Buscar

63 AC

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 12 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 12 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 12 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

AVALIAÇÃO DA MACROTEXTURA MÉDIA DE SUPERFÍCIES DE 
PAVIMENTOS: COMPARAÇÃO ENTRE AS TÉCNICAS COM DRENÔMETRO E 
COM MANCHA DE AREIA 
 
Tiago Vieira 
Diego Campos Redondo 
André Kazuo Kuchiishi 
Sérgio Copetti Callai 
 Liedi Légi Bariani Bernucci 
Universidade de São Paulo 
Escola Politécnica 
 
RESUMO 
A textura média é uma medida comumente utilizada na engenharia de pavimentação para caracterizar superfícies 
de pavimentos. Este trabalho explora dois métodos utilizados para caracterizar a textura média de pavimentos: a 
mancha de areia e a drenabilidade. Ambos os métodos possuem limitações intrínsecas que devem ser conhecidas 
para uma correta aplicação e interpretação dos resultados. Os princípios de funcionamento de cada método são 
expostos, bem como é apresentada uma metodologia para correlacionar a medida de drenabilidade com a textura 
média das superfícies. Esta metodologia pode ser aplicada a diferentes drenômetros de forma a se obter uma 
informação adequada da textura média mesmo em casos onde o ensaio de mancha de areia não seja viável. São 
apresentadas vantagens em se utilizar o drenômetro, como por exemplo, a estimativa do gradiente de velocidade, 
bem como limitações relacionadas ao uso da textura média para caracterizar superfícies de pavimentos. 
 
ABSTRACT 
The mean texture depth is a commonly used method to evaluate surfaces in pavement engineering. This paper 
explores two methods used to evaluate the mean texture depth on pavement surfaces: the sand patch and the 
outflow method. A good understanding on the intrinsic limitations of both methods is crucial for a correct usage 
and interpretation. The working principles of both methods are discussed and a simple methodology is used to 
correlate the outflow measurements to the mean texture depth. This methodology may be applied to different 
outflow meters in order to correctly evaluate the mean texture depth, even when the sand patch method is not 
applicable. The beneficial aspects of using the outflow method are presented, including the estimate of the speed 
gradient, as well as some limitations related to characterize a pavement surface by its mean texture depth. 
 
1. INTRODUÇÃO 
A superfície do pavimento é o meio pelo qual os veículos interagem com a estrutura 
rodoviária. Desta forma, características da superfície estão diretamente ligadas ao 
desempenho do pavimento, seja afetando a segurança viária, o consumo de combustível, 
desgaste de pneus, e até mesmo a geração de ruído. 
 
A aderência no contato pneu-pavimento está diretamente ligada à textura presente na 
superfície do pavimento. Estudos anteriores já demonstraram relações estatisticamente 
significativas entre a textura dos pavimentos e índices de acidentes. Pulugurtha et al. (2011) 
utilizaram modelos lineares generalizados (MLG) para relacionar a macrotextura dos 
pavimentos com taxas de acidentes, acidentes com vitimas e danos materiais, a partir de dados 
dos Estados Unidos. Na Austrália, Cairney e Bennett (2008), encontraram uma relação 
exponencial entre taxas de acidentes e a macrotextura dos pavimentos. No Brasil, Marcandali 
et al. (2011) analisaram a substituição de um concreto asfáltico por uma superfície com 
microrrevestimento, que reduziu significativamente os índices de acidentes na rodovia Fernão 
Dias (BR-381). Foram comparadas as macrotexturas de ambos, resultando que o 
microrrevestimento tem uma macrotextura média mais elevada do que o concreto asfáltico 
anterior, desta forma, também comprovando a relação entre acidentes e a textura dos 
pavimentos. Estudos similares também foram realizados na França (GOTHIÉ, 2001) e no 
Reino Unido (ROE et al., 1991). 
 
