice-versa. 
Existem vários tipos de medidor de nível de interface, a saber: 
 tipo flutuador (bóia), que é protegido por um anteparo, para evitar que o movimento 
dos fluidos provoque a sua oscilação. Ele opera melhor com óleos leves e em uma 
faixa limitada de densidade. A formação de borra na interface pode interferir no 
movimento do sensor, que é baseado no princípio de empuxo. Este tipo é muito 
sujeito à manutenção, pois constantemente dá indicação falsa por danificação do 
flutuador, principalmente furo; 
 o medidor baseado na capacitância consiste em uma sonda vertical colocada no 
interior do vaso, que serve como uma das placas do capacitor. A outra placa é 
formada pelas paredes do vaso, com o fluido comportando-se como um dielétrico. 
Quando o fluido é condutor, uma corrente fluirá entre as placas do capacitor, 
prejudicando a medição. Neste caso, se reveste totalmente a sonda com teflon ou um 
material isolante similar, o qual comporta-se como o dielétrico, enquanto o fluido 
passa a ser a outra placa do capacitor. Variando a interface no interior do tratador, 
alteram-se as proporções entre líquidos com constantes dielétricas diferentes, óleo e 
água. Embora seja mais confiável que o tipo com flutuador, por não ser afetado pela 
variação de densidade do petróleo, sua calibração é crítica. Quando o petróleo é mais 
pesado e, portanto, mais viscoso e também mais condutor, é possível que se forme 
borra de óleo sobre a superfície da sonda, ocasionando leituras falsas. 
 o medidor baseado na admitância, que leva em conta a associação de correntes 
capacitivas e resistivas, vem tendo boa aceitação, por permitir uma medição mais 
precisa do nível. Além de não possuir partes móveis, como o medidor baseado na 
capacitância, tem a vantagem adicional de não sofrer influência da presença de borra 
ou lama que porventura se acumule sobre a sonda sensora de nível. 
Independentemente da massa de borra acumulada sobre a sonda, o transmissor 
fornece sinais de maior confiabilidade, quando comparado aos sistemas puramente 
capacitivos; 
 o equipamento mais eficaz é o Profiler, da Tracerco. Este equipamento mede a 
densidade e a extensão das diferentes fases contidas no vaso. É capaz de mapear as 
diferentes densidades de materiais como gases, líquidos e níveis de interface. Estes 
materiais podem ser divididos em até seis fases ou bandas de densidade. A interface 
entre as fases pode então ser calculada de acordo com a altura no vaso, permitindo 
assim o controle de nível em um sistema de controle. O Profiler é instalado em um 
flange no topo do vaso. São inseridos três tubos no vaso, sendo um colimador e duas 
sondas. Estes tubos contêm uma série de fontes ao longo de sua extensão. O 
colimador possui pequenas perfurações a cada nível de emissão. Estas perfurações 
direcionam um raio radioativo em direção as sondas do tubo Geiger Muller (GM). O 
material presente entre os tubos irá atenuar a radiação e, portanto, a intensidade da 
radiação recebida pelo tubo GM é convertida em densidade do meio naquele nível. 
Um PLC coleta a informação de cada ponto e calcula o perfil de densidade ou de 
interface do vaso. 
 
 
 
 
Escola de Ciências e Tecnologias E&P 40 
8.2 VASO TRATADOR 
 
O vaso é um cilindro horizontal de diâmetro interno usual de 3 048 mm (10 ft ), 3 660 mm 
(12 ft) ou 4 270 mm (14 ft). 
Em geral, os tratadores eletrostáticos possuem a relação L/D (comprimento / diâmetro) na 
faixa de 3 a 10. Em particular, os tratadores de baixa velocidade colocados em unidades 
offshore, tem esta faixa reduzida para 3 a 6, devido aos problemas de espaço e peso. O 
comprimento do vaso deve ser definido em função do tempo de residência entre eletrodos, 
do tempo de residência necessário para a sedimentação das gotículas de água e do número 
de módulos de dessalgação requeridos para o caso dos tratadores de alta velocidade. 
 
8.3 ELETRODOS 
 
Uma característica importante de um tratador eletrostático é o tempo que o petróleo 
permanece sob ação do campo elétrico. Este tempo de residência é função direta da vazão 
de petróleo. 
Para evitar fuga de corrente dos eletrodos para o vaso, é adotada uma distância mínima de 
200 mm entre os eletrodos e qualquer parte do vaso. 
 
8.4 COLETOR DE PETRÓLEO 
 
Está localizado na parte superior do vaso, tão próximo do topo quanto possível. Para impedir 
que o petróleo percorra caminhos preferenciais, o coletor é projetado para escoar o petróleo 
com uma vazão mais uniforme possível em toda seção transversal do vaso. Devido a isto, 
em geral, o coletor tem mais de um diâmetro. 
 
