Resistência dos Materiais 2
17 pág.

Resistência dos Materiais 2


DisciplinaResistência dos Materiais II5.128 materiais121.834 seguidores
Pré-visualização2 páginas
1.33. A coluna está submetida a uma força axial de 8 kN no seu topo. Supondo que a seção transversal tenha as dimensões mostradas na figura, determinar a tensão normal média que atua sobre a seção a-a. Mostrar essa distribuição de tensão atuando sobre a área da seção transversal.
Solução:
Área da seção transversal:
A = (150x10)x2+140x10 = 4400 mm²
( = P/A = 8000 N/4400 mm² = 1,82 Mpa
Resposta: A tensão normal média que atua sobre a seção a-a é de 1,82 MPa (tensão de compressão
mostrada na cor vermelha atuando uniformemente sobre toda a seção transversal).
1.36. A luminária de 50 lbf é suportada por duas hastes de aço acopladas por um anel em A. Determinar qual das hastes está sujeita à maior tensão normal média e calcular seu valor. Suponha que ( = 60º. O diâmetro de cada haste é dado na figura
	
1.37. A luminária de 50 lbf é suportada por duas hastes de aço acopladas por um anel em A. Determinar qual das hastes está sujeita à maior tensão normal média e calcular seu valor. Suponha que (= 45º. O diâmetro de cada haste é dado na figura.
\u2211 Fx = 0 ( \u2212 Fab × sen(60º) + Fac × cos(45º) = 0
\u2211 Fy = 0 ( FAB × cos(60 ) + FAC × sen(45 ) \u2212 50 = 0
Resolvendo:
Fab = 36,6 lbf
Fac = 44,83 lbf
Assim, as tensões são:
Resposta: As tensões médias que atuam nas seções AB e AC são, respectivamente, 186,415 psi e
356,736 psi. Portanto, a haste que está sujeita à maior tensão normal média é a haste AC.
1.38. A luminária de 50 lbf é suportada por duas hastes de aço acopladas por um anel em A. Determinar o ângulo da orientação de ( de AC, de forma que a tensão normal média na haste AC seja o dobro da tensão normal média da haste AB. Qual é a intensidade dessa tensão em cada haste? O diâmetro de cada haste é indicado na figura.
Resposta: As tensões médias que atuam nas seções AB e AC são, respectivamente, 176,526 psi e
353,053 psi, para um ângulo ( = 47,42º.
1.53. O bloco plástico está submetido a uma força de compressão axial de 600 N. Supondo que as tampas superior e inferior distribuam a carga uniformemente por todos o bloco, determinar as tensões normal e de cisalhamento médias ao longo da seção a-a.
Resposta: As tensões normal e de cisalhamento médias ao longo da seção a-a são: 90 kPa e 51,96
kPa, respectivamente.
Resposta: As tensões médias que atuam nas seções AB e BC são, respectivamente, 1630 psi e 819 psi.
1.60. As barras da treliça têm uma área da seção transversal de 1,25 pol2. Determinar a tensão normal média em cada elemento devido à carga P = 8 kip. Indicar se a tensão é de tração ou de compressão.
1.61. As barras da treliça têm uma área da seção transversal de 1,25 pol2. Supondo que a tensão normal média máxima em cada barra não exceda 20 ksi, determinar a grandeza máxima P das cargas aplicadas à treliça.
 
1.79 O olhal (figura ao lado) é usado para suportar uma carga de 5 kip. Determinar seu diâmetro d, com aproximação de 1/8 pol, e a espessura h necessária, de modo que a arruela não penetre ou cisalhe o apoio. A tensão normal admissível do parafuso é (adm = 21 ksi, e a tensão de cisalhamento admissível do material do apoio é (adm = 5 ksi.
	
Resposta: O diâmetro d necessário é de 5/8 pol e a espessura h necessária é de 3/8 pol .
1.80 A junta sobreposta do elemento de madeira A de uma treliça está submetida a uma força de compressão de 5 kN. Determinar o diâmetro requerido d da haste de aço C e a altura h do elemento B se a tensão normal admissível do aço é (\u3c3adm)aço = 157 MPa e a tensão normal admissível da madeira é (\u3c3adm)mad = 2 MPa. O elemento B tem 50 mm de espessura.
1.112- As duas hastes de alumínio suportam a carga vertical P = 20 kN. Determinar seus diâmetros requeridos se o esforço de tração admissível para o alumínio for (adm = 150 MPa.
	