O desgaste de pneus, além de ser uma variável de desempenho do pavimento, está ligado a 
uma questão ambiental. A demanda mundial por pneus prevista para 2015 é de 3,3 bilhões de 
unidades (FREEDONIA GROUP, 2012). Adiciona-se a esta elevada demanda o fato de que a 
borracha utilizada nos pneus não se degrada por si só (FANG, ZHAN, WANG, 2001), e a 
relação entre o desgaste de pneus e sustentabilidade torna-se evidente. É importante ressaltar a 
distinção entre degradação, relacionada ao retorno do material ao meio ambiente, e 
deterioração, que ocorre na borracha pelo simples contato com o ozônio presente na atmosfera 
e está ligado com a perda de propriedades viscoelásticas do material. Uma abordagem 
tribológica confirma a relação entre o desgaste de pneus e a textura dos pavimentos. A 
presença de picos excessivamente angulosos na textura causa desgaste abrasivo na banda de 
rodagem dos pneus, comprometendo seu desempenho prematuramente (MOORE, 1975). Em 
um estudo procurando relacionar a textura dos pavimentos com o desgaste de pneus, Lowne 
(1970) determinou que texturas excessivamente angulosas podem triplicar a taxa de desgaste 
de pneus. É importante mencionar que seu estudo é anterior as definições de macro e 
microtexturas propostas por Wambold (1995), não sendo possível assim, relacionar estes 
resultados diretamente com as classes de texturas mencionadas. 
 
O ruído gerado no contato pneu-pavimento também é o resultado direto da interação com a 
textura da superfície. Dentre os nove mecanismos de geração de ruído e os sete de 
amplificação de ruído presentes no contato pneu-pavimento (SANDBERG, 1997), observa-se 
que, não só estes mecanismos são relacionados com a textura dos pavimentos, como também 
são intimamente ligados com os fenômenos de aderência. Como exemplo, é possível 
mencionar os mecanismos de stick-slip e stick-snap que estão relacionados à adesão 
dispersiva (ISRAELACHVILI, 1991). Os efeitos nocivos de elevados níveis de ruído na 
interação pneu-pavimento podem ser observados no estudo elaborado pela Agência de 
Proteção Ambiental Dinamarquesa (EPA, 2003, apud FEHRL, 2006), demonstrou-se que um 
acréscimo de 1 dB nos níveis de ruído rodoviário resulta em uma desvalorização de 
aproximadamente 1% dos imóveis próximos a esta rodovia. 
 
Neste contexto, observam-se esforços internacionais para melhor entender e controlar a 
interação pneu-pavimento. Pode-se citar, o programa SILVIA (Silenda Via - Sustainable Road 
Surfaces for Traffic Noise Control), que buscou melhor compreender os mecanismos de 
geração e amplificação de ruído, bem como examinar as opções de pavimentos que geram 
menos ruído (FEHRL, 2006). Outro exemplo de esforço internacional para um melhor 
entendimento e controle da interação pneu-pavimento encontra-se no selo europeu para pneus. 
Segundo a regulação proposta, que vigora a partir de novembro de 2012, todos os pneus 
comercializados na União Europeia deverão possuir um selo indicando características de 
desempenho com relação à aderência, geração de ruído e consumo de combustível (THE 
COMMISISSION OF THE EUROPEAN COMMUNITIES, 2009). Desta forma, cabe 
também à engenharia de transportes concentrar esforços com o intuito de melhor compreender 
a interação pneu-pavimento. 
 
Este trabalho explora dois ensaios tradicionalmente utilizados na caracterização de superfícies 
de pavimentos: (i) mancha de areia e (ii) drenabilidade. Ambos os ensaios são analisados de 
forma critica, expondo suas limitações e evidenciando a necessidade de uma melhor 
caracterização das superfícies de pavimentos. 
 
2. MEDIDAS DE TEXTURA MÉDIA 
Seguindo a classificação proposta por Wambold (1995), a textura na superfície de um 
pavimento pode ser considerada como uma série de senóides com diferentes amplitudes e 
comprimentos de onda. As características de cada categoria de textura, em função da 
amplitude e comprimento de onda da senóide equivalente, são apresentadas na Tabela 1. A 
Figura 1 apresenta as diversas categorias de textura, incluindo referênciaspara as dimensões 
de cada categoria. 
 