8.5 COLETOR DE SALMOURA 
 
O coletor de salmoura é composto de um ou dois ramais de tubulação que se estendem ao 
longo do vaso, entre as linhas de tangência. O número de ramais é definido em função da 
coleta da salmoura com uma vazão a mais uniforme possível. Em pontos eqüidistantes ao 
longo da tubulação são dispostos orifícios voltados para cima. Para evitar a formação de 
vortex, uma placa circular de grande diâmetro, de 40 a 50 cm, pode ser colocada acima de 
cada oríficio, presa a um suporte soldado no casco do vaso. 
 
O coletor deve ser instalado o mais baixo possível no vaso, de maneira a minimizar o arraste 
de óleo pela salmoura. 
 
8.6 ISOLADORES DE SUPORTE E BUCHAS DE ENTRADA 
 
Os eletrodos são suspensos e fixados a suportes na parte superior do vaso através de 
isoladores de alta voltagem, fabricados de teflon. 
A alta voltagem é transmitida dos transformadores externos aos eletrodos no interior do vaso, 
através de buchas de entrada (ou de passagem) por onde passam os condutores. Existe 
uma bucha para cada transformador AC. Já para os transformadores Dual Polarity e Dual 
Frequency, há duas buchas para cada transformador (uma positiva e uma negativa). A bucha 
também é feita de PTFE (teflon), devido a sua excelente propriedade isolante. Problemas de 
ruptura da bucha podem ocorrer pelo fato de o PTFE não resistir a elevadas temperaturas e 
pressões. Não é recomendável se operar tratadores com temperatura acima de 150
o
C. 
Um eletroduto preenchido de óleoisolante permite levar os condutores elétricos de cada 
 
 
Escola de Ciências e Tecnologias E&P 41 
transformador para as respectivas buchas de entrada. 
 
8.7 CHAVE DE NÍVEL (INTERRUPTOR DE SEGURANÇA) 
 
Esta chave tem por objetivo desarmar o tratador por nível baixo de petróleo no interior do 
vaso (fig. 40). Consiste em um contato elétrico normalmente aberto, tipo ampola de mercúrio, 
acoplado a um flutuador (bóia), que está em contato com o petróleo. Quando o nível de óleo 
cai, o contato fecha desenergizando os eletrodos, evitando-se, dessa forma, o perigo de se 
ter os eletrodos energizados expostos ao ar, quando o equipamento não estiver em operação 
e/ou quando houver entrada humana no vaso. Outra função deste dispositivo é desenergizar 
o transformador em caso de formação de uma capa de gás no tratador, causada por baixa 
pressão no interior do vaso. 
 
 
Fig. 40 – Desenho esquemático da chave de nível. 
 
Outro tipo de interruptor consiste em uma haste ligada à bóia, que aterra os eletrodos em 
caso de nível baixo de líquido (fig. 41). 
 
 
 
Fig. 41 – Interruptor de segurança (tratador de Fazenda Alegre). 
 
 
Escola de Ciências e Tecnologias E&P 42 
8.8 AMOSTRADOR VARIÁVEL 
 
Este dispositivo tem por finalidade retirar amostras da interface água-óleo em alturas (cotas) 
diferentes, com o objetivo de localizar o nível da mesma e/ou fazer amostragens. 
Dois tipos de amostrador são normalmente utilizados. Um é conhecido como try-cock ou 
try-cut, que consiste em cinco pontos fixos de amostragem, com extensões de tubos 
convenientemente espaçados dentro do vaso, existindo uma válvula em cada tubo (fig. 42). 
O outro tipo consiste em um tubo pescador interno, cuja altura pode ser variada pelo 
operador, e a posição da interface é mostrada em uma escala graduada localizada 
externamente. 
 
 
 
 
 
Fig. 42 – (a) Try-cock (interior do vaso); (b) Try-cock (exterior do vaso). 
 
8.9 PAINEL ELÉTRICO 
 
É um conjunto único contendo o interruptor de circuito (disjuntor), voltímetro e amperímetro 
(fig. 43). Há um conjunto voltímetro/amperímetro para cada transformador. A tensão lida no 
voltímetro é a tensão do enrolamento de baixa tensão do transformador. O voltímetro está 
conectado a um transformador de potencial que atua como um enrolamento terciário, com o 
objetivo de reduzir a tensão, que chega ao instrumento, para valores seguros (máximo de 
150 V). O amperímetro está normalmente conectado a um transformador de corrente, que, 
por não haver disponibilidade no mercado de amperímetro para altas correntes e, também, 
por motivos de segurança, reduz a corrente medida para valores seguros (máximo de 5 A). 
 
Fig. 43 – Painel elétrico de um tratador eletrostático do campo de Fazenda Alegre. 
 
 
Escola de Ciências e Tecnologias E&P 43 
8.10 LÂMPADA PILOTO 
 
Esta lâmpada fica em paralelo com o voltímetro (fig. 44). Ela tem como objetivo dar uma 
indicação visual da condição do campo elétrico que atua no tratador. Uma luz mais intensa 
indica condição normal de funcionamento (tensão normal). Com pouco brilho ou apagada 
indica que há algo errado com os eletrodos, denotando baixa tensão (alta corrente). 
 