2.5 A viga rígida está apoiada por um pino em A e pelos arames BD e CE. Se a deformação normal admissível máxima em cada arame for (max = 0,002 mm/mm, qual será o deslocamento vertical máximo provocado pela carga P nos arames?
2.8. Duas Barras são usadas para suportar uma carga. Sem ela, o comprimento de AB é 5 pol, o de AC é 8 pol, e o anel em A tem coordenadas (0,0). Se a carga P atua sobre o anel em A, a deformação normal em AB torna-se (AB = 0,02 pol/pol e a deformação normal em AC torna-se (AC = 0,035 pol/pol. Determinar as coordenadas de posição do anel devido à carga.
2.9. Duas barras são usadas para suportar uma carga P. Sem ela, o comprimento de AB é 5 pol, o de AC é 8 pol, e o anel em A tem coordenadas (0,0). Se for aplicada uma carga P ao anel em A, de modo que ele se mova para a posição de coordenadas (0,25 pol, -0,73 pol), qual será a deformação normal em cada barra?
2.13. A chapa retangular está submetida à deformação mostrada pela linha tracejada.
Determinar a deformação por cisalhamento média (xy da chapa.
2.15. A chapa retangular está submetida à deformação mostrada pela linha tracejada. Determinar as deformações normais\uf020\uf0e5x,\uf020\uf0e5y,\uf020\uf0e5x\u2019,\uf020\uf0e5y\u2019.
2.17. A peça de plástico originalmente é retangular. Determinar a deformação por Cisalhamento (xy nos cantos A e B se o plástico se distorce como mostrado pelas linhas tracejadas.
2.18. A peça de plástico originalmente é retangular. Determinar a deformação por cisalhamento (xy nos cantos D e C se o plástico se distorce como mostrado pelas linhas tracejadas
Solução:
As coordenadas dos pontos (após a deformação) são:
2.19. A peça de plástico originalmente é retangular. Determinar a deformação normal média que ocorre ao longo das diagonais AC e DB.
2.24. O quadrado deforma-se, indo para a posição mostrada pelas linhas tracejadas. Determinar a deformação por cisalhamento em cada um dos cantos A e C. O lado DB permanece horizontal.
2.28. O elástico AB tem comprimento sem esticar de 1 pé. Se estiver preso em B e acoplado à superfície no ponto A\u2019, determinar a deformação normal média do elástico. A superfície é definida pela função y=(x2) pé, onde x é dado em pé.
Solução:
Comprimento inicial de AB:
L Abi = 1 pé
Comprimento final de A\u2019B:
3.2 Os dados de um teste tensão-deformação de uma cerâmica são fornecidos na tabela. A curva é linear entre a origem e o primeiro ponto. Construir o diagrama e determinar o módulo de elasticidade e o módulo de resiliência.
3.3 Os dados de um teste tensão-deformação de uma cerâmica são fornecidos na tabela. A curva é linear entre a origem e o primeiro ponto. Construir o diagrama e determinar o módulo de tenacidade aproximado se a tensão de ruptura for de 53,4 ksi.
3.18 Os arames de aço AB e AC suportam a massa de 200 kg. Supondo que a tensão normal admissível para eles seja\uf020\uf0f3adm = 130 MPa, determinar o diâmetro requerido para cada arame. Além disso, qual será o novo comprimento do arame AB depois que a carga for aplicada? Supor o comprimento sem deformação de AB como sendo 750 mm. Eaço = 200 GPa.
3.24. A haste plástica é feita de Kevlar 49 e tem diâmetro de 10 mm. Supondo que seja aplicada uma carga axial de 80 kN, determinar as mudanças em seu comprimento e em seu diâmetro.
4.6. O conjunto consiste de uma haste CB de aço A-36 e de uma haste BA de alumínio 6061-T6, cada uma com diâmetro de 1 pol. Se a haste está sujeita a uma carga axial P1 = 12 kip em A e P2 = 18 kip na conexão B, determinar o deslocamento da conexão e da extremidade A. O comprimento de cada segmento sem alongamento é mostrado na figura. Desprezar o tamanho das conexões em B e C e supor que sejam rígidas.
Solução:
Dados:
Eaço = 29000 ksi = 29×106 psi = 29×106 lbf/pol2
Ealumínio = 10000 ksi = 10×106 psi = 10×106 lbf/pol2
d = 1 pol
LAB = 4 pés = 48 pol
LBC = 2 pés = 24 pol