Tabela 1: Categorias de textura e características da senóide equivalente 
Categoria de Textura 
Comprimento de 
onda mínimo (mm) 
Comprimento de onda 
máximo (mm) 
Amplitude 
mínima (mm) 
Amplitude 
máxima(mm) 
Irregularidade 500 mm 
Megatextura 50 mm 500 mm 0.1 mm 50 mm 
Macrotextura 0.5 mm 50 mm 0.1 mm 20 mm 
Microtextura 0.5 mm 0.2 mm 
 
 
 
Figura 1: Categorias das texturas de pavimentos (Adaptado de SANDBERG, 1997) 
 
A caracterização de uma superfície é de extrema importância, embora não seja uma tarefa 
simples, dado que a textura apresenta irregularidades nas varias escalas, como é apresentado 
na Figura 1. Embora a forma mais realista para se avaliar os aspectos funcionais de uma 
superfície seja simular a funcionalidade em um ensaio específico, como o ensaio de roda 
travada para simular uma frenagem, esta forma geralmente não é eficiente devido à grande 
quantidade de variáveis presentes na interação entre superfícies. Desta forma, segundo 
Whitehouse (2002), é mais eficiente medir características diretamente da superfície. Segundo 
estudos de Saleh et al. (2010), as características das superfícies de pavimentos são bons 
indicadores do desempenho de pavimentos com relação a resistência à derrapagem, drenagem 
e geração de ruído. 
 
Os ensaios mais utilizados na engenharia de pavimentação para avaliar as superfícies de 
pavimentos são a Mancha de Areia e o Drenabilidade, que tem como função avaliar a textura 
média da superfície. Embora não forneçam informações detalhadas sobre a forma das 
asperezas, são ensaios de baixo custo e rápida execução, fornecendo uma informação inicial 
sobre a superfície dos pavimentos. 
 
É importante ressaltar que ambos os ensaios dependem do contato físico com a superfície para 
fazer as medições. No caso da mancha de areia este contato se dá entre as esferas de vidro e as 
asperezas do pavimento, enquanto no caso do drenômetro, o contato se dá com a água e o 
pavimento. Desta forma, trata-se de ensaios de contato, diferente de métodos como o laser ou 
a fotometria, que fornecem informações sobre a textura de forma indireta (VIEIRA, 2013). A 
caracterização da textura de forma indireta, embora forneça uma informação mais detalhada, 
já que não tem limitações geradas por contato físico, ainda não são amplamente utilizadas na 
engenharia de pavimentação. 
 
2.1. Mancha de Areia 
A mancha de areia é o método volumétrico mais difundido para a avaliação da macrotextura 
do revestimento (ASTM, 1996) e o precursor do ensaio foi proposto por Trafford J. W. 
Leland (1968). O ensaio de mancha de areia é utilizado para medir a profundidade média da 
macrotextura (MTD - Mean Texture Depth). 
 
O método consiste em espalhar na superfície do revestimento que se quer avaliar, um volume 
conhecido (2500 mm²) de microesferas de vidro de dimensões padronizadas, em movimentos 
circulares com auxilio de um disco de borracha. Após o espalhamento, que resulta em um 
círculo de cobrindo uma dada área sobre o pavimento, medem-se quatro diâmetros, 
posicionados a 0°, 45°, 90°, 135°. 
 
 
Figura 2: Diâmetros traçados em corpo de prova para determinação do MTD, escala utilizada para a medição da 
mancha a partir de fotometria. 
 
Calcula-se, então, o diâmetro médio do círculo formado pela área coberta por areia. A altura 
média da mancha de areia é obtida pela equação (1). Para o cálculo da mancha de areia, 
utiliza-se a média dos quatro diâmetros, marcados na Figura 2, assim como proposto pela 
norma ASTM (1996). 
 (1) 
em que V: volume de areia [2500 mm²]; 
 Dm: diâmetro médio da mancha de areia [mm]; e 
 Hm: altura média da mancha de areia [mm]. 
 