 
Fig. 44 – Lâmpada piloto de um tratador eletrostático do campo de Fazenda Alegre. Pode-se observar a luz 
intensa, indicando condição normal de funcionamento. 
 
 
 
 
Escola de Ciências e Tecnologias E&P 44 
9. PROBLEMAS OPERACIONAIS 
 
9.1 BAIXA EFICIÊNCIA DE DESIDRATAÇÃO 
 
Abaixo estão relacionadas as causas mais prováveis de má performance do tratador 
eletrostático: 
 temperatura muito baixa: devido à qualidade ou vazão da carga, a temperatura 
pode não estar alta o suficiente para a desidratação desejada; 
 injeção insuficiente ou excessiva de desemulsificante: a dosagem de 
desemulsificante, ou até mesmo sua qualidade, pode estar inadequada. Deve-se 
também verificar se o local da planta onde o mesmo é injetado é uma região de 
fluxo com turbulência, para se promover a mistura adequada entre o 
desemulsificante e a carga; 
 emulsão muito estável: deve-se observar se há coincidência entre períodos de 
intervenção em poços e perturbações na planta de processo, bem como possíveis 
processos de corrosão avançados, que adicionam agentes estabilizantes às 
emulsões. Deve-se também observar o reciclo de borras e esgoto para a carga; 
 alto BSW na carga: poderá causar o aumento da condutividade do meio, com 
conseqüente redução do gradiente de tensão entre os eletrodos e perda de 
eficiência do processo; 
 vazão de carga mais alta que a de projeto; 
 qualidade da carga diferente do projeto: a carga pode estar mais densa e/ou mais 
viscosa que a de projeto, necessitando de condições operacionais mais severas 
(ou redução da vazão); 
 interface muito alta: pode haver limitação na abertura da válvula ou na linha de 
descarga de salmoura, além de problema no controle de nível; 
 interface mal resolvida: muitas vezes a solução é a parada do vaso para a retirada 
da mesma. Se o problema se repetir, deverá ser observado se está sendo formada 
uma emulsão muito estável. 
 
9.2 CORRENTE FLUTUANDO EM VALORES ALTOS E LÂMPADA PILOTO PISCANDO 
 
A condutividade poderá estar alta por causa do nível de interface elevado e/ou grande 
espessura de camada interfacial. A vazão de carga poderá estar elevada, ou pode haver 
limitação na abertura da válvula ou na linha de descarga de salmoura, além de problema no 
controle de nível. 
 
9.3 CORRENTE ALTA E LÂMPADA PILOTO APAGADA 
 
Indica ausência de campo elétrico, ou seja, inoperância do transformador. As causas mais 
prováveis são: 
 curto circuito no vaso; 
 defeito no transformador; 
 água na câmara de óleo isolante do transformador; 
 defeito na bucha de passagem; 
 defeito nos isoladores; 
 eletrodo aterrado; 
 bolsão de água na carga. 
 
 
 
Escola de Ciências e Tecnologias E&P 45 
10. MODELO MATEMÁTICO DO PROCESSO ELETROSTÁTICO 
 
10.1 VARIÁVEIS DO PROCESSO DE DESIDRATAÇÃO ELETROSTÁTICA DE 
PETRÓLEOS 
 
As variáveis de qualquer processo podem ser classificadas em três grupos: 
 livres; 
 operacionais; 
 de resposta. 
 
No grupo das variáveis livres estão incluídas todas aquelas inerentes à qualidade da carga, 
ou seja, as que não podem manipuladas na operação. O grupo das variáveis operacionais é 
constituído por todas aquelas cujo ajuste determina a qualidade do produto processado. Já 
as variáveis de resposta são aquelas utilizadas no monitoramento do processo ou da 
qualidade do produto processado. O estudo de qualquer processo passa, necessariamente, 
pelo estabelecimento de um modelo capaz de relacionar as variáveis livres e operacionais 
com as variáveis de resposta. 
 
No tratamento eletrostático de petróleos, as variáveis livres podem estar relacionadas com a 
natureza das fases originais (petróleo e água), ou com as características da emulsão 
formada. É importante destacar que apesar de existir um grande número de variáveis livres, 
somente algumas são determinantes sobre o resultado das variáveis de resposta. A seguir, 
estão indicadas as principais variáveis livres do processo de tratamento eletrostático de 
petróleos. 
 
Variáveis livres relacionadas com a natureza das fases originais: 
- massa específica do petróleo; 
- massa específica da água; 
- viscosidade do petróleo; 
- constituição química do petróleo (teores de asfaltenos, resinas, ácidos naftênicos, 
enxofre, nitrogênio, metais, sólidos, dentre outras espécies); 
- constituição química da água (teor de sais inorgânicos, presença de sólidos em 
suspensão, presença de tensoativos, dentre outros). 
Variáveis livres relacionadas com as características da emulsão formada: 
- massa específica da emulsão; 
- viscosidade da emulsão; 
-

Outros materiais