A maior rede de estudos do Brasil

570 pág.
Offshore Hydromechanics J.M.J Journée

Pré-visualização | Página 7 de 50

mooring (see …gure 1.2) is the relative high sti¤ness,
compared to other mooring systems. One of the reasons for this high sti¤ness is the
required accurate positioning of the cutter head in the breach. This is necessary for a good
dredging e¢ciency. Another reason is to avoid to high loads on the cutter head and on
the ladder. Since the spud pile can only take a limited load, the workability limit in waves
is at signi…cant wave heights between 0.5 and 1.0 m depending on the size of the dredger,
the wave direction and the water depth.
Figure 1.2: Cutter Suction Dredger with Fixed Spud Piles
Cutter suction dredgers may also be equipped with a softer mooring system. In this case
the spud pile is replaced by three radially spread steel wires attached to the spud keeper.
This so-called ’Christmas tree’ mooring results in lower loads but larger wave induced
motions of the dredger. Thus, larger workability has to be traded o¤ against lower cutting
e¢ciency. Other components of the dredging equipment - such as the ‡oating pipe line to
transport the slurry, its connection to the dredger and the loads in the ladder - may also
be limiting factors to the workability of the dredger in waves.
Aspects of importance or interest of cutter suction dredgers are:
- a realistic mathematical modelling of the soil characteristics for simulations,
- the loads in the spud pile, the cutter head and the ladder hoist wires,
- the motions of the dredger and the cutter head in the breach and
- the loads in the swing wires.
Trailing suction hopper dredgers are used for maintenance work (removal of deposits in
approach channels) and dredging of trenches or approach channels in softer soils. It is a
ship-shape vessel with hopper type cargo holds to store the slurry. At each side of the ship
is a suction arm, which consists of a lower and a higher part, connected through cardanic
joints. The connection to the ship is through upper joints and stringers. On modern
suction dredgers, the support wire connected to the lower part of the suction pipe near the
suction head is provided with a constant tension device for compensation of heave motions.
Figure 1.3 shows an example of the increased size of these vessels between 1962 and 1997.
This type of dredgers sail along a track during the dredging operation. For manoeuvering,
the main propeller(s), the rudder(s) and a combination with bow and/or stern thrusters
are used. For that purpose the helmsman manually controls the vessel by using a monitor
Figure 1.3: Trailing Cutter Suction Hoppers
showing the actual position of the master drag head and the desired track. Operating in
near-shore areas, the vessel will be exposed to waves, wind and current and manual control
of the vessel may be di¢cult. An option is an automatic tracking by means of DP systems.
Aspects of importance or interest of trailing suction hopper dredgers are:
- the motions of the vessel in waves,
- the current forces and the wave drift forces on the vessel,
- the low speed tracking capability,
- the motions of the suction arms,
- the loads in the suction arm connections to the vessel,
- the e¤ect and interactions of the thrusters and
- the avoidance of backward movements of the suction head at the sea bed.
1.2.2 Pipe Laying Vessels
One of the problems of laying pipes on the sea bed lies in the limited capacity of the pipe to
accept bending stresses. As a result, it is necessary to keep a pipe line under considerable
axial tension during the laying operation otherwise the weight of the span of the pipe
between the vessel and the point of contact of the pipe on the sea bed will cause the pipe
to buckle and collapse. The tension in the pipe line is maintained using the anchor lines
of the pipe laying vessel. The tension is transferred to the pipe by means of the pipe line
tensioner located near the point where the pipe line leaves the vessel. The pipe tensioner
is designed to grip the pipe without damaging the pipe coating (concrete) and ease the
pipe aft while retaining pipe tension as the vessel is hauled forward by the anchor winches.
Forward of the tensioner, additional sections of the pipe line are welded to the already
existing part. Aft of the tensioner, part of the free span of the pipe line is supported by a
so-called stinger.
Pipe laying vessels can consist of semi-submersibles or ship-shaped hulls. Semi-submersibles
have the advantage of better motion characteristics in waves which is bene…cial for the
pipe laying operation. On the other hand, ship-shaped vessels have a higher variable load
capacity and a much higher transit speed.
Pipe laying vessels are usually moored by means of anchor systems which are continually
being relocated as the laying operation progresses. A new development is a pipe laying
vessels kept in position and deriving the pipe line tension by using a dynamic positioning
(DP) system instead of anchor lines; for instance pipe laying vessel ’Solitaire’, operated
since 1998 by Allseas Marine Contractors. Figure 1.4 shows a comparison of this vessel
with the much smaller ’Lorelay’ of this company, operated since 1986. The considerable
increase of size is obvious here.
Figure 1.4: Pipe Laying Vessels ’Lorelay’ (1986) and ’Solitaire’ (1998)
With respect to the combined e¤ect of vessel and pipe motions and the dynamic positioning
performance, analyses have to be carried out to …nd the sea state that can be regarded as
the maximum operational condition. In order to determine the most critical wave direction,
these analyses have to be run for a number of wave directions. As an indication for this
sea state can be found: Hmax1=3 = 3:0 m for the 150 m length pipe laying vessel ’Lorelay’ and
Hmax1=3 = 4:0 m for the 250 m vessel ’Solitaire’. In many cases, bow-quartering environmental
conditions will be found as the most critical operational condition with regard to vessel
motions, pipe movements at the stinger and the DP performance. In order to establish
whether the DP system of a pipe laying vessel is still redundant or close to its maximum
capability as a result of forces exerted by the environment and the pipe tension, a DP
analysis should be performed which forms an integral part of the dynamic analyses. The
results of these analyses have to be used to determine nominal and maximum stinger tip
clearance values. This information is required to assist o¤shore personnel in determining
nominal lay tension during pipe laying operations with changing environmental conditions.
If moored by means of anchor systems, the ability to lay pipes in severe sea conditions is
determined by:
- the sti¤ness of the mooring system,
- the forces in the mooring lines,
- the holding capacity of the anchors,
- the possibility for anchor handling,
- the wave frequency motions of the vessel,
- the low frequency horizontal (surge, sway and yaw) motions of the vessel,
- the forces exerted by the stinger on the stinger-vessel connections and
- the buckling and bending stresses in the pipe line.
In case of dynamic positioning, the accuracy of the low speed tracking capability is an
important aspect too.
After laying the pipe, it has - in many cases - to be buried in the sea bed or to be covered
by gravel stone. Another possibility is to tow a trencher along the pipe, which acts as a
huge plow. The trencher lifts the pipe, plows a trench and lowers the pipe trench behind
it. The sea current takes care of …lling the trench to cover the pipe, as will be discussed in
chapter 14.
In very extreme conditions the pipe is plugged and lowered to the sea bed, still keeping
su¢cient tension in the pipe in order to avoid buckling. After the pipe is abandoned, the
vessel rides out the storm. The ship has to survive a pre-de…ned extreme sea state, for
instance a 100-years storm in the North Sea.
1.2.3 Drilling