Uma alternativa mais precisa para analisar a área da mancha de areia é calcular a área por 
meio de fotometria através de um programa de processamento de imagens. A Figura 3 mostra 
uma imagem para o cálculo da mancha de areia pelo processamento de imagens. 
 
Figura 3: Mancha de areia feita em uma das provas, com régua para processar a imagem 
 
O método da mancha de areia é de rápida execução, baixo custo e emprega equipamentos 
simples. No momento do ensaio, o pavimento deve estar perfeitamente limpo e seco, e deve-
se ter cuidado em locais com vento. Contudo, trata-se de um método lento, que exige 
fechamento ou interdição da rodovia ou pista, e que depende em parte do operador. 
 
 
2.2. Drenômetro 
O drenômetro é um equipamento utilizado para analisar a macrotextura do revestimento 
(ASTM, 2005) a partir do tempo de drenagem de um volume de água pré-definido. Foi 
desenvolvido em 1966 por Desmond F. Moore. 
 
Para a realização do experimento, o cilindro é posicionado sobre a superfície do pavimento, e 
fixado por um peso metálico. A região de contato, cilindro-pavimento, é selada por um anel 
de borracha, o interior do cilindro preenchido com água e a abertura inferior do cilindro 
vedada por uma tampa. Assim que esta tampa é solta, a drenagem de água se inicia. Com o 
uso de um cronômetro, marca-se o tempo gasto para que o volume conhecido de água escoe 
pela superfície. São feitas quatro medidas de tempo por corpo de prova, sendo que o tempo 
médio para escoar o volume pré-definido de água é o valor resultante da drenabilidade da 
superfície, OFT (Outflow Time). As normas utilizadas neste trabalho encontram-se listadas na 
seção 3. 
 
Sabendo que o ensaio de drenabilidade tem o objetivo de analisar a superfície do pavimento, é 
importante ressaltar que o escoamento de água ocorra apenas por entre as irregularidades da 
superfície. Porém, durante os ensaios, considerou-se que o volume de água do cilindro 
também poderia escoar por entre os vazios internos do corpo de prova, se infiltrando no 
mesmo. Com o intuito de verificar o grau de influência dessa infiltração, os mesmos ensaios 
foram realizados novamente, porém com o revestimento completamente saturado. Para 
garantir sua saturação, o corpo de prova foi mantido submerso por aproximadamente 10 
minutos, antes de iniciar os ensaios de drenabilidade. Com os resultados obtidos, foi possível 
observar que a saturação é um fator pouco determinante para os dados experimentais 
coletados, apresentados na seção 5, embora possa ser importante no caso de pavimentos com 
maior porosidade. A Figura 4 mostra o drenômetro na condição saturada (a), e não saturada 
(b). Nota-se, a partir da Figura 4 que no caso saturado ocorre somente o fluxo Q1, relacionado 
com a macrotextura, enquanto no caso não saturado, ocorre também o fluxo Q2, que está 
relacionado com a permeabilidade do pavimento, e não sua drenabilidade. Desta forma o 
fluxo Q2 é indesejado e pode ser suprimido com a saturação do pavimento. 
 
 
Figura 4: Representação do fluxo no drenômetro para as condições de não saturado e saturado (corte no plano 
de simetria) 
 
Após estudo, Moore (1975) foi capaz de correlacionar MTD com o tempo de drenagem, OFT, 
na equação (2). 
 (2) 
em que Kofm: constante; 
 : viscosidade absoluta [N.s/m²]; 
 t: tempo de drenagem [s]; 
 N’: número de asperezas por unidade de área [1/m²]; e 
 P: perímetro médio dos canais da macrotextura [m]. 
 
 
3. DRENÔMETRO DO LTP 
O drenômetro utilizado nos ensaios foi desenvolvido no próprio LTP (Laboratório de 
Q1 Q1 
Q2 Borracha 
Água 
Tampa 
Água 
Tampa 
Borracha 
Drenômetro Drenômetro 
(a) (b) 
Tecnologia de Pavimentação da Escola Politécnica da USP) pelo Dr. Edson de Moura que se 
baseou no drenômetro da ISETH (Institut für Strassen, Eisenbahn und Felsbau des 
EidgenössischenTechnischen Hochschule Zürich), que por sua vez, foi baseado no trabalho 
de Moore (1966). A Tabela 2 exemplifica algumas diferenças de dimensão e especificações 
entre os drenômetros LTP e ASTM. 
 
 
 
 
Tabela 2: Características do drenômetro do LTP e da ASTM 
 
 
 
 
 
Observa-se que o drenômetro do LTP se diferencia das especificações da norma (ASTM, 
2005). Logo, a equação 3, proposta pela ASTM é inválida para a análise dos dados. 
 (3) 
Como a equação 3 não é valida torna-se necessário utilizar ferramentas estatísticas de modo a 
determinar uma nova equação para correlacionar MTD e OFT, assim como é feito na seção 4. 
Vale ressaltar que o procedimento operacional adotado foi adaptado a partir da norma 
britânica de drenabilidade (BSI, 2002). O drenômetro do LTP tem peso total de 5,727 kg, dos 
quais, 5,154 kg são relativos ao peso de fixação, além de uma tampa de borracha. O 
drenômetro é apresentado na Figura 5 (a) a partir de uma foto, e em (b) com uma 
representação contendo suas dimensões. 
 
 
Figura 5: Drenômetro do LTP, peso e tampa (a) . Representação com as dimensões em milímetros (b) 
Drenômetro LTP ASTM 
Diâmetro do orifício (mm) 
Volume de água conhecido (ml) 
58 
724 
≥ 60 
≥650 e ≤700 
(a) (b) 
 
 
4. DADOS DE MANCHA DE AREIA E DRENABILIDADE 
Para os ensaios de drenabilidade e mancha de areia foram utilizadas sete amostras circulares 
com 250 mm de diâmetro. Tais amostras foram extraídas com o uso de uma serra circular da 
Rodovia dos Bandeirantes (SP-348). Vale evidenciar que do total de amostras, cinco são de 
microrrevestimento e duas, SE e SF, são de GAP-graded com asfalto borracha. Não se 
observou diferença significativa entre as amostras de microrrevestimento e de GAP-graded na 
análise aqui apresentada, embora há diferenças entre o desempenho destes dois tipos de 
revestimentos (VIEIRA, 2013). 
 
Os dados de mancha de areia (MTD), apresentados na Tabela 3 são referentes aos sete tipos 
de revestimento asfáltico, juntamente com os valores da área coberta pela areia. São 
apresentados apenas os dados obtidos por fotometria, já que estes apresentaram uma 
correlação significativamente mais elevada com os dados de drenabilidade, possibilitando a 
construção do modelo estatístico da seção 5. 
 
Tabela 3: Dados de Mancha de Areia 
Amostra Área (cm²) MTD (mm) 
SA 121.0 1.033 
SB 173.0 0.723 
SC 114.3 1.094 
SD 117.5 1.064 
SE 152.0 0.822 
SF 165.4 0.756 
SG 139.0 0.899 
 
Os dados dos ensaios de drenabilidade são apresentados na Tabela 4 fornecem os valores de 
tempo de escoamento (OFT) e desvio padrão para os corpos de prova submetidos ou não à 
saturação de água. Vale lembrar que as medidas obtidas de OFT correspondem à média de 
quatro medidas experimentais no mesmo corpo de prova. 
 
Tabela 4: Drenabilidade 
 
 
 
5. ANÁLISE DOS DADOS 
Os dados de mancha de areia e drenabilidade, tanto na condição saturada, quanto na condição 
não saturada, foram analisados estatisticamente. Avaliou-se a adequação da equação teórica 
aos dados em ambos os casos. As retas de regressão, relacionando (1/t)
0,25
 com a textura 
média, são apresentadas na Figura 6. A análise da regressão encontra-se na Tabela 5. Foi 
verificada, desta forma, a adequação de um modelo do tipo MTD=a+b*(1/t)
0.25
. 
 Não Saturado Saturado 
Amostra t (s) Desvio Padrão (s) t (s) Desvio Padrão (s) 
SA 1,6 0,033 1,69 0,042 
SB 4,47 0,057 4,32 0,048 
SC 1,76 0,049 1,73 0,035 
SD 3,78 0,05 3,68 0,022 
SE 6,81 0,06 2,36 0,04 
SF 8,76 0,048 8,43 0,028 
SG 3,77 0,035 3,66 0,027 
 
Figura 6: MTD relacionado com drenabilidade 
 
Tabela 5: Análise da Regressão, casos saturado e não saturado 
Não 
Saturado 
Predictor Coeficiente Desvio padrão p-value 
Constante 0,1352 0,2861 65,70% 
1/OFT
0.25
 1,0733 0,3908 4,00% 
Saturado Predictor Coeficiente Desvio padrão p-value 
 
Constante 0,1352 0,2694 63,70% 
1/OFT
0.25
 1,069 0,3666 3,30% 
 
A partir dos dados apresentados, com significância de 5%, observa-se que, enquanto o 
coeficiente angular da reta é significativo, o intercepto não o é. Assim, analisa-se um segundo 
modelo, do tipo MTD=b*(1/t)
0.25
, ou seja forçando um intercepto nulo, a=0. A análise da 
regressão deste modelo é apresentada na Tabela 6. 
 
Tabela 6: Analise da Regressão, casos saturado e não saturado, intercepto forçado 
Não 
Saturado 
Predictor Coeficiente Desvio padrão p-value 
1/OFT
0.25
 1,2559 0,05076 0,00% 
Saturado 
Predictor Coeficiente Desvio padrão p-value 
1/OFT
0.25
 1,2511 0,04885 0,00% 
 
Verifica-se a partir dos dados na Tabela 6 que a regressão saturada e a não saturada são 
significativas, mantendo um nível de significância de 5%. Finalmente, a análise dos resíduos 
das regressões com intercepto nulo forçado é apresentada na Figura 7. 
 
0,40,30,20,10,0-0,1-0,2-0,3-0,4
99
95
80
50
20
5
1
Residuals
Pe
rc
en
t
Goodness of F it Test
Normal
A D = 0,326 
P-V alue = 0,413
Residuals - Unsaturated outflow regression with forced null intercept
Normal - 95% CI
 
Figura 7: Análise dos resíduos para regressões com intercepto forçado, casos saturado e não saturado 
 
Os resíduos das regressões podem ser considerados normalmente distribuídos com uma 
significância de 5%. Desta forma as regressões com intercepto forçado são consideradas 
válidas. O intercepto nulo é coerente com a equação teórica do drenômetro, já que, com um 
tempo de drenagem muito elevado, 1/t tende a zero, levando o MTD previsto a zero também. 
Este resultado também apresenta sentido físico, já que uma textura idealmente plana apresenta 
um MTD nulo, resultando em um tempo de drenagem infinito, já que não haverá canais pelos 
quais a água poderá passar, na macrotextura do pavimento. O tempo de drenagem infinito 
leva seu recíproco, 1/t a zero. Desta forma, tanto por uma abordagem física do fenômeno, 
quanto por uma abordagem matemática, o modelo estatístico com intercepto forçado é 
adequado. A comprovação se deu pelos resultados estatísticos da regressão, já apresentados 
nesta seção. 
 
 
6. CONCLUSÕES 
A regressão apresentada é válida dentro do seu intervalo de confiança de 95%, sendo a 
extrapolação uma medida inicialmente não recomendável. Vale lembrar que, segundo a norma 
ASTM (1996), o ensaio de mancha de areia é válido dentro do intervalo de 0,5 e 1,2 mm de 
MTD. É possível utilizar o drenômetro e uma regressão adequada para estimar a textura 
média caso a mancha de areia obtida esteja fora dos valores limites aceitáveis para a mesma. 
 
A regressão também é útil como ferramenta de avaliação da macrotextura de revestimentos 
asfálticos, quando há alguma impossibilidade de executar a mancha de areia, podendo ainda 
ser utilizada de forma complementar à medida de MTD. Como exemplo de condições 
inviáveis de experimento, temos os já mencionados ensaios, além dos limites de 
aceitabilidade da mancha de areia (ASTM, 1996) ou ensaios em superfícies molhadas, caso no 
qual a mancha de areia torna-se impraticável. 
 
Complementar os ensaios de mancha de areia com o drenômetro é possível e recomendável, 
uma vez que serve de verificador dos valores da mancha, que, como já exposto, é altamente 
dependente do operador. As correlações entre mancha de areia e drenabilidade foram obtidas 
utilizando-se a técnica de fotometria para medir a área da mancha de areia, resultando em 
dados mais precisos. Ainda deve-se considerar que o ensaio de drenabilidade pode ser 
utilizado como indicador da capacidade de drenagem superficial da macrotextura, excluindo 
as deficiências intrínsecas da mancha de areia como oserros causados pelo tamanho finito das 
esferas de vidro. A partir do trabalho de Moore (1966), é possível, com algumas modificações 
no drenômetro do LTP, estimar o gradiente de velocidade do pavimento, definido como a 
variação entre o coeficiente de atrito e velocidade. Porém, há de ser levado em consideração 
que o modelo estatístico desenvolvido para o drenômetro aqui apresentado não deve ser 
utilizado para outros drenômentros, da mesma forma que outros modelos não devem ser 
utilizados para este drenômetro. A razão encontra-se na constante do instrumento, Kofm, na 
equação (1). A regressão utiliza a relação entre MTD e a raiz quarta do recíproco de OFT, 
sendo assim mais precisa do que a relação entre MTD e o recíproco de OFT , similar ao 
proposto pela ASTM (2005). A Figura 8 apresenta de forma esquemática, que a relação com o 
recíproco do OFT pode ser válida, porém apenas para valores limitados de OFT ou MTD. A 
aproximação com a raiz quarta do recíproco do OFT utilizada na regressão deste trabalho, é 
compatível com a lei teórica proposta por Moore (1966), sendo assim, mais abrangente. 
 
Finalmente, é válido ressaltar que a textura média não caracteriza a superfície de pavimentos 
de forma abrangente, não indicando, por exemplo, se uma textura é positiva ou negativa, 
fatores relevantes para a interação pneu-pavimento. 
 
Figura 8: Gráfico esquemático da aproximação do resultado teórico de Moore pela regressão simples da ASTM 
 
 
REFERÊNCIAS BIBLIOGRÁFICAS 
American Society for Testing and Materials (ASTM), E965 Standard Test Method for Measuring Pavement 
Macrotexture using a Volumetric Technique. ASTM International. Pennsylvania, Estados Unidos, 1996. 
American Society for Testing and Materials (ASTM), E2380: Standard Test Method for Measuring Pavement 
Texture Drainage Using an Outflow Meter. ASTM International, Pennsylvania, United States, 2005 
British Standards Institution, Road and airfield surface characteristics – Test Methods: Part 3 – Measurement of 
Pavement surface horizontal drainability. British Standards Institution. London, United Kingdom, 2002. 
Cairney, P.; Bennett, P. (2008) Relationship between road surface characteristic and crashes on Victorian rural 
roads. ARRB conference. Adelaide: Australia, 2008. 
Callai, S. C. Estudo do Ruído causado pelo tráfego de veículos em rodovias com diferentes tipos de 
revestimentos de pavimentos. 2011, 94 p. Tese de Mestrado – Escola Politécnica – Universidade de São 
Paulo. São Paulo, Brasil, 2011. 
Fang, Y.; Zhan, M.; Wang, Y. (2001) The status of recycling of waste rubber. Materials & Design, 2001. 
FEHRL, Silvia – Guidance Manual for the Implementation of low-noise Road Surface. FEHRL, Bruxelas, 
Bélgica, 2006. 
Freedonia Group, World Tires: Industry Study with forecasts for 2015 & 2020. Study 2860, 2012. 
Gothié, M.; PARRY, T.; ROE, P. The relative influence of the parameters affecting road surface friction. 
International Colloquium on Vehicle-Tyre Road Interaction. Florencia, Italia, 2001. 
Israelachvili, J. N. Intermolecular and Surface forces. Segunda Edição. Academic Press, Londres, Reino Unido, 
1991. 
Leland, T. J. W.; Yager, T. J. ; Joyner, U. T., Effects of PavementTexture on Wet-Runway Braking Performance. 
National Aeronaltics and Space Administration (NASA). Washington D. C., 1968. 
Lowne, R. W. (1970) The effect of road surface texture on tyre wear. Wear, n 15, p 57-70. Holanda, 1970. 
Moore, D. F. Prediction of Skid Resistance Gradient and Drainage Characteristics for Pavements. Highway 
Research Record. Washington, D. C., United States, 1966. 
Moore, D. F. Principles and applications of tribology. Pergamon Press, Reino Unido, 1975 
Pulugurtha, S. S.; Patel, K.; KUSAM, P. R. (2011) Pavement macrotexture thresholds to enhance safety: a case 
study using I-40 data in Durhan County, North Carolina. Anais do Transportation Research Board (TRB), 
Washington, D. C., 2011. 
Roe, P.; Webster, D.; West, G. The relation between the surface texture of roads and accidents. Transport Road 
Research Laboratory, Report 296. Materials and Construction Division. Crowthrone, Reino Unido, 1991. 
Saleh, M.; Flintsch, G. W.; Izeppi, E. L.; McGhee, K. K.; Abbott, A. L. (2010) Pavement texture analysis using 
infrared stereo vision. Anais do Transportation Research Record (TRR), Washington, D. C., 2010. 
Sandberg, U. Influence of road surface texture on traffic characteristics related to environment, economy and 
safety: A state-of-the-art study regarding measures and measuring methods. Swedish National Road 
Administration. Estocomo: Suécia, 1997. 
Silva, A. H. M.; Bernucci, L. L. B.; Suzuki, C. Y.; Chaves, J. M. (2011) Avaliação da redução de acidentes em 
pavimentos com microrrevestimento a frio. 7° Congresso Brasileiro de Rodovias e Concessões. Anais do 
Congresso Brasileiro de Rodovias e Concessões, Foz do Iguaçu, 2011. 
The Commission of the European Communities, Regulation (EC) No 122/2009 of the European Parliament and 
of the Concil of 25 November 2009 on the Labeling of Tyres with respect to Fuel Efficiency and other 
essential parameters. Official Journal of the European Union, L342/46. Bruxelas, Bélgica, 2009. 
Vieira, T. Asphaltic Pavement Surface Analysis and its effects on the tyre-pavement friction and on noise 
generation. 2013, Tese de Mestrado – Escola Politécnica – Universidade de São Paulo. São Paulo, Brasil, 
2013, em fase de elaboração. 
Wambold, J. C.; ANTILE, C. E. J.; Henry, J., Rado, Z. International experiment to compare and harmonize skid 
resistance and texture measurements. PIARC report, 1995. 
Whitehouse, D. Surfaces and their measurements. Hermes Penton Science. Londres, Reino Unido, 2002. 
 
Tiago Vieira (tiagovr@usp.br) 
Diego Campos Redondo (camposd25@gmail.com) 
André Kazuo Kuchiishi (kazuo.andre@gmail.com) 
Sérgio Copetti Callai (callai@usp.br) 
Liedi Légi Bariani Bernucci (liedi@usp.br) 
Departamento de Engenharia de Transportes, Escola Politécnica da USP. 
Av. Prof. Almeida Prado, travessa 2, n 83. São Paulo, SP, Brasil.

Continue navegando